首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Hepatitis C virus (HCV) currently infects approximately 3% of the world's population. HCV RNA is translated into a polyprotein that during maturation is cleaved into functional components. One component, nonstructural protein 3 (NS3), is a 631-residue bifunctional enzyme with protease and helicase activities. The NS3 serine protease processes the HCV polyprotein by both cis and trans mechanisms. The structural aspects of cis processing, the autoproteolysis step whereby the protease releases itself from the polyprotein, have not been characterized. The structural basis for inclusion of protease and helicase activities in a single polypeptide is also unknown. RESULTS: We report here the 2.5 A resolution structure of an engineered molecule containing the complete NS3 sequence and the protease activation domain of nonstructural protein 4A (NS4A) in a single polypeptide chain (single chain or scNS3-NS4A). In the molecule, the helicase and protease domains are segregated and connected by a single strand. The helicase necleoside triphosphate and RNA interaction sites are exposed to solvent. The protease active site of scNS3-NS4A is occupied by the NS3 C terminus, which is part of the helicase domain. Thus, the intramolecular complex shows one product of NS3-mediated cleavage at the NS3-NS4A junction of the HCV polyprotein bound at the protease active site. CONCLUSIONS: The scNS3-NS4A structure provides the first atomic view of polyprotein cis processing. Both local and global structural rearrangements follow the cis cleavage reaction, and large segments of the polyprotein can be folded prior to proteolytic processing. That the product complex of the cis cleavage reaction exists in a stable molecular conformation suggests autoinhibition and substrate-induced activation mechanisms for regulation of NS3 protease activity.  相似文献   

2.
Flaviviral NS3 is a multifunctional protein displaying N-terminal protease activity in addition to C-terminal helicase, nucleoside 5'-triphosphatase (NTPase), and 5'-terminal RNA triphosphatase (RTPase) activities. NS3 is held to support the separation of RNA daughter and template strands during viral replication. In addition, NS3 assists the initiation of replication by unwinding the RNA secondary structure in the 3' non-translated region (NTR). We report here the three-dimensional structure (at 3.1 A resolution) of the NS3 helicase domain (residues 186-619; NS3:186-619) from Kunjin virus, an Australian variant of the West Nile virus. As for homologous helicases, NS3:186-619 is composed of three domains, two of which are structurally related and held to host the NTPase and RTPase active sites. The third domain (C-terminal) is involved in RNA binding/recognition. The NS3:186-619 construct occurs as a dimer in solution and in the crystals. We show that NS3:186-619 displays both ATPase and RTPase activities, that it can unwind a double-stranded RNA substrate, being however inactive on a double-stranded DNA substrate. Analysis of different constructs shows that full length NS3 displays increased helicase activity, suggesting that the protease domain plays an assisting role in the RNA unwinding process. The structural interaction between the helicase and protease domain has been assessed using small angle X-ray scattering on full length NS3, disclosing that the protease and helicase domains build a rather elongated molecular assembly differing from that observed in the NS3 protein from hepatitis C virus.  相似文献   

3.
Crystal structure of the NS3 protease-helicase from dengue virus   总被引:2,自引:0,他引:2  
Several flaviviruses are important human pathogens, including dengue virus, a disease against which neither a vaccine nor specific antiviral therapies currently exist. During infection, the flavivirus RNA genome is translated into a polyprotein, which is cleaved into several components. Nonstructural protein 3 (NS3) carries out enzymatic reactions essential for viral replication, including proteolysis of the polyprotein through its serine protease N-terminal domain, with a segment of 40 residues from the NS2B protein acting as a cofactor. The ATPase/helicase domain is located at the C terminus of NS3. Atomic structures are available for these domains separately, but a molecular view of the full-length flavivirus NS3 polypeptide is still lacking. We report a crystallographic structure of a complete NS3 molecule fused to 18 residues of the NS2B cofactor at a resolution of 3.15 Å. The relative orientation between the protease and helicase domains is drastically different than the single-chain NS3-NS4A molecule from hepatitis C virus, which was caught in the act of cis cleavage at the NS3-NS4A junction. Here, the protease domain sits beneath the ATP binding site, giving the molecule an elongated shape. The domain arrangement found in the crystal structure fits nicely into an envelope determined ab initio using small-angle X-ray scattering experiments in solution, suggesting a stable molecular conformation. We propose that a basic patch located at the surface of the protease domain increases the affinity for nucleotides and could also participate in RNA binding, explaining the higher unwinding activity of the full-length enzyme compared to that of the isolated helicase domain.  相似文献   

4.
In flaviviruses it has been proposed that there is a coupling between genome replication and virion assembly and that nonstructural proteins are involved in this process. It was previously reported that mutations in yellow fever virus (YFV) nonstructural protein NS2A blocked production of infectious virus and that this block could be released by a suppressor mutation in NS3. Here, based on studies using a YFV replicon-based trans-packaging system as well as full-length YFV cDNA, we report that mutation of a conserved tryptophan at position 349 in the helicase domain of NS3 blocks production of infectious virus particles, revealing an as-yet-unknown role for NS3 in virus assembly. Mutation of tryptophan 349 to alanine (W349A) had no effect on viral replication, as demonstrated by wild-type levels of viral RNA amplification and protein expression in W349A-transfected cells. Although release of infectious virus was not detected, release of capsidless subviral particles was not blocked. The assembly defect in W349A could be trans-complemented inefficiently using BHK-REP cells (a cell line containing persistently replicating YFV replicon RNA). trans-complementation was also demonstrated by supplying wild-type NS2B-3 or NS3 protein alone as well as by supplying inactive NS2B-3 protein, indicating that this function of NS3 in virus assembly was independent of its known enzymatic functions.  相似文献   

5.
NS3 protein of dengue virus type 2 has a serine protease domain within the N-terminal 180 residues. NS2B is required for NS3 to form an active protease involved in processing of the viral polyprotein precursor. The region carboxy terminal to the protease domain has conserved motifs present in several viral RNA-stimulated nucleoside triphosphatase (NTPase)/RNA helicases. To define the functional domains of protease and NTPase/RNA helicase activities of NS3, full-length and amino-terminal deletion mutants of NS3 were expressed in Escherichia coli and purified. Deletion of 160 N-terminal residues of NS3 (as in NS3del.2) had no detrimental effect on the basal and RNA-stimulated NTPase as well as RNA helicase activities. However, mutagenesis of the conserved P-loop motif of the RNA helicase domain (K199E) resulted in loss of ATPase activity. The RNA-stimulated NTPase activity was significantly affected by deletion of 20 amino acid residues from the N terminus or by substitutions of the cluster of basic residues, 184RKRK-->QNGN, of NS3del.2, although both mutant proteins retained the conserved RNA helicase motifs. Furthermore, the minimal NS3 protease domain, required for cleavage of the 2B-3 site, was precisely defined to be 167 residues, using the in vitro processing of NS2B-NS3 precursors. Our results reveal that the functional domains required for serine protease and RNA-stimulated NTPase activities map within the region between amino acid residues 160 and 180 of NS3 protein and that a novel motif, the cluster of basic residues 184RKRK, plays an important role for the RNA-stimulated NTPase activity.  相似文献   

6.
The flavivirus NS3 protein plays an important role in the cleavage and processing of the viral polyprotein and in the synthesis of the viral RNA. NS3 recruits NS2B and NS5 proteins to form complexes possessing protease and replicase activities through protease and nucleoside triphosphatase/helicase domains. We have found that NS3 also induces apoptosis. Expression of the Langat (LGT) virus NS3 protein resulted in a cleavage of cellular DNA and reduced the viability of cells. Coexpression of NS3 with apoptotic inhibitors (CrmA and P35) and addition of caspase peptide substrates (Z-VAD-FMK and Z-IETD-FMK) to NS3-transfected cells blocked NS3-induced apoptosis. In cotransfection experiments, NS3 bound to caspase-8 and enhanced caspase-8-mediated apoptosis. NS3 and caspase-8 colocalized in the cytoplasm of transfected cells. Deletion analysis demonstrated that at least two regions of NS3 contribute to its apoptotic activities. The protease and helicase domains are each able to bind to caspase-8, while the protease domain alone induces apoptosis. The protease domain and tetrahelix region of the helicase domain are required for NS3 to augment caspase-8-mediated apoptosis. Thus, the LGT virus NS3 protein is a multifunctional protein that binds to caspase-8 and induces apoptosis.  相似文献   

7.
8.
Flaviviruses have a single-strand, positive-polarity RNA genome that encodes a single polyprotein. The polyprotein is comprised of seven nonstructural (NS) and three structural proteins. The N- and C-terminal parts of NS3 represent the serine protease and the RNA helicase, respectively. The cleavage of the polyprotein by the protease is required to produce the individual viral proteins, which assemble a new viral progeny. Conversely, inactivation of the protease blocks viral infection. Both the protease and the helicase are conserved among flaviviruses. As a result, NS3 is a promising drug target in flaviviral infections. This article examines the West Nile virus NS3 with an emphasis on the structural and functional parameters of the protease, the helicase and their cofactors.  相似文献   

9.
To determine whether the two domains of hepatitis C virus (HCV) NS3 and the NS4A interact with each other to regulate the RNA unwinding activity, this study compares the RNA unwinding, ATPase and RNA binding activities of three forms of NS3 proteins--the NS3H protein, containing only the helicase domain, the full-length NS3 protein, and the NS3-NS4A complex. The results revealed that NS3 displayed the weakest RNA helicase activity, not because it had lower ATPase or RNA binding activity than did NS3H or NS3-NS4A, but because it had the lowest RNA unwinding processivity. A mutant protein, R1487Q, which contained a mutation in the helicase domain, displayed a reduced protease activity as compared to the wild-type NS3-NS4A. Together, these results suggest the existence of interactions between the two domains of NS3 and the NS4A, which regulates the HCV NS3 protease and RNA helicase activities.  相似文献   

10.
In vitro selection of RNA aptamers against the HCV NS3 helicase domain   总被引:1,自引:0,他引:1  
Nonstructural protein 3 (NS3) of hepatitis C virus (HCV) has two distinct domains, protease and helicase, that are essential for HCV proliferation. Therefore, NS3 is considered a target for anti-HCV treatment. To study RNA aptamers of the NS3 helicase domain, we carried out in vitro selection against the HCV NS3 helicase domain. RNA aptamers obtained after eight generations possessed 5' extended single-stranded regions and the conserved sequence (5'-GGA(U/C)GGAGCC-3') at stem-loop regions. Aptamer 5 showed strong inhibition of helicase activity in vitro. Deletion and mutagenesis analysis clarified that the conserved stem-loop is important and that the whole structure is needed for helicase inhibition. We compared the inhibition of helicase activity between aptamer 5 and 3'+-UTR of HCV.  相似文献   

11.
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.  相似文献   

12.
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses(NS2BNS3) form an endoplasmic reticulum(ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.  相似文献   

13.
The hepatitis C virus (HCV) nonstructural 3 protein (NS3) is a 70-kDa multifunctional enzyme with three known catalytic activities segregated in two somewhat independent domains. The essential machinery of a serine protease is localized in the N-terminal one-third of the protein, and nucleoside triphosphatase (NTPase) and helicase activities reside in the remaining C-terminal region. NS4A is a 54-residue protein expressed immediately downstream of NS3 in the viral polyprotein, and a central stretch of hydrophobic residues in NS4A form an integral structural component of the NS3 serine protease domain. There is no evidence to suggest that the two domains of NS3 are separated by proteolytic processing in vivo. This may reflect economical packaging of essential viral replicative components, but it could also mean that there is functional interdependence between the two domains. In this study, a full-length NS3-NS4A complex was isolated after expression and autoprocessing in transiently transfected COS cells. The protein was used to examine the effects of polynucleotides on the NTPase, helicase, and protease activities. Unlike the previously reported behavior of a separately expressed NS3 helicase domain, the full NS3-NS4A complex demonstrated optimal NTPase activity between pH 7.5 and 8.5. All three NS3-NS4A activities were modulated by polynucleotides, with poly(U) having the most remarkable effect. These findings suggest that the domains within NS3 may influence the activity of one another and that the interplay of HCV genomic elements may regulate the enzyme activities of this complex HCV replicase component.  相似文献   

14.
The dengue virus (DENV) NS3 protein is essential for viral polyprotein processing and RNA replication. It contains an N-terminal serine protease region (residues 1–168) joined to an RNA helicase (residues 180–618) by an 11-amino acid linker (169–179). The structure at 3.15 Å of the soluble NS3 protein from DENV4 covalently attached to 18 residues of the NS2B cofactor region (NS2B18NS3) revealed an elongated molecule with the protease domain abutting subdomains I and II of the helicase (Luo, D., Xu, T., Hunke, C., Grüber, G., Vasudevan, S. G., and Lescar, J. (2008) J. Virol. 82, 173–183). Unexpectedly, using similar crystal growth conditions, we observed an alternative conformation where the protease domain has rotated by ∼161° with respect to the helicase domain. We report this new crystal structure bound to ADP-Mn2+ refined to a resolution of 2.2 Å. The biological significance for interdomain flexibility conferred by the linker region was probed by either inserting a Gly residue between Glu173 and Pro174 or replacing Pro174 with a Gly residue. Both mutations resulted in significantly lower ATPase and helicase activities. We next increased flexibility in the linker by introducing a Pro176 to Gly mutation in a DENV2 replicon system. A 70% reduction in luciferase reporter signal and a similar reduction in the level of viral RNA synthesis were observed. Our results indicate that the linker region has evolved to an optimum length to confer flexibility to the NS3 protein that is required both for polyprotein processing and RNA replication.  相似文献   

15.
The nonstructural 3 (NS3) protein encoded by the hepatitis C virus possesses both an N-terminal serine protease activity and a C-terminal 3'-5' helicase activity. This study examines the effects of the protease on the helicase by comparing the enzymatic properties of the full-length NS3 protein with truncated versions in which the protease is either deleted or replaced by a polyhistidine (His tag) or a glutathione S-transferase fusion protein (GST tag). When the NS3 protein lacks the protease domain it unwinds RNA more slowly and does not unwind RNA in the presence of excess nucleic acid that acts as an enzyme trap. Some but not all of the RNA helicase activity can be restored by adding a His tag or GST tag to the N terminus of the truncated helicase, suggesting that the effects of the protease are both specific and nonspecific. Similar but smaller effects are also seen in DNA helicase and translocation assays. While translocating on RNA (or DNA) the full-length protein hydrolyzes ATP more slowly than the truncated protein, suggesting that the protease allows for more efficient ATP usage. Binding assays reveal that the full-length protein assembles on single-stranded DNA as a higher order oligomer than the truncated fragment, and the binding appears to be more cooperative. The data suggest that hepatitis C virus RNA helicase, and therefore viral replication, could be influenced by the rotations of the protease domain which likely occur during polyprotein processing.  相似文献   

16.
Dengue fever is an important emerging public health concern, with several million viral infections occurring annually, for which no effective therapy currently exists. The NS3 protein from Dengue virus is a multifunctional protein of 69 kDa, endowed with protease, helicase, and nucleoside 5'-triphosphatase (NTPase) activities. Thus, NS3 plays an important role in viral replication and represents a very interesting target for the development of specific antiviral inhibitors. We present the structure of an enzymatically active fragment of the Dengue virus NTPase/helicase catalytic domain to 2.4 A resolution. The structure is composed of three domains, displays an asymmetric distribution of charges on its surface, and contains a tunnel large enough to accommodate single-stranded RNA. Its C-terminal domain adopts a new fold compared to the NS3 helicase of hepatitis C virus, which has interesting implications for the evolution of the Flaviviridae replication complex. A bound sulfate ion reveals residues involved in the metal-dependent NTPase catalytic mechanism. Comparison with the NS3 hepatitis C virus helicase complexed to single-stranded DNA would place the 3' single-stranded tail of a nucleic acid duplex in the tunnel that runs across the basic face of the protein. A possible model for the unwinding mechanism is proposed.  相似文献   

17.
RNA helicases represent a family of enzymes that unwind double-stranded (ds) RNA in a nucleoside triphosphate (NTP)-dependent fashion and which are required in all aspects of cellular RNA metabolism and processing. The hepatitis C virus (HCV) non-structural 3 (NS3) protein possesses a serine protease activity in the N-terminal one-third, whereas RNA-stimulated NTPase and helicase activities reside in the C-terminal portion of the 631 amino acid residue bifunctional enzyme. The HCV NS3 RNA helicase is of key importance in the life cycle of HCV, which makes it a target for the development of therapeutics. However, neither the precise mechanism nor the substrate structure has been defined for this enzyme. For nuclear magnetic resonance (NMR)-based drug discovery methods and for mechanistic studies we engineered, prepared and characterized various truncated constructs of the 451-residue HCV NS3 RNA helicase. Our goal was to produce smaller fragments of the enzyme, which would be amenable to solution NMR techniques while retaining their native NTP and/or nucleic acid binding sites. Solution conditions were optimized to obtain high-quality heteronuclear NMR spectra of nitrogen-15 isotope-labeled constructs, which are typical of well-folded monomeric proteins. Moreover, NMR binding studies and functional data directly support the correct folding of these fragments.  相似文献   

18.
Pestivirus NS3 (p80) protein possesses RNA helicase activity.   总被引:28,自引:16,他引:12       下载免费PDF全文
The pestivirus bovine viral diarrhea virus (BVDV) p80 protein (referred to here as the NS3 protein) contains amino acid sequence motifs predictive of three enzymatic activities: serine proteinase, nucleoside triphosphatase, and RNA helicase. We have previously demonstrated that the former two enzymatic activities are associated with this protein. Here, we show that a purified recombinant BVDV NS3 protein derived from baculovirus-infected insect cells possesses RNA helicase activity. BVDV NS3 RNA helicase activity was specifically inhibited by monoclonal antibodies to the p80 protein. The activity was dependent on the presence of nucleoside triphosphate and divalent cation, with a preference for ATP and Mn2+. Hydrolysis of the nucleoside triphosphate was necessary for strand displacement. The helicase activity required substrates with an un-base-paired region on the template strand 3' of the duplex region. As few as three un-base-paired nucleotides were sufficient for efficient oligonucleotide displacement. However, the enzyme did not act on substrates having a single-stranded region only to the 5' end of the duplex or on substrates lacking single-stranded regions altogether (blunt-ended duplex substrates), suggesting that the directionality of the BVDV RNA helicase was 3' to 5' with respect to the template strand. The BVDV helicase activity was able to displace both RNA and DNA oligonucleotides from RNA template strands but was unable to release oligonucleotides from DNA templates. The possible role of this activity in pestivirus replication is discussed.  相似文献   

19.
The nonstructural protein 3 (NS3) of hepatitis C virus contains a protease domain at its amino terminus and RNA helicase domain at its carboxyl terminus. To identify optimal NS3 protein for developing screening assays, we expressed full-length NS3 protease/helicase and helicase domains from both HCV type 1a (H77 strain) and 1b (Con1 strain), using either E. coli or baculovirus expression systems. Our studies showed that the full-length NS3 proteins, either with or without the presence of the NS4A domain, from either strains were at least 10-fold more efficient than the corresponding helicase domains in unwinding partial duplex RNA substrates. These findings provide a rationale for the use of full-length NS3 in high throughput screening assays to identify potent small molecule inhibitors of this important target of HCV.  相似文献   

20.
Mutations were introduced into the NS3 helicase region of a hepatitis C virus (HCV) Con1 subgenomic replicon to ascertain the role of the helicase in viral replication. One new replicon lacked two-thirds of the NS3 helicase (Deltahel), and six others contained one of the following six amino acid substitutions in NS3: R393A, F438A, T450I, E493K, W501A, and W501F. It has been previously reported that purified R393A, F438A, and W501A HCV helicase proteins do not unwind RNA but unwind DNA, bind RNA, and hydrolyze ATP. On the other hand, previous data suggest that a W501F protein retains most of its unwinding abilities and that purified T450I and E493K HCV helicase proteins have enhanced unwinding abilities. In a hepatoma cell line that has been cured of HCV replicons using interferon, the T450I and W501F replicons synthesized both negative-sense and positive-sense viral RNA and formed colonies after selection with similar efficiencies as the parent replicon. However, the Deltahel, R393A, F438A, and W501A replicons encoded and processed an HCV polyprotein but did not synthesize additional viral RNA or form colonies. Surprisingly the same phenotype was seen for the E493K replicon. The inability of the E493K replicon to replicate might point to a role of pH in viral replication because a previous analysis has shown that, unlike the wild-type NS3 protein, the helicase activity of an E493K protein is not sensitive to pH changes. These results demonstrate that the RNA-unwinding activity of the HCV NS3 helicase is needed for RNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号