首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Inoculation of water fernAzolla pinnata R. Brown (Bangkok isolate) at the rate of 500kg fresh weight ha−1 in rice fields at weekly intervals after planting in addition to 30 kg N ha−1 as urea showed a decrease in its growth and N2-fixation with delay in application. Use of Azolla up to 3 weeks after planting (WAP) during wet and 4 WAP during dry season produced significantly more grain yield than 30 kg N ha−1, whereas its application upto one WAP produced more grain yield than 60 kg N ha−1. Grain yield with Azolla applied at the time of planting was similar to that of 60 kg N treatment during the wet season. Higher grain yields in zero and one WAP Azolla treatments resulted due to increase in both number of panicles m−2 and number of grains/panicle while the subsequent Azolla inoculations increased grain yield mainly by producing more number of grains/panicle. Dry matter and total N yields at maturity of rice crop were more with Azolla application upto 3 WAP during wet and 2 WAP during dry season while the reduction in sterility (%) was observed upto one WAP over 30 kg N ha−1 during both seasons. Number of tillers m−2 and dry matter production at maximum tillering and flowering were more than 30 kg N ha−1 with the use of Azolla upto one WAP. Increased grain N yield was observed with the use of Azolla upto 4 WAP during two seasons whereas straw N yield increased upto one WAP during wet and 2 WAP during dry season.  相似文献   

2.
Kavimandan  S. K. 《Plant and Soil》1986,96(1):133-135
Summary Inoculation with root-nodule bacteria had favourable influence on N-uptake and yield of wheat. Since waterlogged root region of rice permits higher nitrogenase activity a pot culture experiment was conducted using same nine strains of rhizobia,Azotobacter chroococcum and bluegreen algae as inoculants.R. leguminosarum in combination with 50 kg N ha−1;R. japonicum and a strain of rhizobium isolated from moong bean increased the yield of paddy cv. Pusa-33. On the other hand an adverse effect of bacterial inoculation and of applied N was observed in case of Azotobacter, and rhizobia isolated from green gram, cicer, soyabean and clover. The importance of plant type, growth conditions and application of inorganic N in determining the success of plant-rhizobial associations is emphasised.  相似文献   

3.
Photoperiod has a profound effect on the growth of Azolla pinnata. Fresh mass, dry mass and moisture content were maximum in 12 h and minimum in 0 h (dark) photoperiod. Frond colour, root characteristics and sporocarp production were also affected under different treatments. The plants were capable of growing under continuous illumination and unnatural photoperiods.  相似文献   

4.
Light intensity has a profound effect on the growth of Azolla pinnata R. Brown. Fresh weight, dry weight and moisture content were maximum at 80 000 lux, but maximum frond area was attained in 50% light intensity. There was a wide variation in frond colour under different treatments. Frond texture, root characteristics and sporocarp production were also affected. The plant expresses heliophytic characteristics.  相似文献   

5.
A field experiment was conducted at the Bangladesh Rice Research Institute, Joydebpur, Dhaka during the late wet season. Basal application of P at both 5 and 10 kg ha−1 significantly increased total biomass production and nitrogen fixation byAzolla pinnata R. Brown (local strain). Addition of both 5 and 10 kg P ha−1 in equal splits at inoculation and at six day intervals thereafter during growth periods of 12, 24 and 36 days increased biomass production and nitrogen fixation by Azolla over that attained with the basal application. Biomass and nitrogen fixation using a split application of 5 kg P ha−1 exceeded that attained with basal application of 10 kg P ha−1 and split application of 10 kg P ha−1 resulted in 0.58, 11.2, and 18.3 t ha−1 more biomass, and 0.47, 18.9, and 18.3 more kg fixed N ha−1 at 12, 24 and 36 days, respectively, than the same amount applied as a basal application. Analyses indicated that the critical level of dry weight P in Azolla for sustained growth was in the range of 0.15–0.17%. Compared with the control, where no P was added, and additional 30 and 36 kg N ha−1 were fixed after 24 and 36 days, respectively, when P was provided at 10 kg ha−1 using a split application. A separate field study showed that flooded rice plants received P from incorporated Azolla with about 28% of the P present in the supplied Azolla being incorporated into the rice plants.  相似文献   

6.
Field experiments (20 m2 plots) were conducted to compare Azolla and urea as N sources for rice (Oryza sativa L.) in both the wet and dry seasons. Parallel microplot (1 m2) experiments were conducted using 15N. A total of approximately 60 kg N ha-1 was applied as urea, Azolla, or urea plus Azolla. Urea or Azolla applied with equal applications of 30 kg N ha-1 at transplanting (T) and at maximum tillering (MT) were equally effective for increasing rice grain yields in both seasons. Urea at 30 kg N ha-1 at T and Azolla 30 kg N ha-1 at MT was also equally effective. Urea applied by the locally recommended best split (40 kg at T and 20 kg at MT) gave a higher yield in the wet season, but an equal yield in the dry season. The average yield increase was 23% in the wet season, and 95% in the dry season. The proportion of the N taken up by the rice plants which was derived from urea (%NdfU) or Azolla (%NdfAz) was essentially identical for the treatments receiving the same N split. Recovery of 15N in the grain plus straw was also very similar. Positive yield responses to residual N were observed in the succeeding rice crop following both the wet and dry seasons, but the increases were not always statistically significant. Recovery of residual 15N ranged from 5.5 to 8.9% for both crops in succeeding seasons. Residual recovery from the urea applications was significantly higher than from Azolla in the crop succeeding the dry season crop. Azolla was equally effective as urea as an N source for rice production on a per kg N basis.  相似文献   

7.
The response of rice toAzolla caroliniana, newly introduced in India, was compared with the reponse to the local isolate ofAzolla pinnata at varying rates of phosphate fertilizer (4.4–8.8 kg P ha–1) during a wet and a dry season.Fresh weight, dry weight and fixed N were more for both species 21 DAI (days after inoculation) than 14 DAI, but acetylene reduction activity (ARA) was higher 14 DAI than 21 DAI. Dry weight of Azolla and fixed N were less 14 DAI forA. caroliniana than forA. pinnata during the wet season. Twenty-one DAI, fresh weight ofA. caroliniana was 62.1 and 27.6% higher than that ofA. pinnata during the wet and dry season, respectively. However, dry weight and fixed N were more 21 DAI inA. caroliniana than inA. pinnata during only the wet season. The ARA was higher inA. caroliniana both 14 and 21 DAI, irrespective of season. The presence of either species in the rice field increased grain yield, straw yield, number of panicles m–2, number of grains per panicle and reduced percentage sterility during both the wet and the dry season. Phosphate application significantly increased fresh weight, dry weight, ARA and fixed N for both species as well as grain and straw yields of rice. The responses to phosphate fertilizer were similar for both Azolla species and for rice grown with either one of the Azolla species.  相似文献   

8.
The effect of nitrogenous sources like ammonium sulphate (AS), prilled urea (U), urea super granule (USG) and farm yard manure (FYM) was studied on the fresh biomass (FB) and acetylene reduction activity (ARA) ofAzolla pinnata, R. Brown (Bangkok isolate), grown as a dual crop with rice, and rice yield in three successive seasons. Irrespective of the N-sources and seasons, the FB and ARA of Azolla were observed to be maximum on 14th day after Azolla inoculation (DAI). The different N-sources had significant effect on the ARA and to a lesser extent on the FB of Azolla. The treatment without fertilizer-N (control) exhibited highest ARA, FB and total N-content of Azolla. These were inhibited to a lesser extent by USG and FYM, though used at higher rates of 75 kg N ha−1 and 90 kgN ha−1 respectively, compared to that by AS and U, used at lower rates of 45kg N ha−1 each.  相似文献   

9.
I. Watanabe 《Plant and Soil》1986,90(1-3):343-357
Summary Of the 143 million hectares of cultivated rice land in the world, 75% are planted to wetland rice. Wet or flooded conditions favour biological nitrogen fixation by providing (1) photic-oxic floodwater and surface soil for phototrophic, free-living or symbiotic blue-green algae (BGA), and (2) aphotic-anoxic soil for anaerobic or microaerobic, heterotrophic bacteria. TheAzolla-Anabaena symbiosis can accumulate as much as 200 kg N ha–1 in biomass. In tropical flooded fields, biomass production from a singleAzolla crop is about 15 t fresh weight ha–1 or 35 kg N ha–1. Low tolerance for high temperature, insect damage, phosphorus requirement, and maintenance of inoculum, limit application in the tropics. Basic work on taxonomy, sporulation, and breeding ofAzolla is needed. Although there are many reports of the positive effect of BGA inoculation on rice yield, the mechanisms of yield increase are not known. Efficient ways to increase N2-fixation by field-grown BGA are not well exploited. Studies on the ecology of floodwater communities are needed to understand the principles of manipulating BGA. Bacteria associated with rice roots and the basal portion of the shoot also fix nitrogen. The system is known as a rhizocoenosis. N2-fixation in rhizocoenosis in wetland rice is lower than that ofAzolla or BGA. Ways of manipulating this process are not known. Screening rice varieties that greatly stimulate N2-fixation may be the most efficient way of manipulating the rhizocoenosis. Stimulation of N2-fixation by bacterial inoculation needs to be quantified.  相似文献   

10.
In view of the recently generated interest in Azolla and the high cost of N fertilizers, this field study was aimed at measuring the availability of Azolla-N applied in two split application in comparison to urea-N. Azolla was cultivated and labelled with 15N isotope in the field. A total of about 60 kg N ha-1 was applied as Azolla, urea or Azolla and urea in combination, in two equal splits at transplanting and at maximum tillering, i.e. 30 days after transplanting (30 DAT).The recovery by the crop of Azolla-N applied at 30 DAT was significantly higher than that applied at transplanting, viz. 30.2% and 20.2%, respectively. The recoveries of urea-N applied at the same stages were similarly low, viz. 22.5% at transplanting and 38.6% at 30 DAT. Total recoveries of fertilizer N at the time of harvest were 26.8% from Azolla, 30.7% from urea applied in the same two splits and 49.1% from urea applied in locally recommended three splits. Recoveries of labelled Azolla-N in succeeding rice crop were twice higher than those of labelled urea-N. The recoveries ranged from 1.9 to 2.1% from urea-N and 4.0 to 4.9% from Azolla-N. There were no differences in residual 15N recovery in the succeeding crop between Azolla and urea either applied at transplanting or at 30 DAT.  相似文献   

11.
Summary Selected nuclear and cytoplasmic changes associated with early differentiation of four cell-types—dermatogen, inner and outer cortex, and endodermis—have been analysed using montages of electron micrographs of median longitudinal sections of young roots ofAzolla pinnata. The area fraction of nucleoplasm occupied by chromocentres (CAF) is smaller in the apical cell than in the nuclei of its most recently formed daughter cells. The CAF also differs between the four cell-types: dermatogen nuclei have a lesser mean CAF and smaller chromocentres than nuclei of the endodermis; cortical cell nuclei have intermediate values. These differences may reflect changes in nuclear activity during cell differentiation. The area fraction occupied by the vacuome (VAF) differs between the apical cell and its daughters: the apical cell seems to retain most of the vacuome at division, while the daughter cells receive less vacuolate cytoplasm. Of the four cell-types analysed, the cortical cells develop a large VAF the quickest; the dermatogen is slower to become vacuolate. Cells in the dermatogen and outer cortex derive from common mother cells, as do cells in the endodermis and inner cortex, and even the most recently-formed cells in the files of inner and outer cortex are more vacuolated than their sister cells in the other two celltypes. The onset of vacuolation may be triggered by an inductive influence emanating from older vacuolated cells in the same file. The rate of vacuolation in each of the cell-types examined may also be negatively correlated to the intensity of synthesis of protein used to construct cytoplasmic materials.  相似文献   

12.
Application of 0, 30, 60, 90 and 120 kg N ha–1 of urea (U) in split doses with (and without)Azolla pinnata, R. Brown was studied for three consecutive seasons under planted field condition. Fresh weight (FW), acetylene reduction activity (ARA) and N yield of Azolla were found to be maximum 14 days after inoculation (DAI). Among the different treatments, maximum Azolla growth was recorded in no N control. The FW, ARA and N yield of Azolla were inhibited increasingly with the increase in N levels. Irrespective of season, FW and N yield of Azolla were inhibited only a small extent with 90 kg N ha–1 U, beyond which the inhibition was pronounced. ARA was inhibited only slightly up to 60 kg N ha–1 of U. Grain yield and crop N uptake of rice increased significantly up to 90 kg N ha–1 of U (alone or in combination with Azolla) in the dry seasons (variety IR 36) and up to 60 kg N ha–1 U in the wet season (variety CR 1018).  相似文献   

13.
With an autotrophic, N-free medium, Xanthobacter populations were isolated from the roots of wetland rice grown under field conditions. Xanthobacter populations ranged from 3.2×104 to 5.1×105 colony-forming units (cfu) g-1 of root and averaged 47-fold higher on the root or rhizoplane than in the neighbouring nonrhizosphere. Characterization studies indicated dissimilarities in carbon utilization and motility among the isolated Xanthobacter strains and other recognized Xanthobacter species. Under gnotobiotic conditions, the population of one isolate, Xanthobacter sp. JW-KR1, increased from 105 to 107 cfu plant-1 1 d after inoculation when a rice plant was present, but declined to numbers below the limit of detection (<104 cfu assembly-1) after 3 d in the absence of a plant. Scanning electron microscopy revealed Xanthobacter as pleomorphic forms on the rhizoplane. To assess the effect of Xanthobacter on plant growth, rice plants were grown under greenhouse conditions in plant assemblies containing sand and half-strength Hoagland's nutrient solution with and without nitrogen. Plants were either inoculated with 105 cfu Xanthobacter g-1 of sand or left uninoculated. After 40 d, plants without nitrogen showed no significant differences in top or root dry weight, plant height, root length, or number of tillers or leaves, whether the plants were inoculated or uninoculated. However, when nitrogen was added, inoculated plants had a significantly larger top dry weight (15%) and number of leaves (19%) than uninoculated plants. Under conditions of added and no added nitrogen, acetylene reduction assays showed Xanthobacter sp. JW-KR1 produced <0.1 (below detection limit) and 7 nmol C2H4 plant-1 h-1, respectively. Under the conditions studied, the results suggest that both Xanthobacter and wetland rice derive some benefits from their association.  相似文献   

14.
A novel salt-tolerant, N2-fixing and phosphate-solubilizing, Gluconacetobacter sp. (PA12) tagged with gusA gene, colonized Porteresia coarctata (wild rice) and Pokkali (salt-tolerant variety) more intensively when compared to Ponni (salt-sensitive variety). This was confirmed using a colony-counting method.  相似文献   

15.
氮硅肥配施对水稻生长、产量及土壤肥力的影响   总被引:28,自引:4,他引:28  
采用田间试验研究了氮硅肥配施对水稻生长、产量、养分吸收及土壤养分含量的影响。结果表明 ,氮、硅肥单施都能促进水稻生长及对养分的吸收 ,氮肥效果好于硅肥。氮硅肥配施下 ,水稻有效穗数、穗实粒数、千粒重、水稻产量以及水稻地上部生物量 ,植株氮、磷、钾、硅养分含量增幅均高于氮肥和硅肥单施。随施硅量增加 ,氮 /硅比率后期有明显下降趋势。氮硅配施提高了土壤速效氮含量和有效硅含量、降低了土壤速效钾含量 ,而对速效磷、pH、有机质及全氮无明显影响。  相似文献   

16.
This study reports the effect of salinity and inoculation on growth, ion uptake and nitrogen fixation byVigna radiata. A soil ECe level of 7.5 dS m−1 was quite detrimental causing about 60% decline in dry matter and grain yield of mungbean plants whereas a soil ECe level of 10.0 dS m−1 was almost toxic. In contrast most of the studied strains of Rhizobium were salt tolerant. Nevertheless, nodulation, nitrogen fixation and total nitrogen concentration in the plant was drastically affected at high salt concentration. A noticeable decline in acetylene reduction activity occurred when salinity level increased to 7.5 dS m−1.  相似文献   

17.
稻草还田方式对双季水稻产量和土壤碳库管理指数的影响   总被引:16,自引:0,他引:16  
采用田间定位试验,设置不施肥(CK)、单施化肥(NPK)、稻草切碎全量还田+化肥(SNPK)和稻草全部烧灰还田+化肥(SINPK)4个处理,研究不同稻草还田方式对双季稻产量和土壤碳素形态、碳库管理指数的影响.结果表明:2010—2011年两年四季的水稻平均产量SNPK与SINPK处理基本持平,但均显著高于NPK处理,增幅为5.7%~7.3%.与NPK和SINPK相比,SNPK能显著提高早稻产量,增幅在3.8%~8.8%.与单施化肥和稻草烧灰还田相比,SNPK提高了土壤不同形态碳素含量和碳库管理指数,总有机碳、活性碳、矿化碳和碳库管理指数分别提高了1.8%~2.0%、5.9%~6.5%、16.0%~41.6%和7.3%~7.8%.土壤碳库管理指数与早、晚稻产量呈显著抛物线关系,相关系数分别为0.999和0.980.SNPK能显著提高翌年早稻产量及土壤不同形态碳素含量和碳库管理指数.  相似文献   

18.
The trials to use Azolla as a green manure for rice culture were made in the Niger basin.Azolla pinnata (Niger isolate) was used for the experiments. The effect of phosphorus on the growth and N2-fixation was examined in the field and in the laboratory. The growth rate and N content were maximum with P 3.1 ppm culture solution under laboratory conditions. The threshold P content for the growth was 0.5–0.6% in the dry matter. Maximum N content was 4.1% in the laboratory culture. In the field culture, the effect of P fertilizer on the growth and N yield of Azolla was tested. The split application of 6.5 kg P ha−1 per 13 days was most effective in stimulating the growth of Azolla. One kg of P as triple superphosphate produced 3.66 kg N in the Azolla. Maximum growth rate and N content in the field trials was 4.3 days (doubling time) and 2.3%, respectively. The lower productivity in the field in comparison with the laboratory culture was considered to be due to higher temperature and light intensity. the growth of Azolla was suppressed in the hot season in the Niger basin. The growth rate and N content were reduced during the high temperature period over 30°C on an average. The effect of inoculation of Azolla on rice yield was tested in the field experiment. The grain yield was increased 27% by Azolla incolation over the treatment without Azolla inoculation in — N fertilizer treatments. While the growth of Azolla with rice plants did not attain saturated density (1.8 kg fresh weight m−2), the effect on the grain yield was comparable to 40 kg N ha−1 as urea.  相似文献   

19.
Crop response, tree biomass production and changes in soil fertility characteristics were monitored in a long-term (1986–2002) alley-cropping trial in Ibadan, Nigeria. The systems included two alley cropping systems with Leucaena leucocephala and Senna siamea on the one hand and a control (no-trees) system on the other hand, all cropped annually with a maize–cowpea rotation. All systems had a plus and minus fertilizer treatment. Over the years, the annual biomass return through tree prunings declined steadily, but more drastically for Leucaena than for Senna. In 2002, the nitrogen contribution from Leucaena residues stabilized at about 200 kg N/ha/year, while the corresponding value for Senna was about 160 kg N/ha/year. On average, the four Leucaena prunings were more equal in biomass as well as in amounts of N, P and cations, while the first Sennapruning was always contributing up to 60% of the annual biomass or nutrient return. Maize crop yields declined steadily in all treatments, but the least so in the Senna + fertilizer treatment where in 2002 still 2.2 tonnes/ha of maize were obtained. Nitrogen fertilizer use efficiency was usually higher in the Senna treatment compared to the control or the Leucaena treatment. Added benefits due to the combined use of fertilizer N and organic matter additions were observed only for the Sennatreatment and only in the last 6 years. At all other times, they remained absent or were even negative in the Leucaenatreatments for the first 3 years. Most chemical soil fertility parameters decreased in all the treatments, but less so in the alley cropping systems. The presence of trees had a positive effect on remaining carbon stocks, while they were reduced compared to the 1986 data. Trees had a positive effect on the maintenance of exchangeable cations in the top soil. Exchangeable Ca, Mg and K – and hence ECEC – were only slightly reduced after 16 years of cropping in the tree-based systems, and even increased in the Senna treatments. In the control treatments, values for all these parameters reduced to 50% or less of the original values after 16 years. All the above points to the Senna-based alley system with fertilizers as the more resilient one. This is reflected in all soil fertility parameters, in added benefits due to the combined use of fertilizer nitrogen and organic residue application and in a more stable maize yield over the years, averaging 2.8 tonnes/ha with maximal deviations from the average not exceeding 21%.  相似文献   

20.
Nostoc, a genus of filamentous, heterocystous, cyanobacteria, is widely distributed in the free-living state. It is also the most common phycobiont in N2-fixing lichens and occurs as the N2-fixing symbiont in a small and diverse group of green plants. These include several bryophyte genera (e.g. Anthoceros and Blasia), a pteridophyte genus (Azolla; while the symbiont is referred to asAnabaena azollae, it may be aNostoc spp.), a division of gymnosperms (the 10 cycad genera) and one angiosperm genus (Gunnera). In Gunnera the Nostoc apparently penetrates into the cells of the host. In the other associations Nostoc is extracellular but specific morphological modifications and/or structures of the host plant organs create an environment which fosters interaction and metabolite interchange.The individual group of Nostoc-green plant symbioses other than Azolla are summarized in regard to the current understanding of their establishment, perpetuation, and host-symbiont interaction. This includes available information on recognition and specificity, mode(s) of infection if applicable, and a synopsis of morphological modifications of the partners. The symbiosis withAzolla is then addressed separately with a more indepth account of the foregoing areas. In addition, the concept ofAzolla harboring a dominant, obiligately symbiotic Nostoc which has not been cultured as well as minor symbionts capable of free-living growth, the distinction between re-constituting and simply re-establishing the symbiosis, and current approaches to improving the symbiosis and to authenticating the establishment of new associations are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号