首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human recombinant interleukin 2 (IL 2) and highly purified murine interleukin 3 (IL 3) were tested for their ability to generate NK activity in bone marrow cells from mice with severe combined immunodeficiency. IL 2 alone could dose dependently induce NK activity in marrow cells as determined by cytotoxicity against YAC-1 target cells. It was demonstrated that IL 3 had dual effects on the generation of NK activity in this culture system. The addition of IL 3 resulted in inhibition of NK cell activity seen at high concentrations of IL 2. In contrast, when IL 3 was added together with low concentrations of IL 2, the generation of NK cells as judged by cytotoxicity assay as well as the appearance of cells with NK phenotypes was markedly augmented. In some experiments, mice were treated with 5-fluorouracil (5-FU) to eliminate relatively differentiated NK precursors from bone marrow cells. It was noted that the residual immature marrow cells from 5-FU-treated mice showed little NK activity even after the culture with high concentrations of IL 2. Importantly, IL 3 could induce the generation of NK activity from 5-FU-treated marrow cells in the presence of IL 2. Kinetic studies indicated that NK activity was appreciably generated from 5-FU-treated marrow cells when preincubated with IL 3 at least for 12 hr and subsequently cultured with IL 2. The cells bearing IL 2 receptors appeared in 5-FU-treated marrow cells, even though cultured only with IL 3, which implied that IL 3 could support the development of very primitive NK cells from IL 2-unresponsive to IL 2-responsive states. These results suggested that IL 3 might play a crucial role for the IL 2-induced generation of NK cells in bone marrow through promoting the expression of IL 2R on NK progenitor cells.  相似文献   

2.
Generation of NK cell activity from human bone marrow   总被引:4,自引:0,他引:4  
This study was designed to examine the effect of interleukin 2 (IL 2) on cytotoxic activity of human bone marrow cells and to characterize the IL 2-dependent killer cells and the cell population required for their induction. We have demonstrated that the most aggressive IL 2-dependent killer cells (directed against leukemic and solid cancer targets) exhibited LGL morphology and expressed NK cell-associated antigens NKH1 and CD16, but not T cell-associated antigens CD3, CD4, CD5, or CD8. Similarly, the bone marrow cell population necessary for induction of killer cells with highest cytotoxic activity displayed NK cell surface characteristics, as exemplified by CD16 and Leu-7 antigens. On the contrary, very low or no lytic activity was generated from the bone marrow cell population expressing T cell markers CD3 and CD5. These data indicate that the IL 2-dependent bone marrow-derived killer cells with antitumor activity were activated NK cells. If T cells are involved at all in IL 2-dependent bone marrow killing, their potency is inferior to that of activated NK cells. The clinical applications of these studies are discussed.  相似文献   

3.
Adoptive transfer of bone marrow cells to syngeneic lethally irradiated C57BL/6 mice was used to study the maturation of natural killer (NK) cells from their progenitors. The NK progenitor cell was found to be asialomonoganglioside-negative, (aGM1-) Thy-1-, NK-1-, Ly-1-, Ly-2-, and L3T4-. The NK cells emerging from the bone marrow grafts were aGM1+, NK-1+, Thy-1+/-, Ly-1-, Ly-2-, and L3T4- and to have a target specter similar to that of NK cells isolated from the spleen of normal mice. The regulatory role of interleukin 2 (IL-2) and interleukin 3 (IL-3) for the maturation of NK cells was examined by exposure of the bone marrow cells to the lymphokines in vitro before bone marrow grafting or by treatment of bone marrow-grafted mice with lymphokines through s.c. implanted miniosmotic pumps. IL-3 antagonized the IL-2-induced maturation of NK cells in vitro and strongly inhibited the generation of NK cells after adoptive transfer of bone marrow cells in vivo. The suppressive effect of IL-3 was evident throughout the treatment period (8 or 16 days) but was apparently reversible because NK activity returned to control levels within 8 days after cessation of treatment. The inhibition of cytotoxic activity was accompanied by a reduced appearance of cells with the NK phenotypic markers aGM1 or NK-1, indicating that not only the cytotoxic activity of NK cells but also their actual formation was inhibited. Concomitantly, a moderate increase in cells expressing the T cell marker L3T4 and an increased proliferative response to the T cell mitogen concanavalin A was observed. A direct estimate of the effect of IL-3 on the frequency of NK cell progenitors was obtained by limiting dilution analysis of bone marrow cells at day 8 after bone marrow transplantation. The estimated minimal frequency of NK cell progenitors was reduced from 1/11,800 in control to 1/41,900 in IL-3-exposed mice. IL-3 may take part in the homeostasis of NK cells by the down-regulation of their progenitors.  相似文献   

4.
Maintenance and regulation of natural killer (NK) cell activity in human bone marrow cultures were studied using K562 leukemia cells as targets. Culture of bone marrow cells in medium supporting long-term generation of myeloid cells resulted in a rapid loss of NK activity in 1-3 days. In contrast, antibody-dependent cytotoxicity to an NK-resistant tumor was maintained for more than 7 weeks. Horse serum, a component of the myelopoietic culture medium, was found to diminish NK cytotoxicity of blood and bone marrow cultures whereas hydrocortisone supplement did not. In addition, an adherent cell is present in bone marrow which greatly inhibits NK activity. Nonadherent bone marrow cells exhibited higher cytotoxicity than unfractionated cells at all days of culture; adherent cells were not cytotoxic to K562. Purified adherent marrow cells inhibited the cytotoxic capacity of nonadherent blood or marrow mononuclear cells during coculture. Indomethacin, an inhibitor of protaglandin synthesis, augmented levels of NK activity in cultures of bone marrow cells, indicating that macrophages may be suppressing this effector function via prostaglandins. Further identification of the adherent suppressor cells came from experiments in which suppression was prevented by treatment of the adherent cells with monoclonal OKM1 antibody plus complement. This study shows that bone marrow-adherent OKM1-positive cells, presumably macrophages, negatively regulate NK activity, and it defines conditions for analysis of the generation and/or positive regulation of NK cells in human bone marrow.  相似文献   

5.
Summary High levels of cytotoxic activity against the natural killer (NK) cell-sensitive target K562 and the NK-resistant target UCLA-SO-M14 (M14) can be generated in vitro either by mixed lymphocyte culture (MLC) or by culture of lymphocytes in interleukin 2 (IL2) (lymphokine activated killer (LAK) cells). The purpose of this study was to identify similarities and differences between MLC-LAK and IL2-LAK cells and allospecific cytotoxic T cells. Induction of cytotoxicity against K562 and M14 in both culture systems was inhibited by antibodies specific either for IL2 or the Tac IL2 receptor. Like NK effector cells, the precursors for the MLC-LAK cells were low density large lymphocytes. However these precursors differed from the large granular lymphocytes that mediated NK cytolysis in sensitivity to the toxic lysosomotropic agent L-leucine methyl ester (LME). The resistance of the MLC-LAK precursors to LME indicated that the precursors included large agranular lymphocytes. Although interferon-gamma (IFN-gamma) is produced in MLC and in IL2 containing cultures, it is not required for induction of either type of cytotoxic activity. Neutralization of IFN-gamma in MLC-and IL2-containing cultures with specific antibodies had no effect on the induction of cytotoxic activities. Both allospecific cytotoxic T lymphocyte (CTL) and LAK activities were enhanced by IL2 and IFN-gamma at the effector cell stage. However, the mechanism of cytolysis was different in the two systems. NK- and MLC-induced LAK activities were independent of CD3-T cell receptor complex while CTL activity was blocked by monoclonal antibodies specific for the CD3 antigen. These results suggest that NK and the in vitro induced LAK cytotoxicities are a family of related functions that differ from CTL. Furthermore, MLC-induced and IL2-induced cytotoxicities against K562 and M14 appear to be identical.This work was supported by NIH grant CA34442  相似文献   

6.
NK cells originate from progenitors in the bone marrow and maturate independently of other lymphoid organs. NK cell maturation represents an important site for regulation of the level of NK activity and constitutes a potentially interesting target for therapeutic intervention. The effect of the immunomodulator Linomide (carboxamide-3-quinoline) on the regeneration of NK cells was studied in vivo after depletion of mature NK cells. Linomide significantly, although to various extent, accelerated the maturation of NK cells after specific depletion with antibodies to asialomonoganglioside, treatment with cyclophosphamide or lethal irradiation and syngeneic bone marrow grafting. Examination of the target cell spectrum lysed by spleen effector cells during Linomide treatment as well as studies of phenotype, clearly indicated that the effector cells studied were NK cells. Treatment of mice for 4 days with Linomide increased the frequency of bone marrow NK cell progenitors from 1/11,900 to 1/6,000 as judged by limiting dilution analysis. Direct addition of Linomide in vitro had no effect on cultures of mature NK cells from spleen, but had an additive effect to IL-2 on the generation of NK cells when added to bone marrow cultures. Our study indicates that different mechanisms exist for the regulation of progenitor and mature NK cells, and that the immunomodulator Linomide represent a potentially important tool for investigating the mechanisms governing NK cell maturation.  相似文献   

7.
The coculture of rat bone marrow cells with recombinant interleukin-2 induced the generation of cells mediating natural killer (NK) activity and subsequent lymphokine-activated killer (LAK) activity depending upon the dose of IL-2 and time of culture. NK activity was detected as early as 4 to 5 days after the addition of IL-2 and could be evoked with as little as 5 to 50 U/ml. The induced NK cells had large granular lymphocyte (LGL) morphology and expressed 0X8 and asialo GM1 surface markers but did not express 0X19 or W3/25 markers. LAK activity was detected only after 5 days of culture, and required above 100 U/ml IL-2. Cells mediating LAK activity also expressed 0X8 and asialo GM1 but not 0X19. The generation of detectable NK and subsequent LAK activity was due to induction of early progenitor cells and not contaminating mature LGL/NK cells within the bone marrow population since of removal of such mature NK cells with L-leucine methyl ester (L-LME) did not affect the subsequent generation of either activity. Moreover, the removal of actively dividing cells as well as mature NK cells from the bone marrow by treatment with 5-fluorouracil (5-FU) in vivo enriched the remaining bone marrow population for both NK and LAK progenitor cells. The phenotype of the L-LME- and 5-FU-resistant NK and LAK progenitor cells within populations of bone marrow was determined by antibody plus complement depletion analysis. Although treatment of normal bone marrow with anti-asialo GM1 + C reduced the induction of NK and LAK activity in 5-day cultures, treatment of 5-FU marrow with anti-asialo GM1 + C did not affect either activity. Treatment with a pan-T cell antibody + C did not affect the development of NK or LAK activity under any conditions. Thus, the 5-FU-resistant NK/LAK progenitors were asialo GM1 negative but became asialo GM1+ after induction by IL-2. Finally, evidence that bone marrow-derived LAK cells were generated directly from the IL-2-induced NK cells was obtained by treating the IL-2-induced LGL/NK cells with L-LME.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Colonies containing spontaneously cytotoxic effector cells with specificity for target cells carrying self-MHC can be grown from normal mouse bone marrow (BM). BM was first depleted of nylon wool-adherent cells and was then cultured at low cell number (1 to 300 cells/culture) in multiple replicate microcultures in liquid culture medium containing supernatant from EL4 thymoma cells stimulated with PMA. Frequency of colony growth followed one-hit limiting dilution kinetics. Colonies contained lymphoid, myeloid, or both kinds of cells. About 5% of colonies contained self-specific cytotoxic effector cells. Analysis using the X chromosome-linked isoenzyme PGK-1 confirmed that colonies containing autoreactivity could be clonal. A factor other than IL 2, IL 3, or PMA appears to be required for the growth of autoreactive colonies. Similar colonies, both with and without autoreactive effector cells, could also be grown from the BM of athymic nude mice with frequencies and cytotoxic activities directly comparable to those found for normal BM. C.B-17 scid mice lack both B and T cells, apparently due to a block in the development of lymphoid stem cells. Colonies could be grown with comparable frequency from their BM, but these colonies lacked both lymphoid cells and spontaneous cytotoxic activity. Evidence is presented against the self-reactive effector cells being NK cells, macrophages, or mature T cells. It is speculated that they represent an early stage of the T cell differentiation pathway.  相似文献   

9.
Human bone marrow cells collected from ribs of patients undergoing thoracotomy had low or no natural killer (NK) cell activity against K562 in a 4-hour chromium release assay. In vitro overnight treatment with interferon or interleukin 2 of bone marrow cells resulted in no induction or augmentation of NK cell activity. In the presence of adherent bone marrow cells interferon was unable to enhance NK cell activity of blood lymphocytes, although the baseline level of NK cell activity was not suppressed. These results suggest that adherent bone marrow cells regulate the development of active NK cells and that bone marrow components do not provide a favorable environment for the functional differentiation of NK cells.  相似文献   

10.
Natural killer (NK) cells have been implicated in defense against malignancies, especially leukemia. Because patients with leukemia and preleukemic disorders manifest low NK activity, it is possible that NK cell impairment may contribute to leukemogenesis. In view of this possibility, it was important to characterize the NK cell defect of leukemic patients and to design new approaches for its correction. Analysis of the mechanism of NK cell defect demonstrated that NK cells of leukemic patients were impaired in their tumor-binding and lytic activity and did not display ability to recycle or to produce cytotoxic factor. However, deficient NK activity could be corrected by culture of peripheral blood effector cells with IL 2. IL 2-activated NK cells manifested restoration of all measured parameters of the cytotoxic mechanism, as exemplified by normalized tumor-binding and lytic activity, as well as the rate of lysis and ability to recycle. Importantly, such in vitro stimulated cytotoxic cells displayed reactivity against fresh leukemic cells of autologous as well as allogeneic origin. Another interesting observation from these studies was that the NK activity was also induced in the leukemic bone marrow, a tissue with a very low frequency of cytotoxic NK cells. It is important to note that cultured NK cells did not represent a stationary cell population, but proliferated in vitro quite actively (doubling time 3 to 6 days) for at least 5 wk. Characterization of the in vitro generated cytotoxic cells indicated that these cells displayed large granular lymphocyte morphology and CD16 and Leu-19 cell surface phenotype. Our data demonstrate that the NK cell defect of leukemic patients is not a permanent phenomenon, but can be reversed in culture with IL 2, and that fully cytotoxic NK cells can be maintained and expanded in vitro. Thus, it is reasonable to suggest that adoptive transfer of autologous NK cells to the patients may represent a promising new therapy for treatment of leukemia.  相似文献   

11.
The syngeneic mixed lymphocyte reaction (SMLR) was assayed in the medium containing syngeneic normal mouse serum (NMS), by using nylon-adherent stimulator cells and nonadherent responder T cells, which were prepared from murine spleens in the absence of fetal calf serum (FCS) to avoid any sensitization to xenogeneic protein antigens. The responder cells in this SMLR, without definite background proliferation, generated specific proliferative response to the syngeneic stimulator cells in a dose-related fashion. The SMLR was accompanied by production of interleukin 3 (IL 3) but not interleukin 2 (IL 2) or interferon (IFN). No cytotoxicity against the syngeneic or allogeneic target cells was induced. Correlating with no production of IL 2 or IFN, no natural killer (NK) activity was detected. The proliferation was not inhibited by addition of specific antiserum for IFN-gamma. In contrast, proliferation in the responder cells when incubated with allogeneic stimulator cells was inhibited by anti-IFN-gamma serum and accompanied by production of IL 2 and IFN as well as IL 3, and by augmentation of NK activity and generation of cytotoxic T cells. Cell surface analysis revealed that the cells producing IL 3 in this SMLR system were Thy-1+ Lyt-1+2- helper T cells. Cells responding to the SMLR culture fluids with DNA replication were Thy-1-Lyt-1-2- asialo GM1- no-marker cells, which were the same as a population responsible for partially purified IL 3. On the other hand, when the responder cells were exposed to FCS before culture and assayed for SMLR in the FCS-free NMS medium, variable levels of IL 2 production were induced in response to the stimulator cells. The responder cells generated a high background DNA replication in the absence of syngeneic stimulators, suggesting that this IL 2 production may result from the stimulation of T cells by FCS as a foreign antigen. Overall, these results suggest that the SMLR may be a cellular interaction, in which non-T cells stimulate Lyt-1+2- helper T cells to produce IL 3 but not IL 2 or IFN. This IL 3 can, in turn, induce proliferation of IL 3 responding cells, which appear to be early precursors in lymphocyte differentiation, but no proliferative response or activation of IL 2- and IFN-dependent mature T cells or NK cells.  相似文献   

12.
The development of natural killer (NK) cells from bone marrow (BM) precursors was studied. Recombinant interleukin 2 (IL 2) was able to induce the in vitro development of NK cells when added to cultures of mouse BM cells. Treatment of donor mice with 5-fluorouracil (150 mg/kg i.v.), which eliminates more differentiated cells but spares less differentiated cells, appears to augment NK cell development. The "NK stem cell" was found to be asialo GM1-, Thy-1+, Lyt-2-, and Lyt-1-. The cells generated in vitro had a typical phenotype of NK cells, being asialo GM1+, Lyt-5+, Thy-1+, Lyt-2-, and Lyt-1-. These effector cells also had specificity characteristics of NK cells lysing the NK-susceptible YAC-1 and K562 targets, but not the NK-resistant EL/4 or allogeneic and syngeneic blasts. Hemopoietin-1 (H-1), a factor which acts on very primitive multipotent BM cells, was able to cooperate with IL 2, increasing the development of NK cells. In contrast, other factors such as interleukin 3 or colony-stimulating factor did not cause induction of NK activity when added to cultures of BM cells, indicating that this effect, i.e., induction of NK cell development, is peculiar to IL 2. These results indicate that IL 2 can act as a differentiation as well as growth factor for NK cells, and that H-1 can promote the development of functional activity in a lymphocyte subpopulation as well as affect the differentiation of myelomonocytic and other cell lineages. This experimental system appears quite useful for characterization of BM precursors for NK cells, and should help to better understand the relationship of the NK cell lineage to the T cell or other lineages.  相似文献   

13.
Rat nylon wool nonadherent bone marrow cells were propagated for up to 75 days in co-culture with stromal cells derived from either spleen or bone marrow. Interleukin (IL) 1 enhanced the ability of spleen stroma to support the long-term culture of natural killer (NK) cells, ostensibly by inducing these support cells to synthesize other cytokines. Flow cytometry studies indicated that the nylon wool separation procedure enriched the concentrations of mature NK cells from 7.9% to 38.1% for splenocytes and from 3.8% to 19.5% for bone marrow cells. Analyses of the adherent zones of suspended nylon screen NK cell cultures revealed substantial numbers of large granular lymphocytes that expressed NK 323+/MOM/3F12/F2- phenotypes. The presence of both mature and immature cells of the NK lineage in this matrix was inferred by the presence of both IL-2 receptor (IL-2R) positive and IL-2R negative, and OX-8+ and OX-8- NK 323+ cells over the greater than 4-month experimental period. Suspended nylon screen cultures displayed a greater potential for producing cytolytic cells than either co-cultures of bone marrow nonadherent cells on stroma monolayers or suspension cultures. The large granular lymphocytes produced in suspended nylon screen cultures could be transformed into active killers of YAC-1 targets by IL-2. In contrast to bone marrow nonadherent cells, more splenic nylon-wool-passed cells displayed a mature NK phenotype, but their proliferative potential and ability to be transformed into cytolytic cells by IL-2 decreased rapidly in culture. In the suspended nylon screen culture system, NK cells migrate from the underlying stroma in stages as they mature, retain their cytolytic potential, and manifest a capacity for self-renewal. Cultured cells were routinely dissociated into single cell suspensions via enzyme treatment and were reinoculated onto "fresh" nylon screen/stromal cell templates after passage through nylon wool columns. These co-cultures continued to generate cytolytic cells in numbers greater than those of the initial inoculum.  相似文献   

14.
The effects of cyclosporin A (CsA) on the generation of NK cells were studied using syngeneic bone marrow transplanted mice subsequently treated with CsA (BMT/CsA mice). In contrast to a severe reduction in T cells that was reported previously, these mice exhibited a marked enhancement of splenic NK activity. The enhanced NK activity was mediated by NK1.1+, Thy-1- cells as assessed by antibody plus complement treatment, and was concomitant with an absolute increase in the numbers of NK1.1+ cells as assessed by flow cytometry. Because the depletion of host-derived, mature NK cells by injection of anti-asialo GM1 antibody before bone marrow reconstitution did not affect the enhancement of NK activity, CsA appeared to augment the generation of NK cells from bone marrow precursors. To investigate a possible relationship between the enhancement of NK activity and the maturational arrest of T cells in the thymus induced by CsA, mice were thymectomized, followed by irradiation, bone marrow reconstitution, and CsA treatment. These mice exhibited as strong enhancement of splenic NK activity as BMT/CsA mice, suggesting that the CsA-induced effect on NK cells is distinct from its effect on T cell development in the thymus. Taken together, these results are the first demonstration of the positive effect of CsA on NK cell generation and may be of importance in clinical bone marrow transplantation.  相似文献   

15.
Although considerable data have recently been accumulated regarding the functional role of natural killer (NK) cells, relatively little is known about the factors that regulate NK cell activity. In these studies, we evaluated the role of interleukin 2 (IL 2) and the expression of the IL 2 receptor in the activation and proliferation of human NK cloned cell lines. By using a series of cloned cell lines, we were able to analyze homogeneous populations of NK cells that ordinarily comprise only a small fraction of peripheral blood lymphocytes and are extremely heterogeneous with respect to phenotypes and cytotoxic specificities. In comparison with several T cell clones, we found a much lower density of IL 2 receptors on NK clones, regardless of whether or not these cloned cells had a mature T cell phenotype. Correspondingly, NK clones needed a 10-fold higher concentration of recombinant IL 2 for maximal proliferation. Moreover, blocking studies with specific monoclonal IL 2 receptor antibodies indicated that IL 2 is both necessary and sufficient to induce the proliferation of NK clones. Because the majority of peripheral blood NK cells and NK clones express the T11 E rosette receptor antigen, which has been shown to be an antigen-independent activation pathway for T cells, we were able to study the role of monoclonal anti-T11 antibodies in the activation of various NK clones for which a specific target antigen is not known. In contrast to T cell clones, the induction of IL 2 receptor expression after T11 activation was possible only for some NK clones such as JT10 and JT3, but not for CNK5. Before activation, the IL 2 receptor expression of NK clones was confined to cells in the G2 - M phase, but after T11 activation the more pronounced IL 2 receptor expression became independent of the cell cycle. With respect to the direct proliferative effect of anti-T11 activation that has been noted with T cell clones, only the T3+ (JT10) and not the T3- NK clones could be directly stimulated. Nevertheless, IL 2 receptor expression could be triggered on some T3- clones such as JT3. Because T11-induced proliferation of T cells has been shown to be dependent on both the expression of the IL 2 receptor and on the interaction of this receptor with IL 2, it is proposed that the different responses of NK cells to T11 activation may reflect the ability of the individual clone to produce endogenous IL 2, as well as its ability to express the IL 2 receptor.  相似文献   

16.
Although many immunostimulants have been shown to increase the lytic activity of natural killer (NK) cells in the periphery, little is known about their effects on NK cells in the bone marrow, the primary site of NK production. In the experiments reported here, we tested OK-432, a pharmaceutical preparation of Streptococcus pyogenes, for its effects on both the primary production and lytic activity of NK cells in C57BL/6J mice. NK activity in bone marrow cells (BMC) and spleen cells (SC) was significantly increased following intravenous administration of OK-432, peaking on day 2 in BMC and on day 3 in SC. Concomitantly, there were marked changes in the cellularity in the two compartments. Bone marrow cellularity fell significantly on day 1 post-OK-432 and then gradually returned to normal, whereas spleen cellularity rose rapidly and remained elevated. As a consequence, the total NK activity (per femur or per spleen) was significantly increased at 48-96 h after administration of OK-432. The target specificity was unchanged. The phenotype of NK cells in BMC as determined by cytotoxic depletion was unchanged by OK-432, but splenic NK activity shifted to a 'less mature' phenotype, intermediate between that of normal BMC and SC. Cytokinetic studies using 3H-TdR revealed an increase in the production of NK cells in the bone marrow following administration of OK-432. Proliferating NK cells also appeared in the spleen. Whether these were recently produced NK cells from the bone marrow that still retained the ability to proliferate or mature NK cells that were stimulated into cell cycle cannot be determined from these experiments. These data are the first to directly demonstrate the modulation of the primary production of NK cells by an immunologically active drug.  相似文献   

17.
We have investigated the role of interleukin-2 (IL2) as a differentiation factor for human marrow-derived NK cell progenitors and have assessed the effects of interleukin-1 (IL1) on this activity. The effects of these cytokines on early NK cell precursors was determined by testing marrow which had been depleted of mature cells and of CD2+ cells by treatment with soybean agglutinin and sheep erythrocytes (SBA-E-BM). The cytolytic activities of the SBA-E-BM were tested in 51Cr release assays following 7-8 days of liquid culture. K562 targets were used to assess NK activity and NK-resistant Daudi targets were used to measure lymphokine-activated killer (LAK) cell activity. Neither NK nor LAK activity were measurable in marrow incubated in medium without cytokines, or in medium containing IL1 alone. In contrast, culture in medium containing IL2 resulted in a dose-dependent development of lytic activity. NK and LAK activities could be differentiated by the percentage of cultures in which the activity developed, the dose of IL2 required, the time kinetics of induction, and the effect of depletion of residual cells with NK phenotype prior to culture. The most lytically active effectors of both activities, however, were CD56+. Immunofluorescence analyses before and after culture with IL2 revealed that Leu19+ (CD56) cells increased from less than 2% to as much as 17% of the total marrow cells and showed the appearance of a population of CD56+CD16- cells. The addition of IL1 to the marrow cultures increased NK activity when suboptimal amounts of IL2 were used (less than or equal to 100 U/ml), but did not increase LAK activity at any concentration of IL2. A higher number of NK cells, as well as MY7+(CD13+) myeloid cells were recovered from cultures containing IL1 plus IL2, indicating that NK cells as well as myeloid cells had a growth advantage in the presence of IL1. IL2 receptor (CD25) expression was low in all cultures but was consistently higher in cultures containing IL1 and IL2, however, CD25 was not coexpressed on NK cells. These studies indicate that early NK cell precursors can grow and differentiate in response to IL2 and that NK and LAK lytic activities may be acquired at different developmental stages. IL1 may serve to promote the responsiveness of NK cell progenitors to low concentration of IL2 by a mechanism which may not require expression of CD25.  相似文献   

18.
Bone marrow cells cultured for 5-6 days generate cytotoxic activity against a number of natural killer (NK)-susceptible tumor cells. In this study, these bone marrow cytotoxic cells were compared to cells with NK activity obtained either from spleen cells activated in vitro with interferon (IFN-alpha/beta) or mitogen or from peritoneal exudate cells (PEC) obtained 4 days after bacillus Calmette-Guerin (BCG) infection. Splenic and PEC cytotoxic cells were shown to be Thy 1.2+, NK 1.1+, Asialo GM+1, Lyt 1.2-, Lyt 2.2-. In contrast, bone marrow cytotoxic cells were Thy 1.2+, NK 1.1-, Lyt 1.2-, Lyt 2.2- and expressed low levels of Asialo GM1 antigen (Asialo GM +/- 1). Precursor cells for bone marrow cytotoxic activity were shown to be Thy 1.2-, NK 1.1-, Lyt 1.2-, Lyt 2.2- but also expressed low levels of Asialo GM1 antigen (Asialo GM +/- 1). Cytotoxic activity for both bone marrow and spleen cells peaked in the low-density fractions of discontinuous Percoll density gradients. The cytotoxic activity of these bone marrow cells was augmented by pretreatment with IFN (-alpha/beta, -gamma) or soluble factors (IFN free) from activated EL-4 thymoma cells. Surprisingly, the ability of bone marrow cells to generate high levels of cytotoxic activity following in vitro culture appeared to be associated primarily with mice which were of the H-2b haplotype.  相似文献   

19.
Precursor phenotype of lymphokine-activated killer cells in the mouse   总被引:4,自引:0,他引:4  
Lymphokine-activated killer (LAK) activity has been proposed to functionally differ from natural killer (NK) activity largely on the basis of a broader target cell spectrum and different kinetics of response to interleukin 2 (IL 2). Similarly, it has been proposed that the precursor cells for LAK activity are phenotypically distinct from NK cells. In most precursor studies, phenotype comparisons have been made between fresh NK cells and LAK cells which have been generated by 3 to 5 days of culture in IL 2. In the present study, we utilized positive selection with monoclonal antibodies to characterize the surface phenotype of precursor cells which give rise to rIL 2-augmented NK activity within 24 hr and to classically generated LAK activity which appears after 3 to 5 days of culture in rIL 2. The results demonstrated that highly purified (93 to 95%) Lyt-2+ or L3T4+ T lymphocytes were unable to generate appreciable amounts of either augmented NK activity or LAK activity when cultured with rIL 2, whereas the highly purified (98%) Lyt-2-, L3T4-, asialo GM1+ lymphocyte subset gave rise to both augmented NK and LAK activities. These findings demonstrate that both augmented NK and LAK activities can arise from precursors expressing the same phenotype. Overall, the results suggest that NK cells in mouse spleen constitute a major precursor component for the generation of LAK activity from that organ.  相似文献   

20.
Peripheral blood from patients with acquired immunodeficiency syndrome (AIDS) or AIDS-related complex (ARC) exhibits poor NK activity in the 51Cr-release assay. The present studies were undertaken to investigate the mechanism underlying the observed defective NK cytotoxic activity. On the basis of our studies on the mechanism of natural killer cell-mediated cytotoxicity (NKCMC), a defective NK cell can result from lack or decreased frequency of effector cells, inability to recognize and bind the target cell, failure to be activated for the release of NK cytotoxic factors (NKCF), and/or failure to synthesize or secrete NKCF. Each of these various possibilities was examined. Single cell analysis revealed that the frequency of NK cells was comparable to controls, and although the NK cells bind to the NK-sensitive target, the bound target is not lysed. These results suggested that the defect in NK cells was not due to depletion of NK cells or to a defect in recognition structures, but that it was located at the postrecognition event. We previously demonstrated that after binding to target, the NK cell is stimulated to release NKCF in the supernatants and NKCF lyse specifically NK-sensitive targets. Accordingly, we investigated the activation of NK cells from AIDS and ARC patients for release of NKCF. After coculture with the stimulator cell, the patients' NK cells failed to release active NKCF in the supernatant. However, the cells released NKCF after stimulation with the lectin Con A or a mixture of TPA and ionophore, albeit to a lesser extent than controls. These results suggested that AIDS and ARC NK cells are defective in the trigger involved in release of NKCF. Further studies were done to investigate whether the immunomodulator IL 2 can restore the functional activity of the defective NK cells. Treatment with IL 2 resulted in augmented NK cytolytic activity, but did not reach control levels of activated cells from normal controls. Furthermore, the patients' IL 2-treated cells recover partially the ability to be stimulated by NK cells and to release NKCF. These results suggest that the trigger for NKCF production and the cytolytic function of the patients' NK cells are regulated by IL 2. By delineating the stage at which the AIDS and ARC NK cells are defective, it is now possible to monitor their recovery and to investigate the effect of various biologic response modifiers in restoring NK activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号