首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, there has been considerable effort to design and synthesize radiotracers suitable for use in Positron Emission Tomography (PET) imaging of the alpha4beta2 neuronal nicotinic acetylcholine receptor (nAChR) subtype. A new fluoropyridinyl derivative of (-)-cytisine (1), namely (-)-9-(2-fluoropyridinyl)cytisine (3, K(i) values of 24 and 3462 nM for the alpha4beta2 and alpha7 nAChRs subtypes, respectively) has been synthesized in four chemical steps from (-)-cytisine and labelled with fluorine-18 (T(1/2): 119.8 min) using an efficient two-step radiochemical process [(a). nucleophilic heteroaromatic ortho-radiofluorination using the corresponding N-Boc-protected nitro-derivative, (b). TFA removal of the Boc protective group]. Typically, 20-45 mCi (0.74-1.67 GBq) of (-)-9-(2-[18F]fluoropyridinyl)cytisine ([18F]-3, 2-3 Ci/micromol or 74-111 GBq/micromol) were easily obtained in 70-75 min starting from a 100 mCi (3.7 GBq) aliquot of a cyclotron-produced [18F]fluoride production batch (20-45% non decay-corrected yield based on the starting [18F]fluoride). The in vivo pharmacological profile of (-)-9-(2-[18F]fluoropyridinyl)cytisine ([18F]-3) was evaluated in rats with biodistribution studies and brain radioactivity monitoring using intracerebral radiosensitive beta-microprobes. The observed in vivo distribution of the radiotracer in brain was rather uniform, and did not match with the known regional densities of nAChRs. It was also significantly different from that of the parent compound (-)-[3H]cytisine. Moreover, competition studies with (-)-nicotine (5 mg/kg, 5 min before the radiotracer injection) did not reduce brain uptake of the radiotracer. These experiments clearly indicate that (-)-9-(2-[18F]fluoropyridinyl)cytisine ([18F]-3) does not have the required properties for imaging nAChRs using PET.  相似文献   

2.
Considerable efforts have been engaged in the design, synthesis and pharmacological characterization of radioligands for imaging the serotonin transporter, based on its implication in several neuropsychiatric diseases, such as depression, anxiety and schizophrenia. In the 5-halo-6-nitroquipazine series, the fluoro derivative has been designed for positron emission tomography (PET). The corresponding 5-iodo-, 5-bromo- and 5-chloro N-Boc-protected quipazines as labelling precursors, as well as 5-fluoro-6-nitroquipazine as a reference compound have been synthesized. 5-[(18)F]Fluoro-6-nitroquipazine has been radiolabelled with fluorine-18 (positron-emitting isotope, 109.8 min half-life) by nucleophilic aromatic substitution from the corresponding N-Boc protected 5-bromo- and 5-chloro-precursors using K[(18)F]F-K(222) complex in DMSO by conventional heating (145 degrees C, 2 min) or microwave activation (50 W, 30-45 s), followed by removal of the protective group with TFA. Typically, 15-25 mCi (5.5-9.2 GBq) of 5-[(18)F]fluoro-6-nitroquipazine (1-2 Ci/micromol or 37-72 GBq/micromol) could be obtained in 70-80 min starting from a 550-650 mCi (20.3-24.0 GBq) aliquot of a cyclotron [(18)F]F(-) production batch (2.7-3.8% non decay-corrected yield based on the starting [(18)F]fluoride). Ex vivo studies (biodistribution in rat), as well as PET imaging (in monkey) demonstrated that 5-[(18)F]fluoro-6-nitroquipazine ([(18)F]-1d) readily crossed the blood brain barrier and accumulated in the regions rich in 5-HT transporter (frontal- and posterial cortex, striata). However, the low accumulation of the tracer in the thalamus (rat and monkey) as well as the comparable displacement of the tracer observed with both citalopram, a -HT re-uptake inhibitor and maprotiline, a norepinephrine re-uptake inhibitor (rat), indicate that 5-[(18)F]fluoro-6-nitroquipazine ([(18)F]-1d) does not have the suggested potential for PET imaging of the serotin transporter (SERT).  相似文献   

3.
《Life sciences》1994,55(20):PL403-PL407
The potent and selective 5-HT1A antagonist WAY 100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide) was radiolabeled with 11C in high specific activity, and the in vivo properties of this radioligand were assessed in the brains of rats and monkeys. Following i.v. tail vein injection in rats, [11C]WAY 100635 rapidly penetrated into brain tissue and was retained over a 30–90 min time period in a manner consistent with the known distribution of 5-HT1A receptors. Pretreatment of rats with the selective 5-HT1A agonist (±)-8-OH-DPAT effectively blocked the retention of radioactivity in brain regions known to contain high densities of 5-HT1A receptors. The hippocampus-to-cerebellum radioactivity concentration ratio reached a maximum of 16:1 at 60 min post injection. Following i.v. injection of [11C]WAY 100635 in rhesus monkeys, the concentrations of radioactivity in brain regions were consistent with the reported distribution of 5-HT1A receptors in primates, and the frontal cortex-to-cerebellum ratio reached 5.5:1 at 80 min post injection. Pretreatment of the monkeys with (±)-8-OH-DPAT reduced this ratio to 1.4:1, and injection of (±)-8-OH-DPAT 20 min after the injection of [11C]WAY 100635 significantly displaced frontal cortex binding. The in vivo properties of [11C]WAY 100635 in rats and monkeys strongly support the future utility of this radioligand for imaging 5-HT1A receptors using positron emission tomography (PET).  相似文献   

4.
Despite of various PET radioligands targeting the translocator protein TSPO 18-KDa are used for the investigations of neuroinflammatory conditions associated with neurological disorders, development of new TSPO radiotracers is still an active area of the researches with a major focus on the 18F-labelled radiotracers. Here, we report the radiochemical synthesis of [18F]vinpocetine, fluorinated analogue of previously reported TSPO radioligand, [11C]vinpocetine. Radiolabeling was achieved by [18F]fluoroethylation of apovincaminic acid with [18F]fluoroethyl bromide. [18F]vinpocetine was obtained in quantities >2.7 GBq in RCY of 13% (non–decay corrected), and molar activity >60 GBq/µmol within 95 min synthesis time. Preliminary PET studies in a cynomolgus monkey and metabolite studies by HPLC demonstrated similar results by [18F]vinpocetine as for [11C]vinpocetine, including high blood-brain barrier permeability, regional uptake pattern and fast washout from the NHP brain. These results demonstrate that [18F]fluorovinpocetine warrants further evaluation as an easier accessible alternative to [11C]vinpocetine.  相似文献   

5.
c-MET-positive NSCLC is an important subtype accounting for about 5%~22% of lung cancer. NSCLC patients with activating c-MET are intensively sensitive to c-MET selective receptor tyrosine kinase (RTK) inhibitors, so we aimed to develop a specific PET probe targeting to c-MET-positive NSCLC for potential patients screened by PET/CT. Herein, PET tracer 18F-radiolabeled crizotinib derivative ([18F]FPC) was successfully achieved through a simple one-step 18F-labeling method. [18F]FPC PET imaging on c-MET-positive (as well as blocking group) and negative NSCLC models were further evaluated, and results showed that [18F]FPC was effective as a PET imaging probe that targeted c-MET-positive tumor. Therefore, [18F]FPC could be a potential PET imaging probe for NSCLC tumor which was sensitive to c-MET-TKIs. By virtue of this property, it will benefit NSCLC patients for c-MET-TKI treatment.  相似文献   

6.
In a previous work, Lu29-024 (2,5-dimethyl-3-(4-fluorophenyl)-1-(1-methyl-4-piperidinyl)-1H-indole), a selective 5-HT2A receptor antagonist with nanomolar affinity and high selectivity, was labeled with carbon-11 to evaluate its behavior as a potential PET ligand for the serotonergic 5-HT2A receptor in the central nervous system. Administration of this tracer to rats was followed by a good brain uptake, no brain labeled metabolites but no specific, regio-selective, binding at 20 and 40 min post injection. Despite this, the data noted at 20 and 40 min suggest that this tracer, if associated with a radioactive emitter with a longer half-life than that of carbon-11, could be useful for the quantification of 5HT2A receptors. For these reasons, we chose to label this compound, bearing a fluorine atom, with [18F]fluoride, in order to perform rat studies over a more prolonged time-scale. The precursor for the radiosynthesis of [18F]Lu29-024 was obtained in an overall yield of 20% by a multi-step synthesis including an acetonylation reaction followed by a Fisher indole reaction. The radiotracer was prepared by an aromatic substitution with activated [18F]fluoride followed by a decarbonylation reaction that employed Wilkinson's catalyst. The radiosynthesis of [18F]Lu29-024 required approximatively 110 min with an overall radiochemical yield of 20-35% and specific activities of 37GBq/micromol. Fluorine-labeled Lu29-024 may thus be envisaged as a potentially useful PET tracer that can be applied to a wide range of neurological and psychiatric diseases.  相似文献   

7.
We recently reported the radiosynthesis and in vitro evaluation of [18F]-2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-(2-fluoroethoxy)benzyl)ethanamine, ([18F]FECIMBI-36) or ([18F]1), an agonist radioligand for 5HT2A/2C receptors in postmortem samples of human brain. Herein we describe the in vivo evaluation of [18F]FECIMBI-36 in vervet/African green monkeys by PET imaging. PET images show that [18F]FECIMBI-36 penetrates the blood-brain barrier and a low retention of radioactivity is observed in monkey brain. Although the time activity curves indicate a somehow heterogeneous distribution of the radioligand in the brain, the low level of [18F]FECIMBI-36 in brain may limit the use of this tracer for quantification of 5-HT2A/2C receptors by PET.  相似文献   

8.
WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-desmethyl derivative DWAY 2 are well-known high affinity 5-HT(1A) receptor antagonists, which when labeled with carbon-11 (beta+; t(1/2) = 20.4 min) in the carbonyl group are effective radioligands for imaging brain 5-HT(1A) receptors with positron emission tomography (PET). In a search for new 5-HT(1A) antagonists with different pharmacokinetic and metabolic properties, the pyridinyl N-oxide moiety was incorporated into analogs of 1 and 2. NOWAY 3, in which the pyridinyl ring of 1 was oxidized to the pyridinyl N-oxide, was prepared via nucleophilic substitution of 2-[4-(2-methoxyphenyl)piperazin-1-yl]ethylamine on 2-chloropyridine-N-oxide followed by acylation with cyclohexanecarbonyl chloride. 6Cl-NOWAY 4, a more lipophilic (pyridinyl-6)-chloro derivative of 3, was prepared by treating 1-(2-methoxyphenyl)-4-(2-(2-(6-bromo)aminopyridinyl-N-oxide)ethyl)piperazine with cyclohexanecarbonyl chloride for acylation and concomitant chloro for bromo substitution. NEWWAY 5, in which the 2-hydroxy-phenyl group of 2 is replaced with a 2-pyridinyl N-oxide group with the intention of mimicking the topology of 2, was prepared in five steps from 2-(chloroacetylamino)pyridine. N-Oxides 3-5 were found to be high affinity antagonists at 5-HT(1A) receptors, with 3 having the highest affinity and a Ki value (0.22 nM) comparable to that of 1 (0.17 nM). By calculation the lipophilicity of 3 (LogP = 1.87) is lower than that of 1 by 1.25 LogP units while TLC and reverse phase HPLC indicate that 3 has slightly lower lipophilicity than 1. On the basis of these encouraging findings, the N-oxide 3 was selected for labeling with carbon-11 in its carbonyl group and for evaluation as a radioligand with PET. After intravenous injection of [carbonyl-11C]3 into cynomolgus monkey there was very low uptake of radioactivity into brain and no PET image of brain 5-HT(1A) receptors was obtained. Either 3 inadequately penetrates the blood-brain barrier or it is excluded from brain by an active efflux mechanism. Rapid deacylation of 3 was not apparent in vivo; in cynomolgus monkey plasma radioactive metabolites of [carbonyl-11C]3 appeared less rapidly than from the radioligands [carbonyl-11C]1 and [carbonyl-11C]2, which are known to be primarily metabolized by deacylation. Ligand 3 may have value as a new pharmacological tool, but not as a radioligand for brain imaging.  相似文献   

9.
11,17β-Dihydroxy-6-methyl-17α -(3-[18F]fluoro-prop-1 -ynyl)androsta-1,4,6-trien-3-one ([18F]RU 52461), an 18F-analog of RU 28362, was synthesized by bromide displacement with [18F]fluoride in 12–30% overall radiochemical yield (decay-corrected) within 140 min from end of bombardment (EOB). The specific activity was 900–1500 mCi/μmol (33.3–55.5 GBq/μmol) at the end of synthesis (EOS). Biodistribution studies indicated high adrenal and pituitary retention, and uniformly low uptake of [18F]RU 52461 in all other brain regions of the rat. Except for the pituitary, no specific receptor-mediated uptake of [18F]RU 52461 could be demonstrated using saturating doses of unlabeled RU 52461 in rat brain. While no change was observed throughout the brain areas in adrenalectomized rats and in animals coinjected with dexamethasone, when compared to controls. PET studies revealed extremely low levels of radioactivity in baboon brain. Therefore, [18F]RU 52461 does not appear to cross the blood-brain barrier, suggesting that this radiopharmaceutical is not suitable to visualize the brain glucocorticoid binding sites by PET.  相似文献   

10.
Simple syntheses of four new and potent analogues of the 5-HT1A receptor ligand, WAY-100635 are described, namely the 6-(pyridinyl)-bromo-, the 6-(pyridinyl)-fluoro-, the pyrimidine- and the 5-(pyridinyl)-bromo-analogues. The first three analogues were obtained by aromatic nucleophilic substitution of the 2,6-dihalogenopyridine (activated or not as an N-oxide) or of the 2-chloropyrimidine with the corresponding amine nucleophile as a key step. The fourth analogue, the 5-(pyridinyl)-bromo-analogue, was synthesized from the 2-amino-5-bromopyridine via a progressive elongation of the skeleton. The four compounds described are all full antagonists and show good in vitro binding affinities (Ki).  相似文献   

11.
Carbon-11 labeled SL25.1188 is a promising reversible monoamine oxidase-B (MAO-B) radioligand that was recently translated for human positron emission tomography (PET) imaging. Herein, we report the development of a novel fluorinated derivative, namely, [18F](S)-3-(6-(3-fluoropropoxy)benzo[d]isoxazol-3-yl)-5-(methoxymethyl)oxazolidin-2-one ([18F]FSL25.1188; [18F]6), as a candidate 18F-labeled MAO-B radioligand, and, its subsequent preclinical evaluation in non-human primates (NHP). [18F]6 was produced and isolated (>6 GBq) with high radiochemical purity (>99%), and molar activity (>100 GBq/µmol at time of injection). Autoradiography studies conducted in post-mortem human brain sections revealed [18F]6 binding in MAO-B rich regions. PET imaging study of [18F]6 in NHP showed high brain uptake (SUV > 2.5) as well as a regional brain radioactivity distribution in accordance with MAO-B expression. [18F]6 displayed favorable in vivo kinetics, with an early peak in the time-activity curve followed by progressive wash-out from the NHP brain. Specificity of [18F]6 was investigated in a pre-treatment study with l-deprenyl (1.0 mg/kg) wherein reduced radioligand uptake was observed in all MAO-B rich regions. Results from the current preclinical investigation suggests [18F]6 is a promising MAO-B PET radioligand. Further evaluation of [18F]6 and structurally related 18F-analogs are underway to identify an optimized candidate for clinical research studies.  相似文献   

12.
[18F]VUF 5000 was evaluated as a potential PET ligand for the histamine H3 receptor. In the rat a high uptake of [18F]VUF 5000 was observed in liver, lung and kidney and a low uptake in the brain. In order to explain these findings we determined the LogD(oct,7.2) of [18F]VUF 5000, studied the biodistribution in the presence of carrier VUF 5000, modified [18F]VUF 5000 chemically and studied the binding of [18F]VUF 5000 to human serum albumin. From the results of these experiments it was concluded that [18F]VUF 5000 is not suitable as a PET ligand for brain imaging of the histamine H3 receptor, since [18F]VUF 5000 hardly penetrates into the brain.  相似文献   

13.
6-[18F]Fluoro-l-dopa and 6-[18F]fluorodopamine are promising PET imaging agents for visualizing cerebral dopaminergic centers and cardiac sympathetic innervation and function. Administration to humans requires a means to determine the purity before injection. We describe such a method using HPLC with u.v. and radioactivity detection and a single high-speed C-18 column with gradient elution. The procedure can resolve within 10 min these fluorinated catechols, their isomers, and dihydroxyphenylalanine. The chemical and radiochemical purity, and specific activity, can be determined before injection.  相似文献   

14.
Two [18F]-labelled analogues of the potent muscarinic cholinergic receptor (m-AChR) antagonist, dexetimide, were evaluated as potential ligands for imaging m-AChR by positron emission tomography (PET). Intravenous administration of both 2-[18F]- or 4-[18F]-fluorodexetimide resulted in high brain uptake of radioactivity in mice. High binding levels were observed in m-AChR rich areas, such as cortex and striatum, with low levels in the receptor-poor cerebellum. Uptake of radioactivity was saturable and could be blocked by pre-administration of dexetimide or atropine. Drugs with different sites of action were ineffective at blocking receptor binding. The results indicate that both radiotracers are promising candidates for use in PET studies.  相似文献   

15.
Zhang QJ  Wu ZH  Liu J  Wang T  Wang S  Han LN 《生理学报》2008,60(2):259-269
本文采用玻璃微电极细胞外记录法,观察正常大鼠和6-羟多巴胺(6-hydroxydopamine,6-OHDA)损毁黑质致密部大鼠杏仁基底外侧核(basolateral nucleus,BL)神经元电活动的变化,以及体循环给予选择性5-HT1A受体拮抗剂WAY-100635对神经元电活动的影响.结果显示,正常大鼠BL投射神经元和中间神经元的放电频率分别足(O.39±0.04)Hz和(0.83±0.16)Hz,6-OHDA损毁大鼠BL投射神经元和中间神经元的放电频率分别足(0.32±0.04)Hz和(0.53±0.12)Hz,与正常大鼠相比无显著差异.在正常大鼠,所有投射神经元呈现爆发式放电;94%的中间神经元为爆发式放电,6%为不规则放电.在6.OHDA损毁大鼠,85%的投射神经元呈现爆发式放电,15%为不规则放电;86%的中间神经元为爆发式放电,14%为不规则放电,与正常大鼠相比无显著差别.静脉给予0.1 mg/kg体重的WAY-100635不改变正常大鼠和6-OHDA损毁人鼠BL投射神经元和中间神经元的放电频率.然而,0.5 mg/kg体重的WAY-100635却显著降低正常大鼠BL投射神经元的平均放电频率(P<0.01),明显增加6-OHDA损毁大鼠BL投射神经元的平均放电频率(P<0.004).高剂量WAY-100635不影响正常大鼠和6-OHDA损毁大鼠BL中间神经元的平均放电频率.结果表明,黑质多巴胺能损毁后内在和外在的传入调节BL神经元的活动,在正常大鼠和6-OHDA损毁大鼠5-HT1A 受体调节投射神经元的活动,并且在6-OHDA损毁大鼠WAY-100635诱发投射神经元平均放电频率增加.结果提示,5-HT1A 受体在帕金森病情感性症状的产生中起重要作用.  相似文献   

16.
Olanzapine and its precursor desmethyl-Olanzapine were synthesized from malononitrile, propionaldehyde, 1-fluoro-2-nitrobenzene, and substituted piperazine in 4, 4, 5, and 5 steps with 35%, 32%, 26%, and 32% overall chemical yield, respectively. [11C]Olanzapine was prepared from desmethyl-Olanzapine with [11C]CH3OTf through N-[11C]methylation and isolated by HPLC combined with solid-phase extraction (SPE) in 40–50% radiochemical yield based on [11C]CO2 and decay corrected to end of bombardment (EOB), with 370–740 GBq/μmol specific activity at EOB. The calculated Log P (C Log P) value of [11C]Olanzapine is 3.39.  相似文献   

17.
The selectivity for 5-HT(1A) versus D(4) receptors is significantly increased when the basic side chain of WAY-100635 is replaced by a 4-phenylpiperazine (3e) or a 4-phenyl-1,2,3,6-tetrahydropyridine moiety (3i). The 4-phenyl-1,2,3,6-tetrahydropyridine compounds (3i-l) have a higher affinity for 5-HT(1A) receptors than do the corresponding unsubstituted phenylpiperazine analogues (3e-h). Compounds 3e and 3i appear to be selective for 5-HT(1A) receptors over other relevant receptors and still behave as neutral antagonists.  相似文献   

18.
N-[(18)F]Fluoroethyl-4-piperidyl acetate ([(18)F]FEtP4A) was synthesized and evaluated as a PET tracer for imaging brain acetylcholinesterase (AchE) in vivo. [(18)F]FEtP4A was previously prepared by reacting 4-piperidyl acetate (P4A) with 2-[(18)F]fluoroethyl bromide ([(18)F]FEtBr) at 130 degrees C for 30 min in 37% radiochemical yield using an automated synthetic system. In this work, [(18)F]FEtP4A was synthesized by reacting P4A with 2-[(18)F]fluoroethyl iodide ([(18)F]FEtI) or 2-[(18)F]fluoroethyl triflate ([(18)F]FEtOTf in improved radiochemical yields, compared with [(18)F]FEtBr under the corresponding condition. Ex vivo autoradiogram of rat brain and PET summation image of monkey brain after iv injection of [(18)F]FEtP4A displayed a high radioactivity in the striatum, a region with the highest AchE activity in the brain. Moreover, the distribution pattern of (18)F radioactivity was consistent with that of AchE in the brain: striatum>frontal cortex>cerebellum. In the rat and monkey plasma, two radioactive metabolites were detected. However, their presence might not preclude the imaging studies for AchE in the brain, because they were too hydrophilic to pass the blood-brain barrier and to enter the brain. In the rat brain, only [(18)F]fluoroethyl-4-piperidinol ([(18)F]FEtP4OH) was detected at 30 min postinjection. The hydrolytic [(18)F]FEtP4OH displayed a slow washout and a long retention in the monkey brain until the PET experiment (120 min). Although [(18)F]FEtP4A is a potential PET tracer for imaging AchE in vivo, its lower hydrolytic rate and lower specificity for AchE than those of [(11)C]MP4A may limit its usefulness for the quantitative measurement for AchE in the primate brain.  相似文献   

19.
Radiolabelled piperidine derivatives such as [11C]MDL 100907 and [18F]altanserin have played an important role in diagnosing malfunction in the serotonergic neurotransmission. A variety of novel piperidine MDL 100907 derivatives, possible to label with 18F-fluorine, were synthesized to improve molecular imaging properties of [11C]MDL 100907. Their in vitro affinities to a broad spectrum of neuroreceptors and their lipophilicities were determined and compared to the clinically used reference compounds MDL 100907 and altanserin. The novel compounds MA-1 (53) and (R)-MH.MZ (56) show Ki-values in the nanomolar range towards the 5-HT2A receptor and insignificant binding to other 5-HT receptor subtypes or receptors. Interestingly, compounds MA-1 (53), MH.MZ (55) and (R)-MH.MZ (56) provide a receptor selectivity profile similar to MDL 100907. These compounds could possibly be preferable antagonistic 18F-tracers for visualization of the 5-HT2A receptor status. Medium affine compounds (VK-1 (32), (51), (52), (54)) were synthesized and have Ki values between 30 and 120 nM. All promising compounds show log P values between 2 and 3, that is, within the range of those for the established radiotracers altanserin and MDL 100907. The novel compounds MA-1 (53) and (R)-MH.MZ (56) thus appear to be promising high affine and selective tracers of 18F-labelled analogues for 5-HT2A imaging with PET.  相似文献   

20.
A novel positron emission tomography (PET) radiotracer, 6-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (6-[18F]fluoro-A-85380, 6-[18F]FA) was synthesized by a no-carrier-added fluorination. In vitro 6-[18F]FA bound to nicotinic acetylcholine receptors (nAChRs), with very high affinity (Kd 28 pM). In PET studies, 6-[18F]FA specifically labeled central nAChRs in the brain of the Rhesus monkey and demonstrated highest levels of accumulation of radioactivity in brain regions enriched with the alpha4beta2 subtype of nAChR. 6-[18F]FA exhibited a target-to-non-target ratio (estimated as radioactivity in the thalamus to that in the cerebellum) of binding in primate brain similar to that previously determined for a labeled analog of epibatidine, [18F]FPH. In contrast to [18F]FPH, the novel tracer is expected to exhibit substantially less toxicity. Thus, the novel radioligand, 6-[18F]FA, appears to be a suitable candidate for imaging nAChRs in human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号