首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The purpose of this study was to elucidate 1) the effects of endurance exercise training during hypoxia or normoxia and of detraining on ventilatory and cardiovascular responses to progressive isocapnic hypoxia and 2) whether the change in the cardiovascular response to hypoxia is correlated to changes in the hypoxic ventilatory response (HVR) after training and detraining. Seven men (altitude group) performed endurance training using a cycle ergometer in a hypobaric chamber of simulated 4,500 m, whereas the other seven men (sea-level group) trained at sea level (K. Katayama, Y. Sato, Y. Morotome, N. Shima, K. Ishida, S. Mori, and M. Miyamura. J. Appl. Physiol. 86: 1805-1811, 1999). The HVR, systolic and diastolic blood pressure responses (DeltaSBP/DeltaSa(O(2)), DeltaDBP/DeltaSa(O(2))), and heart rate response (DeltaHR/DeltaSa(O(2)); Sa(O(2)) is arterial oxygen saturation) to progressive isocapnic hypoxia were measured before and after training and during detraining. DeltaSBP/DeltaSa(O(2)) increased significantly in the altitude group and decreased significantly in the sea-level group after training. The changed DeltaSBP/DeltaSa(O(2)) in both groups was restored during 2 wk of detraining, as were the changes in HVR, whereas there were no changes in the DeltaDBP/DeltaSa(O(2)) and DeltaHR/DeltaSa(O(2)) throughout the experimental period. The changes in DeltaSBP/DeltaSa(O(2)) after training and detraining were significantly correlated with those in HVR. These results suggest that DeltaSBP/DeltaSa(O(2)) to progressive isocapnic hypoxia is variable after endurance training during hypoxia and normoxia and after detraining, as is HVR, but DeltaDBP/DeltaSa(O(2)) and DeltaHR/DeltaSa(O(2)) are not. It also suggests that there is an interaction between the changes in DeltaSBP/DeltaSa(O(2)) and HVR after endurance training or detraining.  相似文献   

3.
4.
Limb skeletal muscle adaptation in athletes after training at altitude   总被引:8,自引:0,他引:8  
Morphological and biochemical characteristics of biopsies obtained from gastrocnemius (GAS) and triceps brachii muscle (TRI), as well as maximal O2 uptake (VO2 max) and O2 deficit, were determined in 10 well-trained cross-country skiers before and after a 2-wk stay (2,100 m above sea level) and training (2,700 m above sea level) at altitude. On return to sea level, VO2 max was the same as the prealtitude value, whereas an increase in O2 deficit (29%) and in short-term running performance (17%) was observed (P less than 0.05). GAS showed maintained capillary supply but a 10% decrease in mitochondrial enzyme activities (P less than 0.05), whereas an increase in capillary supply (P less than 0.05) but unchanged mitochondrial enzyme activities were observed in TRI. Buffer capacity was increased by 6% in both GAS and TRI (P less than 0.05). A positive correlation was found between the relative increase in buffer capacity of GAS and short-term running time (P less than 0.05). Thus the present study indicates no effect of 2 wk of altitude training on VO2 max but provides evidence to suggest an improvement in short-term exercise performance, which may be the result of an increase in muscle buffer capacity.  相似文献   

5.
Handgrip force (HF), maximal pinch force (MF), muscle endurance (ME), and the median power frequency (MdPF) of the activity shown in the electromyogram (EMG) were studied at various altitudes in eight normal healthy subjects. MF and ME were measured between the index finger and thumb, and all measurements were obtained at altitudes ranging from 610 to 4860 m during an expedition in the Qinghai Plateau in China. With the change in altitude HF, ME, and MF showed no significant change. Compared to the MdPF at 2260 m on ascent, the MdPF at other altitudes showed a significant decrease (P<0.01). Thus, we conclude that muscle performance (HF, MF, and ME) was not affected by the environment at high altitude. However, MdPF was affected and the mean MdPF at 610 m after the expedition did not recover to initial values of MdPF. We suggest these results may have been affected by fatigue and chronic exposure to the hypobaric hypoxic environment, since the members of the expedition party expressed feelings of sluggishness and fatigue after the expedition.  相似文献   

6.
7.
8.
9.
Previous studies of endurance exercise training in older men and women generally have found only minimal skeletal muscle adaptations to training. To evaluate the possibility that this may have been due to an inadequate training stimulus, we studied 23 healthy older (64 +/- 3 yr) men and women before and after they had trained by walking/jogging at 80% of maximal heart rate for 45 min/day 4 days/wk for 9-12 mo. This training program resulted in a 23% increase in maximal O2 consumption. Needle biopsy samples of the lateral gastrocnemius muscle were obtained before and after training and analyzed for selected histochemical and enzymatic characteristics. The percentage of type I muscle fibers did not change with training. The percentage of type IIb fibers, however, decreased from 19.1 +/- 9.1 to 15.1 +/- 8.1% (P less than 0.001), whereas the percentage of type IIa fibers increased from 22.1 +/- 7.7 to 29.6 +/- 9.1% (P less than 0.05). Training also induced increases in the cross-sectional area of both type I (12%; P less than 0.001) and type IIa fibers (10%; P less than 0.05). Capillary density increased from 257 +/- 43 capillaries/mm2 before training to 310 +/- 48 capillaries/mm2 after training (P less than 0.001) because of increases in the capillary-to-fiber ratio and in the number of capillaries in contact with each fiber. Lactate dehydrogenase activity decreased by 21% (P less than 0.001), whereas the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase increased by 24-55% in response to training (P less than 0.001-0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Objective: Obesity is associated with lower rates of skeletal muscle fatty acid oxidation (FAO), which is linked to insulin resistance. FAO is reduced further in obese African‐American (AAW) vs. white women (CW) and may also be lower in lean AAW vs. CW. In lean CW, endurance exercise training (EET) elevates the oxidative capacity of skeletal muscle. Therefore, we determined whether EET would elevate skeletal muscle FAO similarly in AAW and CW with a lower lipid oxidative capacity. Research Methods and Procedures: In vitro rates of FAO were assessed in rectus abdominus muscle strips using [1‐14C] palmitate (Pal) from lean AAW [BMI = 24.2 ± 0.9 (standard error) kg/m2] and CW (23.6 ± 0.8 kg/m2) undergoing voluntary abdominal surgery. Lean AAW (22 ± 0.9 kg/m2) and CW (24 ± 0.8 kg/m2) and obese AAW (36 ± 1.2 kg/m2) and CW (40 ± 1.3 kg/m2) underwent 10 consecutive days of EET on a cycle ergometer (60 min/d, 75% peak oxygen uptake). FAO was measured in vastus lateralis homogenates as captured 14CO2 using [1‐14C] Pal, palmitoyl‐CoA (Pal‐CoA), and palmityl‐carnitine (Pal‐Car). Results: Muscle strip experiments showed suppressed rates of FAO (p = 0.03) in lean AAW vs. CW. EET increased the rates of skeletal muscle Pal oxidation (p = 0.05) in both lean AAW and CW. In obese subjects, Pre‐EET Pal (but not Pal‐CoA or Pal‐Car) oxidation was lower (p = 0.05) in AAW vs. CW. EET increased Pal oxidation 100% in obese AAW (p < 0.05) and 59% (p < 0.05) in obese CW. Similar increases (p < 0.05) in post‐EET FAO were observed for Pal‐CoA and Pal‐Car in both groups. Discussion: Both lean and obese AAW possess a lower capacity for skeletal muscle FAO, but EET increases FAO similarly in both AAW and CW. These data suggest the use of EET for treatment against obesity and diabetes for both AAW and CW.  相似文献   

11.
Active muscle and whole body lactate kinetics after endurance training in men.   总被引:10,自引:0,他引:10  
We evaluated the hypotheses that endurance training decreases arterial lactate concentration ([lactate](a)) during continuous exercise by decreasing net lactate release () and appearance rates (R(a)) and increasing metabolic clearance rate (MCR). Measurements were made at two intensities before [45 and 65% peak O(2) consumption (VO(2 peak))] and after training [65% pretraining VO(2 peak), same absolute workload (ABT), and 65% posttraining VO(2 peak), same relative intensity (RLT)]. Nine men (27.4 +/- 2.0 yr) trained for 9 wk on a cycle ergometer, 5 times/wk at 75% VO(2 peak). Compared with the 65% VO(2 peak) pretraining condition (4.75 +/- 0.4 mM), [lactate](a) decreased at ABT (41%) and RLT (21%) (P < 0.05). decreased at ABT but not at RLT. Leg lactate uptake and oxidation were unchanged at ABT but increased at RLT. MCR was unchanged at ABT but increased at RLT. We conclude that 1) active skeletal muscle is not solely responsible for elevated [lactate](a); and 2) training increases leg lactate clearance, decreases whole body and leg lactate production at a given moderate-intensity power output, and increases both whole body and leg lactate clearance at a high relative power output.  相似文献   

12.
13.
14.
15.
Blood lactate concentration during exercise decreases after acclimatization to high altitude, but it is not clear whether there is decreased lactate release from the exercising muscle or if other mechanisms are involved. We measured iliac venous and femoral arterial lactate concentrations and iliac venous blood flow during cycle exercise before and after acclimatization to 4,300 m. During hypoxia, at a given O2 consumption the venous and arterial lactate concentrations, the venous and arterial concentration differences, and the net lactate release were lower after acclimatization than during acute altitude exposure. While breathing O2-enriched air after acclimatization at a given O2 consumption the venous and arterial lactate concentrations and the venous and arterial concentration differences were significantly lower, and the net lactate release tended to be lower than while breathing ambient air at sea level before acclimatization. We conclude that the lower lactate concentration in venous and arterial blood during exercise after altitude acclimatization reflected less net release of lactate by the exercising muscles, and that this likely resulted from the acclimatization process itself rather than the hypoxia per se.  相似文献   

16.
The effects of endurance training (running 40 m/min grade for 60 min, 5 days/wk for 8 wk) on skeletal muscle lactate removal was studied in rats by utilizing the isolated hindlimb perfusion technique. Hindlimbs were perfused (single-pass) with Krebs-Henseleit bicarbonate buffer, fresh bovine erythrocytes (hematocrit approximately 30%), 10 mM lactate, and [U-14C]lactate (30,000 dpm/ml). Arterial and venous blood samples were collected every 10 min for the duration of the experiment to assess lactate uptake. During perfusions, no significant differences in skeletal muscle lactate uptake were observed between trained (7.31 +/- 0.20 micromol/min) and control hindlimbs (6.98 +/- 0.43 micromol/min). In support, no significant differences were observed for [14C]lactate uptake in trained (22,776 +/- 370 dpm/min) compared with control hindlimbs (21,924 +/- 1,373 dpm/min). Concomitant with these observations, no significant differences were observed between groups for oxygen consumption (4.93 +/- 0.18 vs. 4.92 +/- 0.13 micromol/min), net skeletal muscle glycogen synthesis (7.1 +/- 0.4 vs. 6.5 +/- 0.3 micromol x 40 min(-1) x g(-1)), or 14CO2 production (2,203 +/- 185 vs. 2,098 +/- 155 dpm/min), trained and control, respectively. These findings indicate that endurance training does not affect lactate uptake or alter the metabolic fate of lactate in quiescent skeletal muscle.  相似文献   

17.
Ventilatory muscle strength and endurance training   总被引:10,自引:0,他引:10  
  相似文献   

18.
19.
Two groups of male Wistar endurance- and sprint-acclimatized rats were used to study the time course of uridine uptake into skeletal muscle RNA following acute exercise. Endurance and sprint animals were killed at 0, 2, 18, 24, and 48 hr following 1 hr of either endurance (30 m X min-1) or sprint running (90 m X min-1). Red vastus (RV) and white vastus (WV) muscle samples were incubated for 30 min in a medium containing 1 microCi 5-[14C]uridine. Uridine uptake was determined in the myofibrillar-nuclear, mitochondrial, microsomal, and soluble fractions of skeletal muscle via liquid scintillation counting. A significant decrease in whole muscle uridine uptake into RNA was observed in RV muscles following endurance exercise as well as in WV of sprint-exercised rats. Sprint-exercised RV had significantly greater uridine uptake into RNA in the homogenate and myofibrillar-nuclear fraction 2-18 hr post exercise. Increased mitochondrial uridine incorporation into RNA was observed in endurance- and sprint-exercised muscles between 18 and 48 hr post exercise. A very large increment in microsomal uridine uptake was observed in sprint-exercised WV at 24 hr. These data suggest that while whole muscle RNA synthesis may decline immediately following acute exercise overload, increases are observed in specific muscle fractions. These changes appear to coincide with protein-specific adaptations to sprint and endurance exercise.  相似文献   

20.
Exercise training has been found to reduce the muscle insulin resistance of the obese Zucker rat (fa/fa). The purpose of the present study was to determine whether this reduction in muscle insulin resistance was associated with an improvement in the glucose transport process and if it was fiber-type specific. Rats were randomly assigned to a sedentary or training group. Training consisted of treadmill running at 18 m/min up an 8% grade, 1.5 h/day, 5 days/wk, for 6-8 wk. The rate of muscle glucose transport was assessed in the absence of insulin and in the presence of a physiological (0.15 mU/ml), a submaximal (1.50 mU/ml), and a maximal (15.0 mU/ml) insulin concentration by determining the rate of 3-O-methyl-D-glucose (3-OMG) accumulation during hindlimb perfusion. The average 3-OMG transport rate of the red gastrocnemii (fast-twitch oxidative-glycolytic fibers) was significantly higher in the trained compared with the sedentary obese rats in the absence of insulin and in the presence of the three insulin concentrations. Significant improvements in 3-OMG transport were also observed in the plantarii (mixed fibers) of trained obese rats in the presence of 0, 0.15, and 15.0 mU/ml insulin. Training appeared to have little effect on the insulin-stimulated 3-OMG transport of the soleus (slow-twitch oxidative fibers) or white gastrocnemius (fast-twitch glycolytic fibers). The results suggest that the improvement in the muscle insulin resistance of the obese Zucker rat after moderate endurance training was associated with an improvement in the glucose transport process but that it was fiber-type specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号