首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of selective vs. nonselective beta-blockade on fast-twitch [extensor digitorum longus (EDL)] and slow-twitch [soleus (SOL)] muscle enzyme activities following endurance training were characterized. Citrate synthase (CS), lactate dehydrogenase (LDH), and beta-hydroxyacyl-CoA dehydrogenase (HAD) activities were compared in SOL and EDL muscles of trained (T), metoprolol-trained (MT), propranolol-trained (PT), and sedentary (C) rats. Following 8 wk of treadmill running (1 h/day, 5 days/wk at approximately 30 m/min), LDH activity was depressed approximately 20% (P less than 0.05) in both SOL and EDL in only the PT rats, indicating inhibition of beta 2-mediated anaerobic glycolysis. EDL CS activity was similarly elevated in all three trained groups compared with sedentary controls. In SOL muscle, however, a drug attenuation effect was observed so that CS activity was increased only in the T (P less than 0.01) and MT (P less than 0.05) groups. HAD enzyme activity was increased somewhat (P less than 0.10) in SOL muscle in only the T group, but more so (P less than 0.05) in EDL in all three trained groups. The above findings suggest a training-induced selectivity effect not only with respect to beta 1-vs. beta 1-beta 2-blockers, but also with respect to muscle fiber type.  相似文献   

2.
The effect was investigated of treadmill training of moderate intensity on the fatty acid-binding protein (FABP) content in relation to parameters of oxidative and glycolytic metabolism. To this end, the cytoplasmic FABP content and the activity of beta-hydroxyacyl-coenzyme A dehydrogenase (HAD), citrate synthase (CS), and 6-phosphofructokinase (PFK) were measured in heart, fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles (SOL) of male Wistar rats. To investigate the influence of the amount of training (defined as the product of exercise duration, intensity and frequency), two training groups were created that differed in training frequency (HF, high frequency 5 days x week(-1), n = 9; LF, low frequency 2 days x week(-1), n = 9; the exercise being 20 m x min(-1) for 2 h with no gradient, over 6 weeks) and compared with SC, sedentary controls (n = 7). In heart muscle, the cytoplasmic FABP content was 34% higher in HF than in SC but was the same as in LF. The CS and HAD activities were no different in the three groups, suggesting that the capacity to oxidize fatty acids (FA) was not affected by training. The PFK activity was higher (43%) in HF, suggesting a shift towards carbohydrate utilization. The FABP content and HAD activity did not change in SOL and EDL after training whereas the CS activity increased (27%) in SOL and decreased (21%) in EDL in both training groups. In addition, PFK activity in EDL was much higher (113%) in the HF than in SC group. The HF training was associated with a fine-tuning of FA availability and use in heart muscle, and with a more efficient energy production. It is suggested therefore that cytoplasmic FABP could be an early marker of muscle adaptation to training in heart but not in skeletal muscle. The training reinforced the metabolic profile of the skeletal muscles, in particular that of the fast-twitch glycolytic muscle. We concluded that a large amount of training is needed when the effect on both oxidative and glycolytic parameters is to be studied.  相似文献   

3.
Tissue samples were obtained from the vastus lateralis muscle of elite olympic weight and power lifters (OL/PL, n = 6), bodybuilders (BB, n = 7), and sedentary men (n = 7). Enzyme activities of citrate synthase (CS), lactate dehydrogenase (LD), 3-OH-acyl-CoA-dehydrogenase (HAD), and myokinase (MK) were assayed on freeze-dried dissected pools of slow-twitch (ST) and fast-twitch (FT) fiber fragments by fluorometric means. Histochemical analyses were carried out to assess fiber type composition and fiber area. CS and HAD activities were lower (P less than 0.05), and LD and MK were higher (P less than 0.05) in FT than ST fibers in the entire subject pool (n = 20). CS of FT fibers and HAD of ST fibers were lower in athletes (P less than 0.05-0.01) compared with nonathletes, whereas LD of both fiber types was higher (P less than 0.05-0.001) in athletes. CS activity of ST fibers and MK activity of FT fibers were higher (P less than 0.05) in BB compared with OL/PL. FT and ST fiber area was greater (P less than 0.05) in athletes than in nonathletes. BB displayed greater (P less than 0.05) fiber size than OL/PL. FT/ST area was greater (P less than 0.05) in OL/PL than BB. It is suggested that long-term heavy-resistance training results in specific metabolic adaptations of FT and ST fiber types. These changes appear to be influenced by the type of resistance training.  相似文献   

4.
Young Wistar rats underwent dynamic (D) or static (S) exercise from the 5th to 35th day after birth. Histochemical and biochemical analysis were performed in the extensor digitorum longus (EDL) and the soleus muscle (SOL). Lactate dehydrogenase (LDH) (regulating anaerobic metabolism) and citrate synthase (CS) and hydroxyacyl-CoA dehydrogenase (HAD) (both regulating aerobic metabolism) activities were determined spectrophotometrically. An increase of the fast oxidative-glycolytic (FOG) muscle fibres was found in the slow SOL muscle in both trained groups, i.e. by 10% in group D and by 7% in group S in comparison with the C group. The EDL muscle fibre distribution did not differ from those of control animals in respect to the slow oxidative (SO) fibre type. A higher percentage of FOG fibres by 19% was found in group D contrary to a decreased number of the fast glycolytic (FG) muscle fibres in this trained group. The greatest increase of CS (EDL 185%, SOL 176%) and HAD (EDL 83%, SOL 178%) activities were found in group D as compared with control group (C). Only small differences were observed in LDH activity. The values of characteristic enzyme activity ratios show that dynamic training resulted in an elevation of oxidative capacity of skeletal muscle, while the static load led preferentially along the glycolytic pathway. It may be concluded that an adaptive response to the training load during early postnatal development is different due to the type of exercise (dynamic or static) and/or the type of skeletal muscle (fast or slow).  相似文献   

5.
Capillarity, fibre types, fibre area and enzyme activities of different skeletal muscles (pectoralis, extensor digitorum longus), tibialis anterior, plantaris and the myocardium were compared in Andean coot (Fulica americana peruviana) native to high altitude (Junín, Perú, 4200 m) and the same species nesting at sea level. Numbers of capillaries per square millimeter were higher in all high-altitude muscles when compared with sea-level muscles (P<0.0001). Moreover, values for capillaries per fibre and capillaries in contact with each fibre were higher in digitorum and tibialis high-altitude muscles. Muscle fibres were classified as Type I, Type IIA or Type IIB on the basis of their myofibrillar ATPase pH lability. Pectoralis muscle of high-altitude and sea-level coots presented only fibres of Type IIA. In contrast, all the leg muscles studied showed a mosaic pattern of the three fibre types. Fibre areas were determined using a Leitz Texture Analysis System. Significant differences in fibre area were observed (P<0.01) between high-altitude and sea-level muscles. Mean muscle fibre diameters were also lower in the high-altitude group than in the sea-level group. The enzyme activities studied were hexokinase, lactate dehydrogenase, citrate synthase and 3-hydroxyacyl-CoA-dehydrogenase. The oxidative capacity, as reflected by citrate synthetase and hydroxyacyl-CoA-dehydrogenase activities, was greater for myocardial and pectoralis than for leg muscles. However, analysis of maximal enzyme activities showed that there were no significant differences between the glycolytic and oxidative enzyme activities of high-altitude and sea-level coots. These results suggest that in Andean coots genetically adapted to high altitude, changes in muscle capillarity and fibre size, in addition to high haemoglobin O2 affinity and low haemoglobin concentration, are sufficient to allow adequate energy production without increases in enzymatic activities.Abbreviations BSA bovine serum albumin - C:F ratio Capillaries per fibre - CAF Capillaries in contact with each fibre - CD capillary density (mm-2) - CS citrate synthetase - EDL muscularis digitorum longus - fra fraction reduction area - HA high altitude - HAD hydroxyacyl-CoA-dehydrogenase - HK hexokinase - LDH lactate dehydrogenase - P 50 PO2 at which hemoglobin is half saturated with O2 - P aO2 arterial partial pressure of oxygen - PAS periodic acid-schiff - PEC muscularis pectoralis - PLA muscularis planaris - P tO2 mean tissue oxygen pressure - P vO2 mixed venous partial pressure of oxygen - SD standard deviation - SL sea level - TA muscularis tibialis anterior - TAS texture analysis system  相似文献   

6.
We examined the oxidative and antioxidant enzyme activities in respiratory and locomotor muscles in response to endurance training in young and aging rats. Young adult (4-mo-old) and old (24-mo-old) female Fischer 344 rats were divided into four groups: 1) young trained (n = 12), 2) young untrained (n = 12), 3) old trained (n = 10), and 4) old untrained (n = 6). Both young and old endurance-trained animals performed the same training protocol during 10 wk of continuous treadmill exercise (60 min/day, 5 days/wk). Compared with young untrained animals, the young trained group had significantly elevated (P less than 0.05) activities of 3-hydroxyacyl-CoA dehydrogenase (HADH), glutathione peroxidase (GPX), and citrate synthase (CS) in both the costal diaphragm and the plantaris muscle. In contrast, training had no influence (P greater than 0.05) on the activity of lactate dehydrogenase within the costal diaphragm in young animals. In the aging animals, training did not alter (P greater than 0.05) activities of CS, HADH, GPX, or lactate dehydrogenase in the costal diaphragm but significantly (P less than 0.05) increased CS, HADH, and GPX activities in the plantaris muscle. Furthermore, training resulted in higher activities of CS and HADH in the intercostal muscles in the old trained than in the old untrained animals. Finally, activities of CS, HADH, and GPX were significantly (P less than 0.05) lower in the plantaris in the old untrained than in the young untrained animals; however, CS, HADH, and GPX activities were greater (P less than 0.05) in the costal diaphragm in the old sedentary than in the young untrained animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
1. Activities of a glycolytic enzyme--lactate dehydrogenase, LDH, and two oxidative enzymes--citrate synthase (CS), a marker for TCA cycle entry, and 3-hydroxyacyl-CoA dehydrogenase (HAD), which indicates the capacity for beta-oxidation of endogenous lipids, were measured in fast (tibialis anterior, TA, and extensor digitorum longus, EDL) and slow (soleus, SOL) muscles of Sprague-Dawley rats with intact and limited blood supply, and following treatment with the xanthine derivative torbafylline (Hoechst, Werk Albert, Wiesbaden). 2. Limitation of blood supply by unilateral ligation of the common iliac artery increased activity of LDH in fast muscles, and activity of CS and HAD in soleus. 3. Torbafylline treatment caused an increased LDH activity in intact fast muscles and decreased it in soleus, although the relative capacity for anaerobic and aerobic metabolism (indicated by the ratio of LDH and CS activities) remained unchanged in all cases. 4. Whilst having little effect on oxidative enzyme activity of fast muscles, torbafylline decreased the activity of CS but increased activity of HAD in soleus, suggesting a greater reliance on lipid metabolism. 5. The effect of arterial ligation on enzyme activity was ameliorated by treatment with torbafylline, possibly due to its effect on the microcirculation.  相似文献   

8.
The purpose of this work is to study the influence of aging, training, and food restriction on skeletal muscle mass and fiber number. Male Fischer 344 rats (n = 49) at 3 mo postpartum were assigned to three groups: 1) sedentary control (confined to cage), 2) exercise trained (18 m/min, 8 degrees grade, 20 min/day, 5 days/wk), or 3) food restricted (alternate days of free access and no access to food). At 12 and 27 mo postpartum the soleus and extensor digitorum longus (EDL) muscles were excised, weighed, and fiber number was quantified after HNO3 digestion. At 27 mo the masses of soleus and EDL muscles of sedentary control rats were 83 and 70%, respectively, of 12-mo values (138 +/- 5 and 151 +/- 4 mg). At 27 mo, soleus muscle mass of trained rats was 113% of sedentary control values, whereas EDL muscle mass was unaffected by training. At 27 mo, food restriction had no effect on the mass of both muscles compared with 27-mo sedentary control values. Fiber number was not affected by training or food restriction in both muscles. Fiber number for soleus and EDL muscles of combined groups declined with age by 5.6 and 4.2%, respectively. With aging, the small loss of muscle fibers can account at most for approximately 25% of the observed skeletal muscle atrophy.  相似文献   

9.
The present study was designed to examine the acute and chronic effects of endurance treadmill training on citrate synthase (CS) gene expression and enzymatic activity in rat skeletal and cardiac muscles. Adult rats were endurance trained for 8 wk on a treadmill. They were killed 1 h (T(1), n = 8) or 48 h (T(48), n = 8) after their last bout of exercise training. Eight rats were sedentary controls (C) during the training period. CS mRNA levels and enzymatic activities of the soleus and ventricle muscles were determined. Training resulted in higher CS mRNA levels in both the soleus muscles (21% increase in T(1); 18% increase in T(48), P < 0.05) and ventricle muscles (23% increase in T(1); 17% increase in T(48), P < 0.05) when compared with the C group. The CS enzyme activities were 42 (P < 0.01) and 25% (P < 0.01) greater in the soleus muscles of T(1) and T(48) groups, respectively, when compared with that of the C group. Soleus CS enzyme activity was significantly greater in the T(1) vs. T(48) groups (P < 0.05). However, no appreciable alterations in CS enzyme activities were observed in the ventricle muscles in both training groups. These findings suggest differential responses of skeletal and cardiac muscles in CS enzymatic activity but similar responses in CS gene expression at 1 and 48 h after the last session of endurance training. Moreover, our data support the existence of an acute effect of exercise on the training-induced elevation in CS activity in rat soleus but not ventricle muscles.  相似文献   

10.
While endurance exercise training has been shown to enhance insulin action in skeletal muscle, the effects of high resistance strength training are less clear. The purpose of this study was to determine the rate of glucose uptake in skeletal muscle in which compensatory hypertrophy was induced by synergist muscle ablation. Basal and insulin mediated [3H] 2-deoxyglucose uptake were measured in soleus and EDL muscles using the perfused rat hindquarter preparation. Neither basal nor insulin mediated glucose uptake, when expressed per gram muscle, were enhanced in hypertrophied soleus muscles compared with control muscles, despite a twofold increase in mass (P less than 0.01). In the EDL, muscle mass increased 60% with synergist ablation (P less than 0.01), however insulin mediated glucose uptake was not different from that of control muscles. The basal rate of glucose uptake in hypertrophied EDL muscles was increased twofold over that of control muscles (P less than 0.05), possibly due to changes in neural input and/or loading. These results suggest that the stimulus for development of increased muscle mass is different from that for metabolic adaptations.  相似文献   

11.
The loss of muscle weight in the soleus (SOL) and extensor digitorum longus (EDL) muscles was compared after denervation and in the course of reflex muscle atrophy induced by unilateral fracture of metatarsal bones of the paw and local injection of 0.02 ml turpentine oil subcutaneously. This so-called reflex atrophy is significantly greater after 3 days than that after denervation. Seven days after the nociceptive stimulus, reflex and denervation atrophy are grossly similar in both muscles. This also applies in case that the nociceptive stimulus had been repeated on the third day. The EDL:SOL enzyme activities of energy supply metabolism reflect the differences between a glycolytic-aerobic (EDL) and predominantly aerobic type (SOL) of muscle. No consistent changes were found in either type of atrophy after 3 days. In 7 days' denervation, the activity of hydroxyacetyl-CoA-dehydrogenase (HOADH) and citrate synthase (CS) was decreased in the SOL, while glycerolphosphate:NAD dehydrogenase (GPDH) was enhanced. In the EDL, the activity of triosephosphate dehydrogenase (TPDH), GPDH, malate dehydrogenase (MDH), CS and HOADH was decreased. Acid phosphatase (AcP) was greatly increased in both muscles. Seven days after application of the nociceptive stimulus, all enzyme activities were altered in a grossly analogous manner as after denervation.  相似文献   

12.
Soleus and extensor digitorum longus (EDL) mitochondria and sarcotubular system were examined in sedentary and trained (treadmill for 12 wk) male rats that were treated with fluoxymesterone or methandrostanolone (2 mg/kg, 5 days/wk, for 8 wk). Neither physical exercise nor anabolic/androgenic steroid administration resulted in a significant change in muscle wet weight. Treatment with the anabolizing androgens increased succinate dehydrogenase activity in fast-twitch muscle mitochondria; this effect was not enhanced by training and was not observed in soleus mitochondria. On the other hand, the content of the slow-twitch muscle in sarcotubular fraction was increased in sedentary rats by fluoxymesterone or methandrostanolone treatment, whereas no significant changes were found in EDL. The training program affected adenosinetriphosphatase (ATPase) activities in the sarcotubular fraction; Mg2(+)-ATPase was increased in both soleus and EDL, but Ca2(+)-ATPase was decreased only in soleus. However, in sedentary animals only the Mg2(+)-dependent activity of EDL was increased by anabolizing androgen treatment, and this change was not potentiated by additional training. The present data indicate that anabolic/androgenic steroids can affect mitochondrial and sarcotubular enzymes in skeletal muscle. The effects are muscle-type specific.  相似文献   

13.
This study was designed to characterize cardiac changes in myosin heavy chain (MHC)-beta, capacity for oxidative metabolism and muscle mass in hearts of rats born and raised at simulated altitudes (2200 m or 4000 m) compared to age-matched sea level controls. On the basis of electrophoretic analyses, we found that the hypoxia-induced ventricular hypertrophy produces a significant increase in MHC-beta in both ventricles. Furthermore, we observed an exponential relationship between the mass of right ventricular muscle and percentages in the expression of MHC-beta (r=0.928, P<0.001). We also observed the reduction in the citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activities in both hypertrophied ventricles (P<0.001). As a consequence, there were negative correlations between the percentage expression of MHC-beta and the CS or HAD activities (P<0.001). In contrast, there were no significant correlations between the relative expressions of MHC-beta and either CS or HAD enzymatic activities in both ventricles after adjusting for the relative wet mass. In conclusion, the observed increases in MHC-beta may be a compensation to augment efficiency if muscles contract in hypertrophied hearts where mitochondria fail to respond to increases in tissue mass. These findings suggest that the increased relative expression of MHC-beta is a compensation to sustain cardiac contractile efficiency in response to impaired oxidative metabolism in the hypoxia-induced hypertrophied ventricles of rats.  相似文献   

14.
The response of hypertrophied soleus and plantaris muscle of rats to endurance training was studied. Hypertrophy was produced by bilateral extirpation of the gastrocnemius muscle. A 13-wk training program of treadmill running initiated 30 days after removal of the gastrocnemius muscle accentuated (P less than 0.01) the hypertrophy. Succinate dehydrogenase activities of the enlarged muscles of sedentary rats were similar to those of normal animals, as were the increases associated with training. Phosphorylase and hexokinase activities were unaltered as a result of the experimental perturbations. Rates of glycogen depletion during exercise were lower (P less than 0.01) in the liver and soleus and plantaris muscles of endurance-trained animals. No difference existed in the rate of glycogen depletion of normal and hypertrophied muscle within the sedentary or trained groups. These data demonstrate that extensively hypertrophied muscle responds to training and exercise in a manner similar to that of normal muscle.  相似文献   

15.
Physical exercise training is a powerful tool to maintain or improve mitochondrial density and function (mitochondrial capacity). This study aims to determine whether mitochondrial capacity is also associated with habitual physical activity in daily life (PADL). The capacity of classic markers for mitochondrial density, i.e., the capacity of citrate synthase (CS) and succinate dehydrogenase (SDH), as well the capacity of cytochrome c oxidase (COX) and beta-hydroxyacyl-CoA dehydrogenase (HAD), was determined in homogenized muscle biopsy samples obtained from the vastus lateralis muscle of nonexercising healthy young (age 20+/-2 yr) subjects (31 women, 7 men). PADL was measured during two periods of 14 days using a triaxial accelerometer for movement registration. CS, SDH, and COX were positively associated with PADL [P<0.05, R=0.36, 95% confidence interval (CI): 1.3.10(-4) to 2.2.10(-3); P<0.05, R=0.39, 95% CI: 1.1.10(-5) to 9.9.10(-5); and P<0.05, R=0.33, 95% CI: 7.5.10(-6) to 3.6.10(-4), respectively], and HAD tended to correlate positively with PADL (P=0.06, R=0.31, 95% CI: -2.2.10(-5) to 1.1.10(-3)). The population was subsequently stratified based on the intensity of the activities performed. CS was only associated with PADL in subjects spending more time on high-intensity physical activity, whereas HAD was only associated with PADL in subjects spending less time on low intensity physical activity. We are the first to report that even within the range of normal daily life activities, mitochondrial capacity is positively associated with the level of habitual physical activity in daily life. Thus an active lifestyle may help to maintain or improve mitochondrial capacity.  相似文献   

16.
Twelve male Sprague-Dawley rats (21 days old) were randomly assigned into two experimental groups: sea level control (CONT) and hypobaric hypoxia (HYPO). The HYPO rats were kept in an hypobaric chamber maintaining a simulated altitude of 4000 m (61.1 kPa). After 10 weeks of treatment, the rat hindlimb muscles [soleus (SOL) and extensor digitorum longus (EDL)] were subjected to histochemical and electro-mechanical analyses. Results indicated that compared to CONT the HYPO SOL muscle had a significantly greater relative distribution of fast-twitch-oxidative-glycolytic (FOG) fibres (28.9% SEM 2.0 vs 18.3% SEM 1.8, P less than 0.01) with a significant decrease in slow twitch oxidative fibre distribution (69.5% SEM 2.4 vs 82.9% SEM 3.1, P less than 0.01). Compared to CONT the HYPO EDL muscle also manifested a significant increase in FOG fibre distribution (51.6% SEM 0.8 vs 46.6% SEM 1.1, P less than 0.01), but this was accompanied by a significant decrease in fast twitch glucolytic fibres (44.3% SEM 0.9 vs 49.2% SEM 1.7, P less than 0.05). These histochemical fibre type transformations accompanied significant and expected changes in the electro-mechanical parameters tested in situ, e.g. maximal twitch force, maximal rate of force development, contraction time, half relaxation time, force: frequency curve, and fatigability. It was concluded that chronic hypobaric hypoxia could have a potent influence upon the phenotype expression of muscle fibres.  相似文献   

17.
This study investigated the effects of high-intensity training, with or without induced metabolic alkalosis, on lactate transporter (MCT1 and MCT4) and sodium bicarbonate cotransporter (NBC) content in rat skeletal muscles. Male Wistar rats performed high-intensity training on a treadmill 5 times/wk for 5 wk, receiving either sodium bicarbonate (ALK-T) or a placebo (PLA-T) prior to each training session, and were compared with a group of control rats (CON). MCT1, MCT4, and NBC content was measured by Western blotting in soleus and extensor digitorum longus (EDL) skeletal muscles. Citrate synthase (CS) and phosphofructokinase (PFK) activities and muscle buffer capacity (betam) were also evaluated. Following training, CS and PFK activities were significantly higher in the soleus only (P < 0.05), whereas betam was significantly higher in both soleus and EDL (P < 0.05). MCT1 (PLA-T: 30%; ALK-T: 23%) and NBC contents (PLA-T: 85%; ALK-T: 60%) increased significantly only in the soleus following training (P < 0.01). MCT4 content in the soleus was significantly greater in ALK-T (115%) but not PLA-T compared with CON. There was no significant change in protein content in the EDL. Finally, NBC content was related only to MCT1 content in soleus (r = 0.50, P < 0.01). In conclusion, these results suggest that MCT1, MCT4, and NBC undergo fiber-specific adaptive changes in response to high-intensity training and that induced alkalosis has a positive effect on training-induced changes in MCT4 content. The correlation between MCT1 and NBC expression suggests that lactate transport may be facilitated by NBC in oxidative skeletal muscle, which may in turn favor better muscle pH regulation.  相似文献   

18.
Differences between the effects of training at sea level and at simulated altitude on performance and muscle structural and biochemical properties were investigated in 8 competitive cyclists who trained for 3-4 weeks, 4-5 sessions/week, each session consisting of cycling for 60-90 min continuously and 45-60 min intermittently. Four subjects, the altitude group (AG), trained in a hypobaric chamber (574 torr = 2300 m above sea level), and the other four at sea level (SLG). Before and after training work capacity was tested both at simulated altitude (574 torr) and at sea level, by an incremental cycle ergometer test until exhaustion. Work capacity was expressed as total amount of work performed. Venous blood samples were taken during the tests. Leg muscle biopsies were taken at rest before and after the training period. AG exhibited an increase of 33% in both sea level and altitude performance, while SLG increased 22% at sea level and 14% at altitude. Blood lactate concentration at a given submaximal load at altitude was significantly more reduced by training in AG than SLG. Muscle phosphofructokinase (PFK) activity decreased with training in AG but increased in SLG. All AG subjects showed increases in capillary density. In conclusion, work capacity at altitude was increased more by training at altitude than at sea level. Work capacity at sea level was at least as much improved by altitude as by sea level training. The improved work capacity by training at altitude was paralleled by decreased exercise blood lactate concentration, increased capillarization and decreased glycolytic capacity in leg muscle.  相似文献   

19.
This study examined the effects of acclimatization to 4,300 m altitude on changes in plasma ammonia concentrations with 30 min of submaximal [75% maximal O2 uptake (VO2max)] cycle exercise. Human test subjects were divided into a sedentary (n = 6) and active group (n = 5). Maximal uptake (VO2max) was determined at sea level and at high altitude (HA; 4,300 m) after acute (t less than 24 h) and chronic (t = 13 days) exposure. The VO2max of both groups decreased 32% with acute HA when compared with sea level. In the sedentary group, VO2max decreased an additional 16% after 13 days of continuous residence at 4,300 m, whereas VO2max in the active group showed no further change. In both sedentary and active subjects, plasma ammonia concentrations were increased (P less than 0.05) over resting levels immediately after submaximal exercise at sea level as well as during acute HA exposure. With chronic HA exposure, the active group showed no increase in plasma ammonia immediately after submaximal exercise, whereas the postexercise ammonia in the sedentary group was elevated but to a lesser extent than at sea level or with acute HA exposure. Thus postexercise plasma ammonia concentration was decreased with altitude acclimatization when compared with ammonia concentrations following exercise performed at the same relative intensity at sea level or acute HA. This decrease in ammonia accumulation may contribute to enhanced endurance performance and altered substrate utilization with exercise following acclimatization to altitude.  相似文献   

20.
The effects of added load (20% of body mass) on the selected enzyme activities of red and white quadriceps femoris (QF), soleus, and gastrocnemius muscles of rats were studied. The rats were divided into sedentary control (SC), sedentary control with added load (SC+AL), endurance training (ET), and endurance training with added load (ET+AL) groups (n = 10 rats/group). After 6 wk, the SC+AL group had 57% higher (P less than 0.001) beta-glucuronidase (beta-GU) activity and 24% lower (P less than 0.05) citrate synthase activity in white QF than SC. Citrate synthase activity was also decreased in red QF (P less than 0.05) after the added load was used during nontraining hours. The training with added load induced similar but more pronounced changes than normal endurance training, especially in white QF. The ET+AL group demonstrated higher citrate synthase activity in white QF (P less than 0.001) and gastrocnemius (P less than 0.01) and higher malate dehydrogenase activity (P less than 0.05) and beta-GU activity (P less than 0.001) in white QF than the ET group. ET+AL rats also had higher phosphofructokinase (P less than 0.01) and lower creatine kinase (P less than 0.001) activity in white QF than ET rats. In conclusion, the added load without training had minor adaptive influences on muscles. The added load during training hours seemed to be an effective means of influencing the activation and adaptation in muscles that contain fast glycolytic fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号