首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outer membrane proteins of Pseudomonas   总被引:26,自引:0,他引:26  
In this review, we describe the outer membrane proteins of Pseudomonas aeruginosa and related strains from the Pseudomonas fluorescens rRNA homology group of the Pseudomonadaceae, with emphasis on the physiological function and biochemical characteristics of these proteins. The use of opr (for outer membrane protein) is proposed as the genetic designation for the P. aeruginosa outer membrane proteins and letters are assigned, in conjunction with this designation, to known outer membrane proteins. Proteins whose primary functions involve pore formation, transport of specific substrates, cell structure determination and membrane stabilization are discussed. The conservation of selected proteins in the above Pseudomonas species is also examined.  相似文献   

2.
Two ATP-binding cassette (ABC) exporters are present in Pseudomonas fluorescens no. 33; one is the recently reported AprDEF system and the other is HasDEF, which exports a heme acquisition protein, HasA. The hasDEF genes were cloned by DNA hybridization with a DNA probe coding for the LipB protein, one of the components of the Serratia marcescens ABC exporter Lip system. P. fluorescens HasA showed sequence identity of 40 to 49% with HasA proteins from Pseudomonas aeruginosa and Serratia marcescens. The P. fluorescens Has exporter secreted HasA proteins from P. fluorescens and P. aeruginosa but not S. marcescens HasA in Escherichia coli, whereas the Has exporter from S. marcescens allowed secretion of all three HasA proteins. The P. fluorescens HasDEF system also promoted the secretion of the lipase and alkaline protease of P. fluorescens. Hybrid exporter analysis demonstrated that the HasD proteins, which are ABC proteins, are involved in the discrimination of export substrates. Chimeric HasA proteins containing both P. fluorescens and S. marcescens sequences were produced and tested for secretion through the Has exporters. The C-terminal region of HasA was shown to be involved in the secretion specificity of the P. fluorescens Has exporter.  相似文献   

3.
L R Turner  J C Lara  D N Nunn    S Lory 《Journal of bacteriology》1993,175(16):4962-4969
The process of extracellular secretion in Pseudomonas aeruginosa requires specialized machinery which is widely distributed among bacteria that actively secrete proteins to the extracellular medium. One of the components of this machinery is the product of the xcpR gene, which is homologous to pilB, a gene encoding a protein essential for the biogenesis of type IV pili. Both XcpR and PilB are characterized by the presence of a conserved ATP-binding motif (Walker sequence). The codons of highly conserved glycine residues within the Walker sequences of xcpR and pilB were altered to encode a serine, and the effects of these substitutions were examined. Bacteria expressing mutant XcpR or PilB were unable to secrete exotoxin A or assemble pili, respectively. In addition, high-level expression of mutant XcpR in wild-type P. aeruginosa led to a pleiotropic extracellular secretion defect, resulting in the periplasmic accumulation of enzymes that are normally secreted from the cell. These studies show that the putative ATP-binding sites of XcpR and PilB are essential for their functions in protein secretion and assembly of pili, respectively. Moreover, the observed dominant negative phenotype of mutant XcpR suggests that this protein functions as a multimer or, alternatively, interacts with another essential component of the extracellular protein secretion machinery.  相似文献   

4.
Pseudomonas syringae uses a type III protein secretion system encoded by the Hrp pathogenicity island (Pai) to translocate effector proteins into plant cells. One of these effector proteins is HopPsyA. A small open reading frame (ORF), named shcA, precedes the hopPsyA gene in the Hrp Pai of P. s. syringae 61. The predicted amino acid sequence of shcA shares general characteristics with chaperones used in type III protein secretion systems of animal pathogens. A functionally non-polar deletion of shcA in P. s. syringae 61 resulted in the loss of detectable HopPsyA in supernatant fractions, consistent with ShcA acting as a chaperone for HopPsyA. Cosmid pHIR11 carries a functional set of type III genes from P. s. syringae 61 and confers upon saprophytes the ability to secrete HopPsyA in culture and to elicit a HopPsyA-dependent hypersensitive response (HR) on tobacco. P. fluorescens carrying a pHIR11 derivative lacking shcA failed to secrete HopPsyA in culture, but maintained the ability to secrete another type III-secreted protein, HrpZ. This pHIR11 derivative was also greatly reduced in its ability to elicit an HR, indicating that the ability to translocate HopPsyA into plant cells was compromised. Using affinity chromatography, we showed that ShcA binds directly to HopPsyA and that the ShcA binding site must reside within the first 166 amino acids of HopPsyA. Thus, ShcA represents the first demonstrated chaperone used in a type III secretion system of a bacterial plant pathogen. We searched known P. syringae type III-related genes for neighbouring ORFs that shared the general characteristics of type III chaperones and identified five additional candidate type III chaperones. Therefore, it is likely that chaperones are as prevalent in bacterial plant pathogen type III systems as they are in their animal pathogenic counterparts.  相似文献   

5.
Protein secretion in Pseudomonas aeruginosa.   总被引:24,自引:0,他引:24  
The Gram-negative bacterium Pseudomonas aeruginosa secretes many proteins into the extracellular medium. At least two distinct secretion pathways can be discerned. The majority of the exoproteins are secreted via a two-step mechanism. These proteins are first translocated across the inner membrane in a signal sequence-dependent fashion. The subsequent translocation across the outer membrane requires the products of at least 12 distinct xcp genes. The exact role of one of these proteins, the XcpA protein, has been resolved. It is a peptidase that is required for the processing of the precursors of four other Xcp proteins, thus allowing their assembly into the secretion apparatus. This peptidase is also required for the processing of the precursors of type IV pili subunits. Two other Xcp proteins, XcpR and XcpS, display extensive homology to proteins involved in pili biogenesis, which suggests that the assembly of the secretion apparatus and the biogenesis of type IV pili are related processes. The secretion of alkaline protease does not require the xcp gene products. This enzyme, which is encoded by the aprA gene, is not synthesized in a precursor form with an N-terminal signal sequence. Secretion across the two membranes probably takes place in one step at adhesion zones that may be constituted by three accessory proteins, designated AprD, AprE and AprF. The two secretion pathways found in P. aeruginosa appear to have disseminated widely among Gram-negative bacteria.  相似文献   

6.
Pseudomonas aeruginosa is the agent of opportunistic infections in immunocompromised individuals and chronic respiratory illnesses in cystic fibrosis patients. Pseudomonas aeruginosa utilizes a type III secretion system for injection of toxins into the host cell cytoplasm through a channel on the target membrane (the 'translocon'). Here, we have functionally and structurally characterized PopB and PopD, membrane proteins implicated in the formation of the P.aeruginosa translocon. PopB and PopD form soluble complexes with their common chaperone, PcrH, either as stable heterodimers or as metastable heterooligomers. Only oligomeric forms are able to bind to and disrupt cholesterol-rich membranes, which occurs within a pH range of 5-7 in the case of PopB/PcrH, and only at acidic pH for PcrH-free PopD. Electron microscopy reveals that upon membrane association PopB and PopD form 80 A wide rings which encircle 40 A wide cavities. Thus, formation of metastable oligomers precedes membrane association and ring generation in the formation of the Pseudomonas translocon, a mechanism which may be similar for other pathogens that employ type III secretion systems.  相似文献   

7.
Type III secretion is used by many gram-negative bacterial pathogens to directly deliver protein toxins (effectors) into targeted host cells. In all cases, secretion of effectors is triggered by host cell contact, although the mechanism is unclear. In Pseudomonas aeruginosa, expression of all type III secretion-related genes is up-regulated when secretion is triggered. We were able to visualize this process using a green fluorescent protein reporter system and to use it to monitor the ability of bacteria to trigger effector secretion on cell contact. Surprisingly, the action of one of the major type III secreted effectors, ExoS, prevented triggering of type III secretion by bacteria that subsequently attached to cells, suggesting that triggering of secretion is feedback regulated. Evidence is presented that translocation (secretion of effectors across the host cell plasma membrane) of ExoS is indeed self-regulated and that this inhibition of translocation can be achieved by either of its two enzymatic activities. The translocator proteins PopB, PopD, and PcrV are secreted via the type III secretion system and are required for pore formation and translocation of effectors across the host cell plasma membrane. Here we present data that secretion of translocators is in fact not controlled by calcium, implying that triggering of effector secretion on cell contact represents a switch in secretion specificity, rather than a triggering of secretion per se. The requirement for a host cell cofactor to control effector secretion may help explain the recently observed phenomenon of target cell specificity in both the Yersinia and P. aeruginosa type III secretion systems.  相似文献   

8.
Hemophores are secreted by several gram-negative bacteria (Serratia marcescens, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Yersinia pestis) and form a family of homologous proteins. Unlike the S. marcescens hemophore (HasA(SM)), the P. fluorescens hemophore HasA(PF) has an additional region of 12 residues located immediately upstream from the C-terminal secretion signal. We show that HasA(PF) undergoes a C-terminal cleavage which removes the last 21 residues when secreted from P. fluorescens and that only the processed form is able to deliver heme to the S. marcescens outer membrane hemophore-specific receptor, HasR(SM). Functional analysis of variants including those with an internal deletion of the extra C-terminal domain show that the secretion signal does not inhibit the biological activity, whereas the 12-amino-acid region located upstream does. This extra domain may inhibit the interaction of the hemophore with HasR(SM). To localize the hemophore regions involved in binding to HasR, chimeric HasA(PF)-HasA(SM) proteins were tested for biological activity. We show that residues 153 to 180 of HasA(PF) are necessary for its interaction with the receptor.  相似文献   

9.
Abstract The Gram-negative bacterium Pseudomonas aeruginosa secretes many proteins into the extracellular medium. At least two distinct secretion pathways can be discerned. The majority of the exoproteins are secreted via a two-step mechanism. These proteins are first translocated across the inner membrane in a signal sequence-dependent fashion. The subsequent translocation across the outer membrane requires the products of at least 12 distinct xcp genes. The exact role of one of these proteins, the XcpA protein, has been resolved. It is a peptidase that is required for the processing of the precursors of four other Xcp proteins, thus allowing their assembly into the secretion apparatus. This peptidase is also required for the processing of the precursors of type IV pili subunits. Two other Xcp proteins, XcpR and XcpS, display extensive homology to proteins involved in pili biogenesis, which suggests that the assembly of the secretion apparatus and the biogenesis of type IV pili are related processes. The secretion of alkaline protease does not require the xcp gene products. This enzyme, which is encoded by the aprA gene, is not synthesized in a precursor form with an N-terminal signal sequence. Secretion across the two membranes probably takes place in one step at adhesion zones that may be constituted by three accessory proteins, designated AprD, AprE and AprF. The two secretion pathways found in P. aeruginosa appear to habe disseminate widely among Gram-negative bacteria.  相似文献   

10.
The hydrocarbon-degrading environmental isolate Pseudomonas fluorescens LP6a possesses an active efflux mechanism for the polycyclic aromatic hydrocarbons phenanthrene, anthracene, and fluoranthene but not for naphthalene or toluene. PCR was used to detect efflux pump genes belonging to the resistance-nodulation-cell division (RND) superfamily in a plasmid-cured derivative, P. fluorescens cLP6a, which is unable to metabolize hydrocarbons. One RND pump, whose gene was identified in P. fluorescens cLP6a and was designated emhB, showed homology to the multidrug and solvent efflux pumps in Pseudomonas aeruginosa and Pseudomonas putida. The emhB gene is located in a gene cluster with the emhA and emhC genes, which encode the membrane fusion protein and outer membrane protein components of the efflux system, respectively. Disruption of emhB by insertion of an antibiotic resistance cassette demonstrated that the corresponding gene product was responsible for the efflux of polycyclic aromatic hydrocarbons. The emhB gene disruption did not affect the resistance of P. fluorescens cLP6a to tetracycline, erythromycin, trimethoprim, or streptomycin, but it did decrease resistance to chloramphenicol and nalidixic acid, indicating that the EmhABC system also functions in the efflux of these compounds and has an unusual selectivity. Phenanthrene efflux was observed in P. aeruginosa, P. putida, and Burkholderia cepacia but not in Azotobacter vinelandii. Polycyclic aromatic hydrocarbons represent a new class of nontoxic, highly hydrophobic compounds that are substrates of RND efflux systems, and the EmhABC system in P. fluorescens cLP6a has a narrow substrate range for these hydrocarbons and certain antibiotics.  相似文献   

11.
Both Pseudomonas aeruginosa and Pseudomonas fluorescens secrete a lipase into the extracellular medium. Unlike the lipase of P. aeruginosa, the lipase produced by P. fluorescens does not contain any N-terminal signal sequence. We show that the P. fluorescens lipase is secreted through the signal peptide-independent pathway of the alkaline protease that we previously identified in P. aeruginosa. Secretion of this protease (AprA) is dependent on the presence of three genes located adjacent to the aprA gene, aprD, aprE and aprF. The three secretion functions permit an efficient secretion of P. fluorescens lipase. Inactivation of one of them (AprE) prevented this secretion. In Escherichia coli, the three proteins AprD, AprE, AprF are necessary and sufficient for efficient secretion of lipase to the extracellular medium. The secretion signal is located within the C-terminal part of the lipase sequence and can promote efficient secretion of a passenger protein. Thus the P. fluorescens lipase secretion system belongs to the group of the three-component bacterial ABC-exporter systems.  相似文献   

12.
The type III secretion system (T3SS) is a specialized apparatus evolved by Gram-negative bacteria to deliver effector proteins into host cells, thus facilitating the establishment of an infection. Effector translocation across the target cell plasma membrane is believed to occur via pores formed by at least two secreted translocator proteins, the functions of which are dependent upon customized class II T3SS chaperones. Recently, three internal tetratricopeptide repeats (TPRs) were identified in this class of chaperones. Here, defined mutagenesis of the class II chaperone PcrH of Pseudomonas aeruginosa revealed these TPRs to be essential for chaperone activity towards the translocator proteins PopB and PopD and subsequently for the translocation of exoenzymes into host cells.  相似文献   

13.
Pyoverdine-mediated iron transport was determined for seven fluorescent Pseudomonas strains belonging to different species. For all strains, cell or cell outer membrane and iron(III)-pyoverdine combinations were compared with their homologous counterparts in uptake, binding, and cross-feeding experiments. For four strains (Pseudomonas putida ATCC 12633, Pseudomonas fluorescens W, P. fluorescens ATCC 17400, and Pseudomonas tolaasii NCPPB 2192), the pyoverdine-mediated iron transport appeared to be strictly strain specific; pyoverdine-facilitated iron uptake by iron-starved cells and binding of ferripyoverdine to the purified outer membranes of such cells were efficient only in the case of the homologous systems. Cross-feeding assays, in liquid or solid cultures, resulted, however, especially for P. fluorescens ATCC 17400, in some discrepancies compared with uptake and binding assays, suggesting that growth experiments are the least likely to yield correct information on specificity of the pyoverdine-mediated iron transport. For the three other strains (P. fluorescens ATCC 13525, P. chlororaphis ATCC 9446, and P. aeruginosa ATCC 15692), cross-reactivity was demonstrated by the uptake, binding, and cross-feeding experiments. In an attempt to determine which parts of the iron transport system were responsible for the specificity, the differences in amino acid composition of the pyoverdines, together with the differences observed at the level of the iron-sensitive outer membrane protein pattern of the seven strains, are discussed.  相似文献   

14.
We report the identification of an ATP-binding cassette (ABC) transporter and an associated large cell-surface protein that are required for biofilm formation by Pseudomonas fluorescens WCS365. The genes coding for these proteins are designated lap for large adhesion protein. The LapA protein, with a predicted molecular weight of approximately 900 kDa, is found to be loosely associated with the cell surface and present in the culture supernatant. The LapB, LapC and LapE proteins are predicted to be the cytoplasmic membrane-localized ATPase, membrane fusion protein and outer membrane protein component, respectively, of an ABC transporter. Consistent with this prediction, LapE, like other members of this family, is localized to the outer membrane. We propose that the lapEBC-encoded ABC transporter participates in the secretion of LapA, as strains with mutations in the lapEBC genes do not have detectable LapA associated with the cell surface or in the supernatant. The lap genes are conserved among environmental pseudomonads such as P. putida KT2440, P. fluorescens PfO1 and P. fluorescens WCS365, but are absent from pathogenic pseudomonads such as P. aeruginosa and P. syringae. The wild-type strain of P. fluorescens WCS365 and its lap mutant derivatives were assessed for their biofilm forming ability in static and flow systems. The lap mutant strains are impaired in an early step in biofilm formation and are unable to develop the mature biofilm structure seen for the wild-type bacterium. Time-lapse microscopy studies determined that the lap mutants are unable to progress from reversible (or transient) attachment to the irreversible attachment stage of biofilm development. The lap mutants were also found to be defective in attachment to quartz sand, an abiotic surface these organisms likely encounter in the environment.  相似文献   

15.
Pseudomonas aeruginosa is able to translocate proteins across both membranes of the cell envelope. Many of these proteins are transported via the type II secretion pathway and adopt their tertiary conformation in the periplasm, which implies the presence of a large transport channel in the outer membrane. The outer membrane protein, XcpQ, which is involved in transport of folded proteins across the outer membrane of P . aeruginosa , was purified as a highly stable homomultimer. Insertion and deletion mutagenesis of xcpQ revealed that the C-terminal part of XcpQ is sufficient for the formation of the multimer. However, linker insertions in the N-terminal part can disturb complex formation completely. Furthermore, complex formation is strictly correlated with lethality, caused by overexpression of xcpQ . Electron microscopic evaluation of the XcpQ multimers revealed large, ring-shaped structures with an apparent central cavity of 95 Å. Purified PilQ, a homologue of XcpQ involved in the biogenesis of type IV pili, formed similar structures. However, the apparent cavity formed by PilQ was somewhat smaller, 53 Å. The size of this cavity could allow for the transport of intact type IV pili.  相似文献   

16.
In gram-positive organisms, glyceride-cysteine thioether lipoproteins are frequently associated with secretion. They constitute membrane-bound forms retained by the cell but releasable late in growth phase. Most gram-negative organisms secrete very few proteins to the culture fluid; thioether lipoproteins in such organisms, typified by the enteric bacterium Escherichia coli, are integral outer membrane components for the most part. Unusual among gram-negative organisms, however, are Pseudomonas strains, known for extracellular export of a number of proteins. To examine whether a fundamental difference exists between the processing of lipoproteins in Pseudomonas strains and in nonsecretory gram-negative organisms, we examined the fate in Pseudomonas aeruginosa and E. coli of a cloned gram-positive secretory lipoprotein, Bacillus licheniformis penicillinase. A nonlipoprotein deletion mutant of the same gene was also examined in P. aeruginosa, and its processing was compared with that in E. coli. No important differences were found between P. aeruginosa and E. coli for either the lipoprotein or its deletion mutant. Thus, the contrast in secretory abilities of the two organisms does not appear to result from a difference in their general secretory systems.  相似文献   

17.
Abstract Environmental isolates of fluorescent pseudomonads grown to early stationary phase in glucose-enriched Luria broth were treated with proteinase K in sodium dodecylsulphate (SDS) lysis buffer and subsequently analyzed by polyacrylamide gel electrophoresis (PAGE). Four silver-staining protein-fragment bands could be used for rapid identification at the species level. Pseudomonas aeruginosa isolates were easily recognized by a unique banding pattern. Isolates considered to be P. fluorescen from biochemical and physiological tests (classical biotypes I, II, III, IV and V) also had a characteristic banding pattern, which in turn was different from that of P. putida isolates (classical biotype A). A residual group representing intermediate isolates of P. fluorescens (new biotype VI of Barrett et al., J. Gen. Microbiol. 132, 1986) or P. putida (biotype B) had a banding pattern similar to that of classical P. fluorescens biotypes. On the other hand, a group representing other intermediate isolates of P. putida (new biotype C of Barrett et al., J. Gen. Microbiol. 132, 1986) had a unique banding pattern resembling that of classical P. putida biotype A. A small number of protein fragment bands appearing in SDS-PAGE analysis of whole-cell lysates seems adequate for a rapid identification at the species level of P. aeruginosa, P. fluorescens and P. putida isolated from natural environments.  相似文献   

18.
Type IV pilins and pseudopilins are found in various prokaryotic envelope protein complexes, including type IV pili and type II secretion machineries of gram-negative bacteria, competence systems of gram-positive bacteria, and flagella and sugar-binding structures in members of the archaeal kingdom. The precursors of these proteins have highly conserved N termini, consisting of a short, positively charged leader peptide, which is cleaved off by a dedicated peptidase during maturation, and a hydrophobic stretch of approximately 20 amino acid residues. Which pathway is involved in the inner membrane translocation of these proteins is unknown. We used XcpT, the major pseudopilin from the type II secretion machinery of Pseudomonas aeruginosa, as a model to study this process. Transport of an XcpT-PhoA hybrid was shown to occur in the absence of other Xcp components in P. aeruginosa and in Escherichia coli. Experiments with conditional sec mutants and reporter-protein fusions showed that this transport process involves the cotranslational signal recognition particle targeting route and is dependent on a functional Sec translocon.  相似文献   

19.
20.
Pseudomonas aeruginosa and Pseudomonas alcaligenes are gram-negative bacteria that secrete proteins using the type II or general secretory pathway, which requires at least 12 xcp gene products (XcpA and XcpP to -Z). Despite strong conservation of this secretion pathway, gram-negative bacteria usually cannot secrete exoproteins from other species. Based on results obtained with Erwinia, it has been proposed that the XcpP and/or XcpQ homologs determine this secretion specificity (M. Linderberg, G. P. Salmond, and A. Collmer, Mol. Microbiol. 20:175-190, 1996). In the present study, we report that XcpP and XcpQ of P. alcaligenes could not substitute for their respective P. aeruginosa counterparts. However, these complementation failures could not be correlated to species-specific recognition of exoproteins, since these bacteria could secrete exoproteins of each other. Moreover, when P. alcaligenes xcpP and xcpQ were expressed simultaneously in a P. aeruginosa xcpPQ deletion mutant, complementation was observed, albeit only on agar plates and not in liquid cultures. After growth in liquid culture the heat-stable P. alcaligenes XcpQ multimers were not detected, whereas monomers were clearly visible. Together, our results indicate that the assembly of a functional Xcp machinery requires species-specific interactions between XcpP and XcpQ and between XcpP or XcpQ and another, as yet uncharacterized component(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号