首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human interferon-beta 2 gene (IFNB2) is identical to the genes encoding the B-cell stimulatory factor (BSF-2), the hybridoma growth factor (HGF), and the hepatocyte stimulating factor (HSF). This protein mediates major alterations in the secretion of a wide spectrum of plasma proteins by the liver in response to tissue injury (the acute-phase response). We have used a cDNA probe specific to the human IFNB2 gene in DNA hybridization experiments and report the regional localization of this gene to human chromosome 7p15-p21. Southern blot analyses of DNA extracted from a panel of mouse X human somatic cell hybrids localized this gene to human chromosome 7p. In situ hybridization of the IFNB2 cDNA probe to prebanded human metaphase chromosome spreads allowed the further localization of this gene to 7p15-p21.  相似文献   

2.
Summary A 0.9 kb cDNA fragment, corresponding to a large part of Rhesus monkey pepsinogen A mRNA, was used as probe for the chromosomal localization of the human pepsinogen A gene(s) using human-rodent somatic cell hybrids. Southern blot analysis of 14 human-Chinese hamster and three human-mouse cell hybrids, strongly indicates that the human PGA locus is on chromosome 11. The human-mouse hybrids, containing a translocation involving chromosome 11, allow sublocalization to the region q12-pter.  相似文献   

3.
Hepatocyte growth factor (HGF) is a polypeptide involved in liver regeneration. Its amino acid sequence and gene structure are similar to those of coagulation-related serine proteases. We have used a cDNA clone of HGF and flow-sorted human chromosomes to assign this gene to chromosome 7. Fluorescence in situ hybridization of the HGF genomic clones to human metaphase chromosome spreads showed the localization of this gene to 7q21. Estimation of fluorescent signals relative to arbitrary reference points (ARPs) allowed further localization to 7q21.1.  相似文献   

4.
Localization of brain nitric oxide synthase (NOS) to human chromosome 12.   总被引:4,自引:0,他引:4  
J Kishimoto  N Spurr  M Liao  L Lizhi  P Emson  W Xu 《Genomics》1992,14(3):802-804
Recent research has shown that nitric oxide is a novel neuronal second messenger and transmitter that may be involved in neuronal cell death and damage in neurological illness. To map the chromosomal localization of this important brain enzyme, a rat cDNA probe was prepared by RNA PCR from rat cerebellum RNA. This rat cDNA was used to isolate a human nitric oxide synthase (NOS) cDNA from a human cerebellum cDNA library. The human cDNA clone containing 1.2 kb of brain NOS cDNA was hybridized to Southern blots containing DNAs obtained from human-rodent hybrid cell line panels using EcoRI and HindIII digestion to ascertain the location of the human NOS gene. These data showed that the human brain nitric oxide synthase mapped within 12q14-qter on human chromosome 12.  相似文献   

5.
Summary Glucosamine-6-sulphatase (G6S), a lysosomal enzyme found in all cells, is involved in the catabolism of heparin, heparan sulphate, and keratan sulphate. Deficiency of G6S results in the accumulation of undegraded substrate and the lysosomal storage disorder mucopolysaccharidosis type IIID (Sanfilippo D syndrome). Regional mapping by in situ hybridization of a 3H-labelled human G6S cDNA probe to human metaphase chromosomes indicated that the G6S gene is localized to chromosome 12 at q14. The localization of the G6S gene to chromosome 12 was confirmed using the G6S cDNA clone in Southern blot hybridization analysis of DNA from human x mouse hybrid cell lines.  相似文献   

6.
Terminal deoxynucleotidyltransferase (TdT) is a DNA polymerase expressed in immature lymphocytes of the thymus and bone marrow, as well as certain leukemic cells. Chromosomal assignment of the gene coding for human TdT was accomplished by in situ hybridization of a 3H-labeled cDNA probe to human chromosome preparations and by Southern blot analysis of somatic cell hybrid DNAs. The human TdT gene was mapped to the region q23----q24 of chromosome 10. Breaks at this site have been reported in different translocations in human leukemias. The mouse TdT gene was assigned to chromosome 19 by Southern blot analysis of mouse X Chinese hamster somatic cell hybrids. This result adds a fourth locus to the conserved syntenic group on mouse chromosome 19 and human chromosome 10.  相似文献   

7.
The human gene for histidase (histidine ammonia-lyase; HAL), the enzyme deficient in histidinemia, was assigned to human chromosome 12 by Southern blot analysis of human X mouse somatic cell hybrid DNA. The gene was sublocalized to region 12q22----q24.1 by in situ hybridization, using a human histidase cDNA. The homologous locus in the mouse (Hal) was mapped to region 10C2----D1 by in situ hybridization, using a cell line from a mouse homozygous for a 1.10 Robertsonian translocation. These assignments extend the conserved syntenic region between human chromosome 12 and mouse chromosome 10 that includes the genes for phenylalanine hydroxylase, gamma interferon, peptidase, and citrate synthase. The localization of histidase to mouse chromosome 10 suggests that the histidase regulatory locus (Hsd) and the histidinemia mutation (his), which are both known to be on chromosome 10, may be alleles of the histidase structural gene locus.  相似文献   

8.
Summary Hereditary cystatin C amyloid angiopathy has recently been shown to be caused by a point mutation in the cystatin C gene. To determine the chromosomal localization of the gene, 20 human-rodent somatic cell hybrids and a fulllength cystatin C cDNA probe were used. Southern blot analysis of BamHI digested cell hybrid DNA revealed that the probe recognizes a 10.6 kb human specific fragment and that this fragment cosegregates with human chromosome 20. Therefore, the human cystatin C gene (CST3) was assigned to chromosome 20.  相似文献   

9.
The lysosomal hydrolase alpha-L-iduronidase (IDUA) is one of the enzymes in the metabolic pathway responsible for the degradation of the glycosaminoglycans heparan sulfate and dermatan sulfate. In humans a deficiency of IDUA leads to the accumulation of glycosaminoglycans, resulting in the lysosomal storage disorder mucopolysaccharidosis type I. A genomic subclone and a cDNA clone encoding human IDUA were used to localize IDUA to chromosome 4p16.3 by in situ hybridization and this was confirmed by Southern blot analysis. This localization is different from that of a previous report mapping IDUA to chromosome 22 and places the gene for IDUA in the same region of chromosome 4 as the Huntington disease gene. Measurement of expressed human IDUA activity in human-mouse hybrid cell lines confirmed that IDUA is on chromosome 4.  相似文献   

10.
A cDNA for a new catalytic subunit (C gamma) of the cAMP-dependent protein kinase (PKA) was recently isolated from a human testis cDNA library. This subunit was shown to be expressed only in testis, and has so far not been demonstrated in other species. In the present study, we have determined the chromosomal localization of this gene employing a cDNA for C gamma as a probe. Southern blot analysis of genomic DNA from human x mouse somatic cell hybrids allowed us to assign this gene (PRKACG) to human chromosome 9. In situ hybridization to metaphase chromosomes confirmed the somatic cell hybrid data and regionally mapped the C gamma gene of PKA to human chromosome 9q13.  相似文献   

11.
Summary The CAD gene encodes a trifunctional protein that carries the activities of the first three enzymes (carbamyl phosphate synthetase II, aspartate transcarbamylase, and dihydroorotase) of de novo pyrimidine biosynthesis. Genomic fragments of the human CAD gene have been obtained by screening a human genomic library in bacteriophage lambda using a Syrian hamster cDNA clone as a probe. These human genomic clones have been used to assign the CAD gene to human chromosome 2 using in situ hybridization to human metaphase chromosomes and Southern blot hybridization analysis of DNA isolated from a panel of Chinese hamster/human hybrid cells. In situ hybridization analysis has allowed further localization of this gene to the chromosomal region 2p21-p22.  相似文献   

12.
A cDNA for the pro alpha 2 chain of human type I collagen has been recently cloned and amplified. We have used this specific probe to identify the human chromosome carrying the pro alpha 2(I) collagen gene. The DNA from 17 independent human/hamster and human/mouse somatic cell hybrids was digested by Eco RI and the restriction pattern analyzed in Southern blot experiments, using the 32P-labeled cDNA as a hybridization probe. The gene coding for the pro alpha 2 collagen subunit could be unambiguously assigned to human chromosome 7. All the other chromosomes, including chromosome 17, were excluded.  相似文献   

13.
Assignment of the human gene for CREB1 to chromosome 2q32.3-q34   总被引:3,自引:0,他引:3  
  相似文献   

14.
We have determined the chromosomal localization of the gene for the catalytic subunit Cα of cAMP-dependent protein kinase (locus PRKACA) to human chromosome 19 using polymerase chain reaction (PCR) and Southern blot analysis of two different somatic cell hybrid mapping panels. In addition, PCR analysis of a chromosome 19 mapping panel revealed the presence of a human Cα-specific amplification product only in cell lines containing the region 19p13.1 to 19q12. Finally, two-color fluorescencein situhybridization to metaphase chromosomes using the human Cα cDNA and human chromosome 19 inter-Alu-PCR product as probes localized the human Cα gene to chromosome region 19p13.1.  相似文献   

15.
Human mast cell growth factor (MGF) complementary DNAs (cDNAs) were cloned from HeLa cells using the polymerase chain reaction with oligonucleotides corresponding to murine and human MGF sequences. Sequencing of the cloned human MGF polymerase chain reaction products revealed two types of cDNA: a full length form corresponding in size to the murine cDNA, and an alternately spliced clone with a deletion of the sixth exon of the gene. Since membrane-bound MGF is predicted to be proteolytically cleaved within the sequences encoded by exon 6 to generate a soluble protein, this alternately spliced cDNA would likely encode a noncleavable, membrane-bound form of MGF. No difference in biological activity on human bone marrow cells was observed with recombinant, soluble forms of both types of human MGF protein. Our previous localization of the murine MGF gene to the Sl locus on chromosome 10 suggested (via conserved linkage groups) that the human MGF gene would be located on human chromosome 12. Therefore, rodent-human somatic cell hybrids with or without an entire human chromosome 12 and hybrids retaining partial 12 were tested by Southern blot analysis and used to show the presence of the human Mgf locus at chromosome region 12q. Chromosomal in situ hybridization localized the gene to 12q22-q24 in the region predicted by the comparative mapping of the murine Mgf/Sl locus.  相似文献   

16.
The chromosomal location of the human intestinal Na+/glucose cotransporter gene (SGLT1) was determined using human cDNA and genomic probes for this transporter gene. Southern blot analysis of genomic DNA from 15 mouse-human somatic cell hybrids showed that the human gene for this transporter resides on chromosome 22. Analysis of hamster-human hybrids selectively retaining chromosome 22 or a portion of it allowed specific assignment of the locus to the q11.2----qter region of chromosome 22. A restriction fragment length polymorphism was identified with EcoRI.  相似文献   

17.
Cellular cholesterol metabolism is regulated primarily through sterol-mediated feedback suppression of the activity of the low-density lipoprotein receptor and several enzymes of the cholesterol biosynthetic pathway. We previously described the cloning of a rabbit cDNA for the oxysterol-binding protein (OSBP), a cytosolic protein of 809 amino acids that may participate in these regulatory events. We now use the rabbit OSBP cDNA to clone the human OSBP cDNA and 5' genomic region. Comparison of the human and rabbit OSBP sequences revealed a remarkably high degree of conservation. The cDNA sequence in the coding region showed 94% identity between the two species, and the predicted amino acid sequence showed 98% identity. The human cDNA was used to determine the chromosomal localization of the OSBP gene by Southern blot hybridization to panels of somatic cell hybrid clones containing subsets of human or mouse chromosomes and by RFLP analysis of recombinant inbred mouse strains. The OSBP locus mapped to the long arm of human chromosome 11 and the proximal end of mouse chromosome 19. Along with previously mapped genes including Ly-1 and CD20, OSBP defines a new conserved syntenic group on the long arm of chromosome 11 in the human and the proximal end of chromosome 19 in the mouse.  相似文献   

18.
The gene coding for the alpha 1 chain of human type XIII collagen. COL13A1, is assigned to chromosome region 10q11----qter by Southern blot hybridization of DNA from 24 human x rodent somatic cell hybrids using a cloned cDNA as probe. A number of previous reports indicate that 10 of the collagen genes are located on six autosomes, but no other collagen genes have been found on chromosome 10. The data therefore provide further evidence for the dispersion of members of the collagen gene family throughout the genome.  相似文献   

19.
The enzyme tyrosinase (monophenol,L-dopa:oxygen oxidoreductase; EC 1.14.18.1) catalyzes the first two steps in the conversion of tyrosine to melanin, the major pigment found in melanocytes. Some forms of oculocutaneous albinism, characterized by the absence of melanin in skin and eyes and by a deficiency of tyrosinase activity, may result from mutations in the tyrosinase structural gene. A recently isolated human tyrosinase cDNA was used to map the human tyrosinase locus (TYR) to chromosome 11, region q14----q21, by Southern blot analysis of somatic cell hybrid DNA and by in situ chromosomal hybridization. A second site of tyrosinase-related sequences was detected on the short arm of chromosome 11 near the centromere (p11.2----cen). Furthermore, we have confirmed the localization of the tyrosinase gene in the mouse at or near the c locus on chromosome 7. Comparison of the genetic maps of human chromosome 11 and mouse chromosome 7 leads to hypotheses regarding the evolution of human chromosome 11.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号