首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both to demonstrate whether the predominant species are dipolar ion or the neutral form and to predict the change of dipolar form to neutral form ratio in ethanol-water mixtures, the macroscopic protonation constants of eight alpha-amino acid (glycine, L-alanine, L-valine, L-leucine, L-phenylalanine, L-serine, L-methionine, and L-isoleucine) were determined potentiometrically in 20-80% (v/v) ethanol-water mixtures at 25 degrees C with an ionic strength of 0.10 M. The calculation of the constants was carried out using a PKAS computer program. The effect of solvent composition on the protonation constants and the dipolar ionic to neutral form ratio of these acids in the mixed solvents are discussed. One can conclude that the dipolar form of amino acids, HA(+/-), dominates in ethanol-water mixtures.  相似文献   

2.
In this study, the overall stability constants of copper(II) complexes with some alpha-amino acids (glycine, dl-alanine, dl-valine, l-leucine, l-asparagine, l-glutamine) were determined by potentiometric titration in water, 25% dioxan-75% water, 35% dioxan-65% water, 50% dioxan-50% water, and 60% dioxan-40% water. The titrations were performed at 25 degrees C, under nitrogen atmosphere, and the ionic strength of the medium was maintained at 0.10 M by using sodium perchlorate. The formation curves of their complexes (n-p[L]) were obtained by means of the titration data. Then the stability constants were determined in relation to these curves. The mol ratio of copper(II) to alpha-amino acid was also determined and it was found that the complexes were CuL(2) type. Another important result obtained was that the tendency of amino acids to form complexes with copper(II) was greater in dioxan-water mixtures compared to water.  相似文献   

3.
Abstract

The effect of dielectric constant of medium on protonation equilibria has been studied by determining protonation constants of ethylenediamine pH metrically in various concentrations (0–60%v/v) of acetoni-trile– and ethylene glycol–water mixtures, at an ionic strength of 0.16mol L?1 and at 303.0 K. MINIQUAD75 computer program has been used for the calculation of protonation constants. Linear and non-linear variations of step-wise protonation constants with reciprocal of dielectric constant of the solvent mixtures have been attributed to the dominance of the electrostatic and non-electrostatic forces, respectively. The trend is explained on the basis of solute–solute and solute–solvent interactions, solvation, proton transfer processes and dielectric constants of the media.  相似文献   

4.
Abstract

The protonation constants of 2,3-diydroxybenzoic acid (2, 3-DHBA) and malonic acid (MA) at 303.0 ± 0.1 K and 0.16 mol L-1 ionic strength in various concentrations (0–60% v/v) of 1,2-propanediol–water-mixtures were determined by pH-metric method. The protonation constants were calculated with MINIQUAD75 computer program. Selection of the best fit chemical models of the acid–base equilibria was based on statistical parameters. The log K values were found to increase with the increase in percentage of 1,2-propanediol and vary linearly with the reciprocal of the dielectric constant of the medium. This has been attributed to the dominance of electrostatic forces. Distributions of species and effect of influential parameters on the protonation constants are also presented.  相似文献   

5.
The microscopic protonation constants of 10 tyrosine-like, unusual amino acids used in the syntheses of opioid peptides have been determined by using a combined pH-metric-spectrophotometric method, at 0.10 mol dm-3 (NaCl) ionic strength and 25.0 degrees. The role of the different electrophilic and nucleophilic substituents on the individual basicity of the aliphatic amine and phenolic hydroxylate basic centers is discussed in detail. The interactivity parameters between these two groups correlate fairly well with the structure of the skeleton and the distance between the two basic centers, but they were found to be substituent-independent. This finding made it possible to extend the calculations to compounds having non-overlapping protonation equilibria.  相似文献   

6.
Abstract

A computer assisted pH-metric investigation has been carried out on the speciation of binary complexes of Ca(II), Mg(II) and Zn(II) with L-histidine. The titrations are carried out with sodium hydroxide in varying concentrations (0–60% v/v) of dioxan-water mixtures at an ionic strength of 0.16 mol L-1 and at a temperature of 303 K. Ca(II), Mg(II) and Zn(II) form the binary complexes of ML2H4, ML2H3, ML2H2, ML2H and ML2 in dioxan-water mixtures. The effect of systematic errors in the concentrations of the substances on the stability constants is in the order acid > alkali > ligand > metal> Log F. The effect of solvent, dielectric constant of the medium and the electrostatic interactions between the complex species on the stability of the complexes are discussed.  相似文献   

7.
Abstract

The protonation constants of maleic acid and L-asparagine have been studied pH-metrically in various concentrations (0–50% v/v) of acetonitrile–water mixtures maintaining an ionic strength of 0.16 mol L-1 at 300C. The protonation constants have been calculated using the computer program MINIQUAD75 and are selected based on statistical parameters. Linear variation of step-wise protonation constants (log K) with the reciprocal of the dielectric constant of the solvent mixture has been attributed to the dominance of the electrostatic forces.  相似文献   

8.
The main strategy developed to shift the equilibrium state of a hydrolase-catalyzed hydrolysis/synthesis reaction consists in reducing water activity by addition of organic solvents in the reaction medium. We have used several mixtures of water and 1,4-butanediol, ranging from pure water to pure 1,4-butanediol, to study the hydrolysis/synthesis reaction of the N-Cbz-L-tryptophanyl-glycineamide dipeptide, catalyzed by alpha-chymotrypsin. In the presence of 1,4-butanediol, alpha-chymotrypsin also catalyzed the esterification reaction between this diol and N-Cbz-L-tryptophan; this ester hydrolysis/synthesis reaction has thus also been examined. The dipeptide and ester equilibrium concentrations increase when the water content of the reaction medium is decreased. Using our experimental data, we have determined the equilibrium constants of the hydrolysis/synthesis equilibria involving the nonionized forms of the protected amino acids, the estimated values of which are Ksp = 8 10(5) for the dipeptide and Kse = 78 for the ester respectively. They are true thermodynamic equilibrium constants, each related to a single, well-defined reaction equilibrium and with water activity being taken into account. If an organic solvent is added to the reaction medium these equilibria can be shifted towards synthesis by decreasing the water activity but also by modifying the ionization/neutralization equilibrium constant of the ionizable groups. These two effects depend both on the water content and on the nature of the organic solvent used, and, in particular, on its dielectric constant. Because of the importance of this parameter in our study, we discuss using it as an indicator to select an appropriate organic solvent to perform an enzyme-catalyzed synthesis.  相似文献   

9.
The synthesis of 2-hydroxy-3[N-(2-pyridylmethyl)glycine]propyl Sephadex ether--a new chelating resin--is described. This resin has been employed in the form of its Cu2+ complex to separate peptides, as a group, from alpha-amino acids and NaCl. Ninety-seven ligands of different structures were separated chromatographically at room temperature. It was shown that two structural parameters of the ligands control the separation process, namely, the presence of ligand donor groups and the possibility for them to form chelate rings of suitable size. Separation of peptides from alpha-, gamma-, delta-amino acids, N-acetyl derivatives of amino acids (except N-Ac-Trp), and NaCl is possible if the peptides fulfill the following structural requirements: the peptide molecule must have a free terminal amino group; a carbonyl group (of the peptide linkage) must be situated in the alpha- or beta-position of the free amino group; and the peptide may not contain an imidazole residue (except Gly-Gly-His). A relationship was found between the log k' and the corresponding pKHHL, log KCuCuL, and log KCuBipyCuBipyL values. Interpretation of the different K' values was possible based on the different basicities of the terminal amino groups and on the structures of the different side chains of the peptides.  相似文献   

10.
Abstract

The solute–solvent interactions of glycine, 1,10-phenanthroline and 2,2-bipyridyl have been studied in 0–60% v/v ethylene glycol–water media by a pH metric method. The protonation constants were estimated with the computer program MINIQUAD75. Selection of the best fit chemical model of the protonation equilibria is based on the standard deviation in protonation constants and residual analysis using a sum of squares of residuals in all mass-balance equations. The observed linear variation of protonation constants with the inverse of dielectric constant of the solvent mixture can be attributed to the dominance of the electrostatic forces. The distribution of species, protonation equilibria and effects of influential parameters on the protonation constants are also presented.  相似文献   

11.
The biological activity of Cercospora beticola toxins might be enhanced by the complex formation with magnesium. Therefore, protonation and complexation equilibria of beticolins were studied. Beticolins carry three dissociable functions (H3B) two of which dissociate at a physiological pH. In the presence of magnesium, the neutralisation and protonation curves provide evidence for the formation of complexes. At physiological pH, the uncharged complex, Mg2H2B2, is the predominant form. The nonionised forms of free beticolin-1 and -2 fluoresce in a 50% dioxan-water solution and their emission maxima shift to higher wavelengths in water. The dianion HB(2-) is non-fluorescent both in water and in less polar media. The formation of the Mg2H2B2 complex which strongly fluoresces in nonpolar media is confirmed by a marked increase in fluorescence at 520 nm and by a shift of the excitation maximum.  相似文献   

12.
The protonation constants and complex formation constants of ionomycin have been determined in 80% methanol/water (w/w) at 25.0 degrees C and mu = 0.050 (tetraethylammonium perchlorate). Potentiometric and spectrometric titration techniques give the following values for the mixed-mode protonation constants of ionomycin: log KH1 = 11.94 +/- 0.02 and log KH2 = 6.80 +/- 0.03. Comparison of these values with those for model compounds indicates that KH1 and KH2 refer to equilibria involving the beta-diketone and carboxylic acid moieties, respectively. Titrations of ionomycin with metal ion at fixed values of pH produced changes in the UV-visual absorbance spectra which were analyzed to give conditional complex formation constants, KMI'. The pH dependence of the values of KMI' indicated that 1:1 divalent metal ion-ionomycin (MI) complexes and protonated MHI+ complexes were formed in the pH range studied. The values of log KMI ranged from 5.30 +/- 0.11 for Sr2+ to 10.25 +/- 0.03 for Ni2+. The selectivity pattern and relative affinities (in parentheses) for the formation of the species MI are as follows: Ni2+ (2000) greater than Zn2+ (600) greater than CO2+ (440) greater than Mn2+ (47) greater than Mg2+ (1.00) greater than Ca2+ (0.21) greater than Sr2+ (0.022). Logarithmic values of KMHI, for the reaction MI + H+ in equilibrium MHI+, ranged from 5.9 (Ni2+) to 8.4 (Sr2+). Calculations using the values of the equilibrium constants determined indicate that an appreciable fraction of the complexed ionophore exists as the protonated complex, MHI+, in the pH range of 6.5-8.5.  相似文献   

13.
T. Tang  K. S. Rajan    N. Grecz 《Biophysical journal》1968,8(12):1458-1474
The high resistance of bacterial spores to heat has been repeatedly postulated to be due to stabilization of spore biopolymers by metal chelate compounds. Binding of calcium dipicolinic acid (Ca(II)-DPA) with spore proteins and amino acids has been discussed in the literature, but equilibrium data are generally lacking. By means of potentiometric pH titrations at 25 degrees C and an ionic strength of 1.0 (KNO(3)), the formation of Ca(II)-DPA (1:1 and 1:2) chelates and the interactions of Ca(II)-DPA chelate with a mole of each of three typical amino acids viz., cysteine, alanine, and glycine has been investigated. Analysis of the potentiometric data indicates that calcium and DPA forms 1:1 and 1:2 chelates with log K(ML1) = 4.39 +/- 0.01 and log K(ML2) = 2.25 +/- 0.01. In the presence of an equimolar amount of each of the amino acids under consideration, the Ca(II)-DPA chelate forms mixed ligand (ternary) chelate yielding the following stepwise stability constants: log K(1) = 4.17 +/- 0.01, log K(2) = 0.78 +/- 0.01 for cysteine, log K(1) = 4.06 +/- 0.01, log K(2) = 0.65 +/- 0.01 for alanine, and log K(1) = 4.30 +/- 0.02, log K(2) = 0.11 +/- 0.01 for glycine. Methods for calculating the stability constants of the mixed ligand system have been developed. On the basis of the potentiometric equilibrium data, possible structures for the various calcium chelate species are discussed. The data suggest that the differences in heat resistance of various strains of bacterial spores may conceivably be related to the differences in composition and stability of coordination complexes in the spore.  相似文献   

14.
The acid-base properties of Adenosine 5'-triphosphate (ATP) in NaCl and KCl aqueous solutions at different ionic strengths (0相似文献   

15.
Flow calorimetry has been used to study the interaction of glycine with protons in water at temperatures of 298.15, 323.15, and 348.15 K and pressures up to 12.50 MPa. By combining the measured heat for glycine solutions titrated with NaOH with the heat of ionization for water, the enthalpy of protonation of glycine is obtained. The reaction is exothermic at all temperatures and pressures studied. The effect of pressure on the enthalpy of reaction is very small. The experimental heat data are analyzed to yield equilibrium constant (K), enthalpy change (ΔH), and entropy change (ΔS) values for the protonation reaction as a function of temperature. These values are compared with those reported previously at 298.15 K. The ΔH and ΔS values increase (become more positive), whereas log K values decrease, as temperature increases. The trends for ΔH and ΔS with temperature are opposite to those reported previously for the protonation of several alkanolamines. However, log K values for proton interaction with both glycine and the alkanolamines decrease with increasing temperature. The effect of the nitrogen atom substituent on log K for protonation of glycine and alkanolamines is discussed in terms of changes in long-range and short-range solvent effects. These effects are used to explain the difference in ΔH and ΔS trends between glycine protonation and those found earlier for alkanolamine protonation.  相似文献   

16.
Azotobacter vinelandii produces siderophores with different metal-binding properties, depending on the concentration of Fe(III) and molybdate in the growth medium. The three protonation constants of the mono(catecholamide) siderophore aminochelin were determined by simultaneous spectrophotometric and potentiometric titrations as log K(1)=12.1, log K(2)=10.22 and log K(3)=7.04. Based on the two catechol protonation constants, log K(1) and log K(3), the overall stability constant of the aminochelin iron 3:1 complex was found to be log beta(3)=41.3, resulting in a pFe(3+) value of 17.6 at pH 7.45. In order to further investigate the properties of the siderophore, the solubilization of Fe(III) hydroxide by a 8x10(-4) M solution of aminochelin at pH 7 and 25 degrees C was followed spectrophotometrically in the absence and in the presence of molybdate. It was observed that the addition of molybdate resulted in a significant delay in the solubilization.  相似文献   

17.
A general method for formulating complex thermodynamic systems in terms of hierarchical interactions has been developed, and has been applied in a previous analysis to hemoglobin oxygen binding data. Polyprotic acids can be considered a simple chemical model of thermodynamic interaction between ligand binding events. To further illustrate the hierarchical interaction approach it is applied to the analysis of the thermodynamic interactions between proton binding events in inorganic polyprotic acids. pK values for arsenate, carbonate, chromate, phosphate, phosphite, selenite, sulfide and sulfite were recast into hierarchical interaction terms. The intrinsic K(d,h) for protonation ranged from 8.8 x 10(-13) (M) for phosphate to 1.3 x 10(-6) (M) for chromate. Pairwise interactions (K(d,hh)) between protonation events ranged from 1.3 x 10(4) for phosphite to 9.4 x 10(5) for carbonate. Third order interactions (K(d,hhh)) were 0.91 and 0.51 for arsenate and phosphate, respectively, values relatively close to the no interaction value of 1. A principle feature of systems described by hierarchical interactions is that higher order interactions, representing more complex interactions, are less likely to be significant than lower order interactions, and this is further illustrated by these observations from polyprotic acids. The set of significant hierarchical interaction values can be used to predict values for as yet unobserved events, and projected pK values are made for all the polyprotic acids included in this study. Finally, application of this method to the protonation equilibria of water demonstrates a profound pairwise interaction between protonation events (K(d,hh) = 1.3 x 10(17)), which is attributed to oxygen's small size and lack of polarizability.  相似文献   

18.
Studies of the metal-binding affinity of protein sites are ubiquitous in bioinorganic chemistry and are valuable for the information that they can provide about metal speciation and exchange in biological systems. The potential for error in these studies is high, however, since many competing equilibria are present in solution and must be taken into consideration. Here, we report a new spectropotentiometric titration apparatus that allows pH and UV-vis absorption to be monitored simultaneously on small samples under inert atmosphere. In addition, we explain how data obtained from the complex equilibria can be combined with tabulated information about the protonation and metal-binding constants for common buffers to provide detailed, quantitative information about metal-protein interactions. Application of this approach to the investigation of metal binding to structural zinc-binding domains and common pitfalls encountered when performing these experiments are also discussed. We have used this approach to reevaluate the metal-binding constants of the N-terminal zinc-binding peptide from the HIV-1 nucleocapsid protein (10(-8)M相似文献   

19.
Pattison DI  Hawkins CL  Davies MJ 《Biochemistry》2007,46(34):9853-9864
Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that occurs in numerous human pathologies. As proteins and amino acids are highly abundant in vivo and react rapidly with HOCl, they are likely to be major targets for HOCl. In this study, two small globular proteins, lysozyme and insulin, have been oxidized with increasing excesses of HOCl to determine whether the pattern of HOCl-mediated amino acid consumption is consistent with reported kinetic data for isolated amino acids and model compounds. Identical experiments have been carried out with mixtures of N-acetyl amino acids (to prevent reaction at the alpha-amino groups) that mimic the protein composition to examine the role of protein structure on reactivity. The results indicate that tertiary structure facilitates secondary chlorine transfer reactions of chloramines formed on His and Lys side chains. In light of these data, second-order rate constants for reactions of Lys side chain and Gly chloramines with Trp side chains and disulfide bonds have been determined, together with those for further oxidation of Met sulfoxide by HOCl and His side chain chloramines. Computational kinetic models incorporating these additional rate constants closely predict the experimentally observed amino acid consumption. These studies provide insight into the roles of chloramine formation and three-dimensional structure on the reactions of HOCl with isolated proteins and demonstrate that kinetic models can predict the outcome of HOCl-mediated protein oxidation.  相似文献   

20.
In this study an attempt is made to explore the effect of a peptide's size, charge, and hydrophobicity on its electrophoretic mobility (mu) as measured by free-solution capillary electrophoresis with the aim of developing a semiempirical model which incorporates these effects. The effects of peptide size (which is measured by the number of amino acids in the polypeptide chain (n] and charge on mu are independently determined by experiment in a single solvent system and combined to give the relationship (formula; see text) where the constant 5.23 X 10(-4) is postulated to depend on the solvent system used. The form of Eq. [A.1] was confirmed, and the values of the constants 5.23 X 10(-4) and 2.47 X 10(-5) were determined, by measuring the electrophoretic mobilities of 40 peptides varying in size from 3 to 39 amino acids and varying in charge from 0.33 to 14.0. Furthermore, the effect of noncharged neutral amino acids on mobility was investigated and shown to be present, but only as a minor perturbation on the effects of size and charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号