首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylobacterium extorquens AM1 is a facultative methylotrophic bacterium that uses the serine pathway for formaldehyde incorporation as its assimilation pathway during growth on one-carbon compounds. A DNA region from M. extorquens AM1 previously shown to contain genes for the serine pathway enzymes malyl coenzyme A (CoA) lyase and hydroxypyruvate reductase has been characterized in more detail. Insertion mutagenesis revealed an additional region required for growth on one-carbon compounds, and all of the insertion mutants in this region lacked activity for another serine pathway enzyme, the acetyl-CoA-independent phosphoenolpyruvate (PEP) carboxylase. Expression analysis with Escherichia coli of DNA fragments that included the malyl-CoA lyase and PEP carboxylase regions identified five polypeptides, all transcribed in the same direction. Three of these polypeptides were expressed from the region necessary for the acetyl-CoA-independent PEP carboxylase, one was expressed from the region containing the malyl-CoA lyase gene, and the fifth was expressed from a region immediately downstream from the gene encoding hydroxypyruvate reductase. All six genes are transcribed in the same direction, but the transposon insertion data suggest that they are not all cotranscribed.  相似文献   

2.
In a previous paper, we reported identification of the 5' part of hprA of Methylobacterium extorquens AM1, which encodes the serine cycle enzyme hydroxypyruvate reductase (L. V. Chistoserdova and M. E. Lidstrom, J. Bacteriol. 174:71-77, 1992). Here we present the complete sequence of hprA and partial sequence of genes adjacent to hprA. Upstream of hprA, the 3' part of an open reading frame was discovered, separated from hprA by 263 bp. This open reading frame was identified as the gene encoding another serine cycle enzyme, serine glyoxylate aminotransferase (sgaA). Cells containing an insertion mutation into sgaA were unable to grow on C1 compounds, demonstrating that the gene is required for C1 metabolism. Sequencing downstream of hprA has revealed the presence of another open reading frame (mtdA), which is probably cotranscribed with hprA. This open reading frame was identified as the gene required for the synthesis of 5,10-methylenetetrahydrofolate dehydrogenase. Our data suggest that this enzyme plays an integral role in methylotrophic metabolism in M. extorquens AM1, either in formaldehyde oxidation or as part of the serine cycle.  相似文献   

3.
The gene (glyA) of Methylobacterium extorquens AM1 encoding serine hydroxymethyltransferase (SHMT), one of the key enzymes of the serine cycle for C1 assimilation, was isolated by using a synthetic oligonucleotide with a sequence based on amino acid sequence conserved in SHMTs from different sources. The amino acid sequence deduced from the gene revealed high similarity to those of known SHMTs. The cloned gene was inactivated by insertion of a kanamycin resistance gene, and recombination of this insertion derivative with the wild-type gene produced an SHMT null mutant. Surprisingly, this mutant had lost its ability to grow on C1 as well as on C2 compounds but was still able to grow on succinate. The DNA fragment containing glyA was shown not to be linked with fragments carrying serine cycle genes identified earlier, making it the fourth chromosomal region of M. extorquens AM1 to be indicated as being involved in C1 assimilation.  相似文献   

4.
In a recent paper we reported the sequence of the beginning of a serine cycle gene cluster on the Methylobacterium extorquens AM1 chromosome, containing the genes encoding serine glyoxylate aminotransferase (sgaA), hydroxypyruvate reductase (hprA), and 5,10-methylenetetrahydrofolate dehydrogenase (mtdA) (L. V. Chistoserdova and M. E. Lidstrom J. Bacteriol. 176:1957-1968, 1994). Here we present the sequence of the adjacent downstream region containing three full and one partial open reading frames. The first of the full open reading frames (orf4) remains unidentified, while the other two (mtkA and mtkB) code for the two subunits of malate thiokinase, and the fourth, a partial open reading frame (ppcA), apparently encodes phosphoenolpyruvate carboxylase. Mutants containing insertion mutations in orf4, mtdA, and mtdB all were unable to grow on C1 compounds, showing that these three newly identified genes are indispensable for the operation of the serine cycle. Mutants in orf4 were also unable to grow on C2 compounds, but growth was restored by glyoxylate, suggesting that orf4 might be required for the conversion of acetyl coenzyme A to glyoxylate.  相似文献   

5.
6.
Succinate (or a product of succinate metabolism) is a catabolite repressor of some enzymes of the serine pathway (hydroxypyruvate reductase, serine-glyoxylate aminotransferase and glycerate kinase) but not of methanol dehydrogenase nor methylamine dehydrogenase. A mutant (PCT64) of Pseudomonas AM1, which is unable to grow on C(1) compounds, lacks glycerate kinase, showing that this enzyme is essential for the operation of the serine pathway. Mutant PCT48, unable to convert acetate into glycollate, has lost the ability to grow both on C(1) compounds and on ethanol. The properties of a third mutant (PCT57) show that Pseudomonas AM1 contains enzymes catalysing the conversion of acetate into glyoxylate. Evidence is presented that hydroxypyruvate reductase is involved in the oxidation of glycollate to glyoxylate during growth on ethanol. A scheme is proposed for the conversion of ethanol and of C(1) compounds into glyoxylate in which acetate (or a derivative) and glycollate are intermediates.  相似文献   

7.
1. The following enzymes of the phosphorylated pathway of serine biosynthesis have been found in methanol- and succinate-grown Pseudomonas AM1: phosphoglycerate dehydrogenase, phosphoserine-alpha-oxoglutarate aminotransferase and phosphoserine phosphohydrolase. Their specific activities were similar in the organism grown on either substrate. 2. A procedure for preparation of auxotrophic mutants of Pseudomonas AM1 is described involving N-methyl-N'-nitro-N-nitrosoguanidine as mutagen and a penicillin enrichment step. 3. A mutant, M-15A, has been isolated that is unable to grow on methanol and that lacks phenazine methosulphate-linked methanol dehydrogenase. The mutant is able to grow on methylamine, showing that the amine is not oxidized by way of methanol. 4. Loss of methanol dehydrogenase activity in mutant M-15A led to loss of phenazine methosulphate-linked formaldehyde dehydrogenase activity showing that the same enzyme is probably responsible for both activities. 5. A mutant, 20B-L, has been isolated that cannot grow on any C(1) compound tested but can grow on succinate. 6. Mutant 20B-L lacks hydroxypyruvate reductase, and revertants that regained the ability to grow on methanol, methylamine and formate contained hydroxypyruvate reductase activity at specific activities similar to that of the wild-type organism. This shows that hydroxypyruvate reductase is necessary for growth on methanol, methylamine and formate but not for growth on succinate. 7. The results suggest that during growth of Pseudomonas AM1 on C(1) compounds, serine is converted into 3-phosphoglycerate by a non-phosphorylated pathway, whereas during growth on succinate, phosphoglycerate is converted into serine by a phosphorylated pathway.  相似文献   

8.
Hydroxypyruvate reductase was purified to homogeneity from the facultative methylotroph Methylobacterium extorquens AM1. It has a molecular mass of about 71 kDa, and it consists of two identical subunits with a molecular mass of about 37 kDa. This enzyme uses both NADH (Km = 0.04 mM) and NADPH (Km = 0.06 mM) as cofactors, uses hydroxypyruvate (Km = 0.1 mM) and glyoxylate (Km = 1.5 mM) as the only substrates for the forward reaction, and carries out the reverse reaction with glycerate (Km = 2.6 mM) only. It was not possible to detect the conversion of glycolate to glyoxylate, a proposed role for this enzyme. Kinetics and inhibitory studies of the enzyme from M. extorquens AM1 suggest that hydroxypyruvate reductase is not a site for regulation of the serine cycle at the level of enzyme activity.  相似文献   

9.
Hu B  Lidstrom M 《Journal of bacteriology》2012,194(11):2802-2808
The ethylmalonyl coenzyme A (ethylmalonyl-CoA) pathway is one of the central methylotrophy pathways in Methylobacterium extorquens involved in glyoxylate generation and acetyl-CoA assimilation. Previous studies have elucidated the operation of the ethylmalonyl-CoA pathway in C(1) and C(2) assimilation, but the regulatory mechanisms for the ethylmalonyl-CoA pathway have not been reported. In this study, a TetR-type activator, CcrR, was shown to regulate the expression of crotonyl-CoA reductase/carboxylase, an enzyme of the ethylmalonyl-CoA pathway involved in the assimilation of C(1) and C(2) compounds in Methylobacterium extorquens AM1. A ccrR null mutant strain was impaired in its ability to grow on C(1) and C(2) compounds, correlating with the reduced activity of crotonyl-CoA reductase/carboxylase. Promoter fusion assays demonstrated that the activity of the promoter required for ccr expression (the katA-ccr promoter) decreased as much as 50% in the absence of ccrR compared to wild-type M. extorquens AM1. Gel mobility shift assays confirmed that CcrR directly binds to the region upstream of the katA-ccr promoter. A palindromic sequence upstream of katA at positions -334 to -321 with respect to the predicted translational start site was identified, and mutations in this region eliminated the gel retardation of the katA-ccr promoter region by CcrR. CcrR does not appear to regulate the expression of other ethylmalonyl-CoA pathway genes, suggesting the existence of additional regulators.  相似文献   

10.
The serine cycle methylotroph Methylobacterium extorquens AM1 contains two pterin-dependent pathways for C(1) transfers, the tetrahydrofolate (H(4)F) pathway and the tetrahydromethanopterin (H(4)MPT) pathway, and both are required for growth on C(1) compounds. With the exception of formate-tetrahydrofolate ligase (FtfL, alternatively termed formyl-H(4)F synthetase), all of the genes encoding the enzymes comprising these two pathways have been identified, and the corresponding gene products have been purified and characterized. We present here the purification and characterization of FtfL from M. extorquens AM1 and the confirmation that this enzyme is encoded by an ftfL homolog identified previously through transposon mutagenesis. Phenotypic analyses of the ftfL mutant strain demonstrated that FtfL activity is required for growth on C(1) compounds. Unlike mutants defective for the H(4)MPT pathway, the ftfL mutant strain does not exhibit phenotypes indicative of defective formaldehyde oxidation. Furthermore, the ftfL mutant strain remained competent for wild-type conversion of [(14)C]methanol to [(14)C]CO(2). Collectively, these data confirm our previous presumptions that the H(4)F pathway is not the key formaldehyde oxidation pathway in M. extorquens AM1. Rather, our data suggest an alternative model for the role of the H(4)F pathway in this organism in which it functions to convert formate to methylene H(4)F for assimilatory metabolism.  相似文献   

11.
Several DNA regions containing genes involved in poly-beta-hydroxybutyrate (PHB) biosynthesis and degradation and also in fatty acid degradation were identified from genomic sequence data and have been characterized in the serine cycle facultative methylotroph Methylobacterium extorquens AM1. Genes involved in PHB biosynthesis include those encoding beta-ketothiolase (phaA), NADPH-linked acetoacetyl coenzyme A (acetyl-CoA) reductase (phaB), and PHB synthase (phaC). phaA and phaB are closely linked on the chromosome together with a third gene with identity to a regulator of PHB granule-associated protein, referred to as orf3. phaC was unlinked to phaA and phaB. Genes involved in PHB degradation include two unlinked genes predicted to encode intracellular PHB depolymerases (depA and depB). These genes show a high level of identity with each other at both DNA and amino acid levels. In addition, a gene encoding beta-hydroxybutyrate dehydrogenase (hbd) was identified. Insertion mutations were introduced into depA, depB, phaA, phaB, phaC, and hbd and also in a gene predicted to encode crotonase (croA), which is involved in fatty acid degradation, to investigate their role in PHB cycling. Mutants in depA, depB, hbd, and croA all produced normal levels of PHB, and the only growth phenotype observed was the inability of the hbd mutant to grow on beta-hydroxybutyrate. However, the phaA, phaB, and phaC mutants all showed defects in PHB synthesis. Surprisingly, these mutants also showed defects in growth on C(1) and C(2) compounds and, for phaB, these defects were rescued by glyoxylate supplementation. These results suggest that beta-hydroxybutyryl-CoA is an intermediate in the unknown pathway that converts acetyl-CoA to glyoxylate in methylotrophs and Streptomyces spp.  相似文献   

12.
Formaldehyde is toxic for all organisms from bacteria to humans due to its reactivity with biological macromolecules. Organisms that grow aerobically on single-carbon compounds such as methanol and methane face a special challenge in this regard because formaldehyde is a central metabolic intermediate during methylotrophic growth. In the alpha-proteobacterium Methylobacterium extorquens AM1, we found a previously unknown enzyme that efficiently catalyzes the removal of formaldehyde: it catalyzes the condensation of formaldehyde and tetrahydromethanopterin to methylene tetrahydromethanopterin, a reaction which also proceeds spontaneously, but at a lower rate than that of the enzyme-catalyzed reaction. Formaldehyde-activating enzyme (Fae) was purified from M. extorquens AM1 and found to be one of the major proteins in the cytoplasm. The encoding gene is located within a cluster of genes for enzymes involved in the further oxidation of methylene tetrahydromethanopterin to CO(2). Mutants of M. extorquens AM1 defective in Fae were able to grow on succinate but not on methanol and were much more sensitive toward methanol and formaldehyde. Uncharacterized orthologs to this enzyme are predicted to be encoded by uncharacterized genes from archaea, indicating that this type of enzyme occurs outside the methylotrophic bacteria.  相似文献   

13.
Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions.  相似文献   

14.
The organization of genes involved in utilization of methylamine (mau genes) was studied in Methylophilus methylotrophus W3A1. The strain used was a nonmucoid variant termed NS (nonslimy). The original mucoid strain was shown to be identical to the NS strains on the basis of chromosomal digest and hybridization patterns. An 8-kb PstI fragment of the chromosome from M. methylotrophus W3A1-NS encoding the mau genes was cloned and a 6,533-bp region was sequenced. Eight open reading frames were found inside the sequenced area. On the basis of a high level of sequence identity with the Mau polypeptides from Methylobacterium extorquens AM1, the eight open reading frames were identified as mauFBEDAGLM. The mau gene cluster from M. methylotrophus W3A1 is missing two genes, mauC (amicyanin) and mauJ (whose function is unknown), which have been found between mauA and mauG in all studied mau gene clusters. Mau polypeptides sequenced so far from five different bacteria show considerable identity. A mauA mutant of M. methylotrophus W3A1-NS that was constructed lost the ability to grow on all amines as sources of nitrogen but still retained the ability to grow on trimethylamine as a source of carbon. Thus, unlike M. extorquens AM1 and Methylobacillus flagellatum KT, M. methylotrophus W3A1-NS does not have an additional methylamine dehydrogenase system for amine oxidation. Using a promoter-probe vector, we identified a promoter upstream of mauF and used it to construct a potential expression vector, pAYC229.  相似文献   

15.
A gene (gckA) responsible for the activity of glycerate kinase has been identified within a chromosomal fragment of the serine cycle methylotroph Methylobacterium extorquens AM1. A mutation in gckA leads to a specific C1-negative phenotype. The polypeptide sequence derived from gckA showed high similarity to a product of ttuD essential for tartrate metabolism in Agrobacterium vitis. Our data suggest that gckA and ttuD might be structural genes for glycerate kinase and that the serine cycle and the tartrate utilization pathway share a series of reactions.  相似文献   

16.
Methylobacterium extorquens AM1, a serine cycle facultative methylotroph, accumulates poly-beta-hydroxybutyrate (PHB) as a carbon and energy reserve material during growth on both multicarbon- and single-carbon substrates. Recently, the identification and mutation of the genes involved in the biosynthesis and degradation of PHB have been described for this bacterium, demonstrating that two of the genes of the PHB cycle (phaA and phaB) are also involved in C(1) and C(2) metabolism, as part of a novel pathway for glyoxylate regeneration in the serine cycle (N. Korotkova and M. E. Lidstrom, J. Bacteriol. 183:1038-1046, 2001; N. Korotkova, L. Chistoserdova, V. Kuksa, and M. E. Lidstrom, J. Bacteriol. 184:1750-1758, 2002). In this work, three new genes involved in PHB biosynthesis in this bacterium have been investigated via mutation and phenotypic analysis: gap11, gap20, and phaR. We demonstrate that gap11 and gap20 encode two major granule-associated proteins (phasins) and that mutants with mutations in these genes are defective in PHB production and also in growth on C(2) compounds, while they show wild-type growth characteristics on C(1) or multicarbon compounds. The phaR mutant shows defects in both PHB accumulation and growth characteristics when grown on C(1) compounds and has defects in PHB accumulation but grows normally on C(3) and C(4) compounds, while both PHB accumulation and growth rate are at wild-type levels during growth on C(2) compounds. Our results suggest that this phenotype is due to altered fluxes of acetyl coenzyme A (CoA), a major intermediate in C(1), C(2), and heterotrophic metabolism in M. extorquens AM1, as well as the entry metabolite for the PHB cycle. Therefore, it seems likely that PhaR acts to control acetyl-CoA flux to PHB in this methylotrophic bacterium.  相似文献   

17.
In Pseudomonas AM1, conversion of 3-hydroxybutyrate to acetyl-CoA is mediated by an inducible 3-hydroxybutyrate dehydrogenase, an acetoacetate: succinate coenzyme A transferase (specific for succinyl-CoA) and an inducible beta-ketothiolase. Ethanol is oxidized to acetate by the same enzymes as are involved in methanol oxidation to formate. An inducible acetyl-CoA synthetase has been partially purified and characterized; it is essential for growth only on ethanol, malonate and acetate plus glyoxylate, as shown by the growth characteristics of a mutant (ICT54) lacking this enzyme. Free acetate is not involved in the assimilation of acetyl-CoA, and hydroxypyruvate reductase is not involved in the oxidation of acetyl-CoA to glyoxylate during growth on 3-hydroxybutyrate. A mutant (ICT51), lacking 'malate synthase' activity has been isolated and its characteristics indicate that this activity is normally essential for growth, of Pseudomonas AM1 on ethanol, malonate and 3-hydroxybutyrate, but not for growth on other substrates such as pyruvate, succinate and C1 compounds. The growth properties of a revertant (ICT51R) and of a mutant lacking malyl-CoA lyase (PCT57) indicate that an alternative route must exist for assimilation of compounds metabolized exclusively by way of acetyl-CoA.  相似文献   

18.
19.
Acetyl-CoA assimilation was extensively studied in organisms harboring the glyoxylate cycle. In this study, we analyzed the metabolism of the facultative methylotroph Methylobacterium extorquens AM1, which lacks isocitrate lyase, the key enzyme in the glyoxylate cycle, during growth on acetate. MS/MS-based proteomic analysis revealed that the protein repertoire of M. extorquens AM1 grown on acetate is similar to that of cells grown on methanol and includes enzymes of the ethylmalonyl-CoA (EMC) pathway that were recently shown to operate during growth on methanol. Dynamic 13C labeling experiments indicate the presence of distinct entry points for acetate: the EMC pathway and the TCA cycle. 13C steady-state metabolic flux analysis showed that oxidation of acetyl-CoA occurs predominantly via the TCA cycle and that assimilation occurs via the EMC pathway. Furthermore, acetyl-CoA condenses with the EMC pathway product glyoxylate, resulting in malate formation. The latter, also formed by the TCA cycle, is converted to phosphoglycerate by a reaction sequence that is reversed with respect to the serine cycle. Thus, the results obtained in this study reveal the utilization of common pathways during the growth of M. extorquens AM1 on C1 and C2 compounds, but with a major redirection of flux within the central metabolism. Furthermore, our results indicate that the metabolic flux distribution is highly complex in this model methylotroph during growth on acetate and is fundamentally different from organisms using the glyoxylate cycle.  相似文献   

20.
Methylobacterium extorquens AM1 is a facultative methylotrophic bacterium that is capable of growing in the presence of methanol as the sole carbon and energy source, but is also able to grow on a limited number of C(2), C(3), and C(4) compounds, for example succinate. This study provides a proteomic view of the cellular adaptation of M. extorquens AM1 to growth on methanol and succinate, respectively. Cytosolic proteins were separated by two-dimensional gel electrophoresis employing overlapping pH ranges and visualized by silver nitrate or fluorescence staining. A proteomic reference map containing 229 different proteins identified by peptide mass fingerprinting of tryptic fragments was established. Comparative proteome profiling of methanol- and succinate-grown cells led to the identification of 68 proteins that are induced under methylotrophic growth conditions in comparison to growth on succinate. This group includes most proteins known to be directly involved in methanol oxidation to CO(2) and in assimilation of one carbon units by the serine cycle as well as 18 proteins without any assigned function and two proteins with a predicted regulatory function. Furthermore, the proteome analysis revealed putative isoenzymes for formaldehyde-activating enzyme Fae, malyl-CoA lyase, malate-dehydrogenase, and fumarase, that need to be characterized functionally in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号