首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Whether dimerization is a general regulatory mechanism of receptor protein-tyrosine phosphatases (RPTPs) is a subject of debate. Biochemical evidence demonstrates that RPTPalpha and cluster of differentiation (CD)45 dimerize. Their catalytic activity is regulated by dimerization and structural evidence from RPTPalpha supports dimerization-induced inhibition of catalytic activity. The crystal structures of CD45 and leukocyte common antigen related (LAR) indicate that dimerization would result in a steric clash. Here, we investigate dimerization of four RPTPs. We demonstrate that LAR and RPTPmu dimerized constitutively, which is likely to be due to their ectodomains. To investigate the role of the cytoplasmic domain in dimerization we generated RPTPalpha ectodomain (EDalpha)/RPTP chimeras and found that -- similarly to native RPTPalpha -- oxidation stabilized their dimerization. Limited tryptic proteolysis demonstrated that oxidation induced conformational changes in the cytoplasmic domains of these RPTPs, indicating that the cytoplasmic domains are not rigid structures, but rather that there is flexibility. Moreover, oxidation induced changes in the rotational coupling of dimers of full length EDalpha/RPTP chimeras in living cells, which were largely dependent on the catalytic cysteine in the membrane-distal protein-tyrosine phosphatase domain of RPTPalpha and LAR. Our results provide new evidence for redox regulation of dimerized RPTPs.  相似文献   

2.
We reported previously that the N-terminal D1 catalytic domain of receptor protein-tyrosine phosphatase alpha (RPTPalpha) forms a symmetrical, inhibited dimer in a crystal structure, in which a helix-turn-helix wedge element from one monomer is inserted into the catalytic cleft of the other monomer. Previous functional studies also suggested that dimerization inhibits the biological activity of a CD45 chimeric RPTP and the catalytic activity of an isolated RPTPsigma D1 catalytic domain. Most recently, we have also shown that enforced dimerization inhibits the biological activity of full-length RPTPalpha in a wedge-dependent manner. The physiological significance of such inhibition is unknown, due to a lack of understanding of how RPTPalpha dimerization is regulated in vivo. In this study, we show that transiently expressed cell surface RPTPalpha exists predominantly as homodimers, suggesting that dimerization-mediated inhibition of RPTPalpha biological activity is likely to be physiologically relevant. Consistent with our published and unpublished crystallographic data, we show that mutations in the wedge region of D1 catalytic domain and deletion of the entire D2 catalytic domain independently reduced but did not abolish RPTPalpha homodimerization, suggesting that both domains are critically involved but that neither is essential for homodimerization. Finally, we also provide evidence that both the RPTPalpha extracellular domain and the transmembrane domain were independently able to homodimerize. These results lead us to propose a zipper model in which inactive RPTPalpha dimers are stabilized by multiple, relatively weak dimerization interfaces. Dimerization in this manner would provide a potential mechanism for negative regulation of RPTPalpha. Such RPTPalpha dimers could be activated by extracellular ligands or intracellular binding proteins that induce monomerization or by intracellular signaling events that induce an open conformation of the dimer.  相似文献   

3.
Toll-like receptor 4 (TLR4) is involved in activation of the innate immune response in a large number of different diseases. Despite numerous studies, the role of separate domains of TLR4 in the regulation of receptor activation is poorly understood. Replacement of the TLR4 ectodomain with LPS-binding proteins MD-2 or CD14 resulted in a robust ligand-independent constitutive activation comparable with the maximal stimulation of the receptor with LPS. The same effect was achieved by the replacement of the ectodomain with a monomeric fluorescent protein or a 24-kDa gyrase B fragment. This demonstrates an intrinsic dimerization propensity of the transmembrane and cytoplasmic domains of TLR4 and reveals a previously unknown function of the ectodomain in inhibiting spontaneous receptor dimerization. Constitutive activation was abolished by the replacement of the ectodomain by a bulkier protein ovalbumin. N-terminal deletion variants of TLR4 revealed that the smallest segment of the ectodomain that already prevents constitutive activity comprises only 90 residues (542 to 631) of the total 608 residues. We conclude that TLR4 represents a receptor with a low threshold of activation that can be rapidly activated by the release of inhibition exerted by its ectodomain. This is important for the sensitivity of TLR4 to activation by different agonists. The TLR4 ectodomain has multiple roles in enabling ligand regulated activation, providing proper localization while serving as an inhibitor to prevent spontaneous, ligand-independent dimerization.  相似文献   

4.
Receptor protein-tyrosine phosphatases (RPTPs) are single membrane spanning proteins belonging to the family of PTPs that, together with the antagonistically acting protein-tyrosine kinases (PTKs), regulate the protein phosphotyrosine levels in cells. Protein-tyrosine phosphorylation is an important post-translational modification that has a major role in cell signaling by affecting protein-protein interactions and enzymatic activities. Increasing evidence indicates that RPTPs, like RPTKs, are regulated by dimerization. For RPTPalpha, we have shown that rotational coupling of the constitutive dimers in the cell membrane determines enzyme activity. Furthermore, oxidative stress, identified as an important second messenger during the past decade, is a regulator of rotational coupling of RPTPalpha dimers. In this review, we discuss the biochemical and cell biological techniques that we use to study the regulation of RPTPs by dimerization. These techniques include (co-) immunoprecipitation, RPTP activity assays, chemical and genetic cross-linking, detection of cell surface proteins by biotinylation, and analysis of RPTPalpha dimers, using conformation-sensitive antibody binding.  相似文献   

5.
Receptor protein-tyrosine phosphatase alpha, RPTPalpha, is a typical transmembrane protein-tyrosine phosphatase (PTP) with two cytoplasmic catalytic domains. RPTPalpha became strongly phosphorylated on tyrosine upon treatment of cells with the PTP inhibitor pervanadate. Surprisingly, mutation of the catalytic site Cys in the membrane distal PTP domain (D2), but not of the membrane proximal PTP domain (D1) that harbors the majority of the PTP activity, almost completely abolished pervanadate-induced tyrosine phosphorylation. Pervanadate-induced RPTPalpha tyrosine phosphorylation was not restricted to Tyr789, a known phosphorylation site. Cotransfection of wild-type RPTPalpha did not potentiate tyrosine phosphorylation of inactive RPTPalpha-C433SC723S, suggesting that RPTPalpha-mediated activation of kinase(s) does not underlie the observed effects. Mapping experiments indicated that pervanadate-induced tyrosine phosphorylation sites localized predominantly, but not exclusively, to the C-terminus. Our results demonstrate that RPTPalpha-D2 played a role in pervanadate-induced tyrosine phosphorylation of RPTPalpha, which may suggest that RPTPalpha-D2 is involved in protein-protein interactions.  相似文献   

6.
The ErbB/HER receptor protein-tyrosine kinases and cancer   总被引:20,自引:0,他引:20  
The ErbB/HER protein-tyrosine kinases, which include the epidermal growth factor receptor, consist of a growth-factor-binding ectodomain, a single transmembrane segment, an intracellular protein-tyrosine kinase catalytic domain, and a tyrosine-containing cytoplasmic tail. The genes for the four members of this family, ErbB1-ErbB4, are found on different human chromosomes. Null mutations of any of the ErbB family members result in embryonic lethality. ErbB1 and ErbB2 are overexpressed in a wide variety of tumors including breast, colorectal, ovarian, and non-small cell lung cancers. The structures of the ectodomains of the ErbB receptors in their active and inactive conformation have shed light on the mechanism of receptor activation. The extracellular component of the ErbB proteins consists of domains I-IV. The activating growth factor, which binds to domains I and III, selects and stabilizes a conformation that allows a dimerization arm to extend from domain II to interact with an ErbB dimer partner. As a result of dimerization, protein kinase activation, trans-autophosphorylation, and initiation of signaling occur. The conversion of the inactive to active receptor involves a major rotation of the ectodomain. The ErbB receptors are targets for anticancer drugs. Two strategies for blocking the action of these proteins include antibodies directed against the ectodomain and drugs that inhibit protein-tyrosine kinase activity. A reversible ATP competitive inhibitor of ErbB1 (ZD1839, or Iressa) and an ErbB1 ectodomain directed antibody (IMC-C225, or Erbitux) have been approved for the treatment of non-small cell lung cancer and colorectal cancer, respectively. An ErbB2/HER2 ectodomain directed antibody (trastuzumab, or Herceptin) has also been approved for the treatment of breast cancer. Current research promises to produce additional agents based upon these approaches.  相似文献   

7.
Receptor protein-tyrosine phosphatase (RPTP) alpha belongs to the large family of receptor protein-tyrosine phosphatases containing two tandem phosphatase domains. Most of the catalytic activity is retained in the first, membrane-proximal domain (RPTPalpha-D1), and little is known about the function of the second, membrane-distal domain (RPTPalpha-D2). We investigated whether proteins bound to RPTPalpha using the two-hybrid system and found that the second domain of RPTPsigma interacted with the juxtamembrane domain of RPTPalpha. We confirmed this interaction by co-immunoprecipitation experiments. Furthermore, RPTPalpha not only interacted with RPTPsigma-D2 but also with RPTPalpha-D2, LAR-D2, RPTPdelta-D2, and RPTPmu-D2, members of various RPTP subfamilies, although with different affinities. In the yeast two-hybrid system and in glutathione S-transferase pull-down assays, we show that the RPTP-D2s interacted directly with the wedge structure of RPTPalpha-D1 that has been demonstrated to be involved in inactivation of the RPTPalpha-D1/RPTPalpha-D1 homodimer. The interaction was specific because the equivalent wedge structure in LAR was unable to interact with RPTPalpha-D2 or LAR-D2. In vivo, we show that other interaction sites exist as well, including the C terminus of RPTPalpha-D2. The observation that RPTPalpha, but not LAR, bound to multiple RPTP-D2s with varying affinities suggests a specific mechanism of cross-talk between RPTPs that may regulate their biological function.  相似文献   

8.
We have employed a substrate trapping strategy to identify physiological substrates of the receptor protein-tyrosine phosphatase alpha (RPTPalpha). Here we report that a substrate-trapping mutant of the RPTPalpha membrane proximal catalytic domain (D1), RPTPalpha-D1-C433S, specifically bound to tyrosine-phosphorylated proteins from pervanadate-treated cells. The membrane distal catalytic domain of RPTPalpha (D2) and mutants thereof did not bind to tyrosine-phosphorylated proteins. The pattern of tyrosine-phosphorylated proteins that bound to RPTPalpha-D1-C433S varied between cell lines, but a protein of approximately 130 kDa was pulled down from every cell line. This protein was identified as p130(cas). Tyrosine-phosphorylated p130(cas) from fibronectin-stimulated NIH3T3 cells bound to RPTPalpha-D1-C433S as well, suggesting that p130(cas) is a physiological substrate of RPTPalpha. RPTPalpha dephosphorylated p130(cas) in vitro, and RPTPalpha co-localized with a subpopulation of p130(cas) to the plasma membrane. Co-transfection experiments with activated SrcY529F, p130(cas), and RPTPalpha or inactive, mutant RPTPalpha indicated that RPTPalpha dephosphorylated p130(cas) in vivo. Tyrosine-phosphorylated epidermal growth factor receptor was not dephosphorylated by RPTPalpha under these conditions, suggesting that p130(cas) is a specific substrate of RPTPalpha in living cells. In conclusion, our results provide evidence that p130(cas) is a physiological substrate of RPTPalpha in vivo.  相似文献   

9.
The presence of two protein-tyrosine phosphatase (PTP) domains is a striking feature in most transmembrane receptor PTPs (RPTPs). The function of the generally inactive membrane-distal PTP domain (RPTP-D2) is unknown. Here we report that an intramolecular interaction between the spacer region (Sp) and the C-terminus in RPTPalpha prohibited intermolecular interactions. Interestingly, stress factors such as H(2)O(2), UV and heat shock induced reversible, free radical-dependent, intermolecular interactions between RPTPalpha and RPTPalpha-SpD2, suggesting an inducible switch in conformation and binding. The catalytic site cysteine of RPTPalpha-SpD2, Cys723, was required for the H(2)O(2) effect on RPTPalpha. H(2)O(2) induced a rapid, reversible, Cys723-dependent conformational change in vivo, as detected by fluorescence resonance energy transfer, with cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) flanking RPTPalpha-SpD2 in a single chimeric protein. Importantly, H(2)O(2) treatment stabilized RPTPalpha dimers, resulting in inactivation. We propose a model in which oxidative stress induces a conformational change in RPTPalpha-D2, leading to stabilization of RPTPalpha dimers, and thus to inhibition of RPTPalpha activity.  相似文献   

10.
We study a mechanism by which dimerization of the EGF receptor (EGFR) cytoplasmic domain is transmitted to the ectodomain. Therapeutic and other small molecule antagonists to the kinase domain that stabilize its active conformation, but not those that stabilize an inactive conformation, stabilize ectodomain dimerization. Inhibitor-induced dimerization requires an asymmetric kinase domain interface associated with activation. EGF and kinase inhibitors stimulate formation of identical dimer interfaces in the EGFR transmembrane domain, as shown by disulfide cross-linking. Disulfide cross-linking at an interface in domain IV in the ectodomain was also stimulated similarly; however, EGF but not inhibitors stimulated cross-linking in domain II. Inhibitors similarly induced noncovalent dimerization in nearly full-length, detergent-solubilized EGFR as shown by gel filtration. EGFR ectodomain deletion resulted in spontaneous dimerization, whereas deletion of exons 2–7, in which extracellular domains III and IV are retained, did not. In EM, kinase inhibitor-induced dimers lacked any well defined orientation between the ectodomain monomers. Fab of the therapeutic antibody cetuximab to domain III confirmed a variable position and orientation of this domain in inhibitor-induced dimers but suggested that the C termini of domain IV of the two monomers were in close proximity, consistent with dimerization in the transmembrane domains. The results provide insights into the relative energetics of intracellular and extracellular dimerization in EGFR and have significance for physiologic dimerization through the asymmetric kinase interface, bidirectional signal transmission in EGFR, and mechanism of action of therapeutics.  相似文献   

11.
J den Hertog  T Hunter 《The EMBO journal》1996,15(12):3016-3027
Receptor protein-tyrosine phosphatase alpha (RPTPalpha), a transmembrane member of the extensive family of protein-tyrosine phosphatases (PTPs), is constitutively phosphorylated on Tyr789, a consensus binding site for the SH2 domain of the SH3-SH2-SH3 adaptor protein GRB2. We have previously shown that GRB2 binds to P.Tyr789 in vivo and in vitro via its SH2 domain. Here, we report that not only the GRB2 SH2 domain, but also the C-terminal SH3 domain is involved in binding to RPTPalpha in vitro and in vivo. Although the N-terminal SH3 domain of GRB2 is essential for binding to the Ras guanine nucleotide exchange factor Son of Sevenless (Sos), an RPTPalpha-GRB2-Sos complex could not be detected. The inclusion of peptides encompassing an hSos1 proline-rich motif in cell lysates resulted in enhanced binding of RPTPalpha to GRB2 in vitro, suggesting that steric hindrance prohibits formation of the RPTPalpha-GRB2-Sos complex. In vitro binding experiments indicated that the binding of GRB2 to Sos/dynamin and RPTPalpha was mutually exclusive. Analysis of in vitro binding kinetics coupled with results from transient co-transfections demonstrated that RPTPalpha is tightly bound to GRB2. The site of interaction of the C-terminal SH3 domain of GRB2 with RPTPalpha was mapped using deletion mutants to an 18-residue region in the N-terminal PTP domain. Arg469, within this region, was identified as one of the residues that is involved in the interaction with the C-terminal SH3 domain of GRB2. RPTPalpha residues 469-486 are localized close to the catalytic site cleft in the structure of the N-terminal PTP-domain, suggesting that interaction with the C-terminal SH3 domain may block access to the catalytic site, thus inhibiting RPTPalpha activity.  相似文献   

12.
Receptor protein-tyrosine phosphatase alpha (RPTPalpha) belongs to the subfamily of receptor-like protein-tyrosine phosphatases that are characterized by two catalytic domains of which only the membrane-proximal one (D1) exhibits appreciable catalytic activity. The C-terminal catalytic domain (D2) regulates RPTPalpha catalytic activity by controlling rotational coupling within RPTPalpha dimers. RPTPalpha-D2 changes conformation and thereby rotational coupling within RPTPalpha dimers in response to changes in the cellular redox state. Here we report a decrease in motility of RPTPalpha from cells treated with H2O2 on non-reducing SDS-polyacrylamide gels to a position that corresponds to RPTPalpha dimers, indicating intermolecular disulfide bond formation. Using mutants of all individual cysteines in RPTPalpha and constructs encoding the individual protein-tyrosine phosphatase domains, we located the intermolecular disulfide bond to the catalytic Cys-723 in D2. Disulfide bond formation and dimer stabilization showed similar levels of concentration and time dependence. However, treatment of lysates with dithiothreitol abolished intermolecular disulfide bonds but not stable dimer formation. Intermolecular disulfide bond formation and rotational coupling were also found using a chimera of the extracellular domain of RPTPalpha fused to the transmembrane and intracellular domain of the leukocyte common antigen-related protein (LAR). These results suggest that H2O2 treatment leads to oxidation of the catalytic Cys in D2, which then rapidly forms a disulfide bond with the D2 catalytic Cys of the dyad-related monomer, rendering an inactive RPTP dimer. Recovery from oxidative stress first leads to the reduction of the disulfide bond followed by a slower refolding of the protein to the active conformation.  相似文献   

13.
Few tyrosine phosphatases support, rather than inhibit, survival of tumor cells. We present genetic evidence that receptor-type protein-tyrosine phosphatase (RPTP)-epsilon performs such a function, as cells from mammary epithelial tumors induced by activated Neu in mice genetically lacking RPTPepsilon appeared morphologically less transformed and exhibited reduced proliferation. We show that at the molecular level, RPTPepsilon activates Src, a known collaborator of Neu in mammary tumorigenesis. Lack of RPTPepsilon reduced Src activity and altered Src phosphorylation in tumor cells; RPTPepsilon dephosphorylated and activated Src; and Src bound a substrate-trapping mutant of RPTPepsilon. The altered morphology of tumor cells lacking RPTPepsilon was corrected by exogenous Src and exogenous RPTPepsilon or RPTPalpha; exogenous activated Src corrected also the growth rate phenotype. Together, these results suggest that the altered morphology of RPTPepsilon-deficient tumor cells is caused by reduced Src activity, caused, in turn, by lack of RPTPepsilon. Unexpectedly, the phenotype of RPTPepsilon-deficient tumor cells occurs despite expression of the related RPTPalpha, indicating that endogenous RPTPalpha does not compensate for the absence of RPTPepsilon in this case. We conclude that RPTPepsilon is a physiological activator of Src in Neu-induced mammary tumors and suggest that pharmacological inhibition of phosphatases that activate Src may be useful to augment direct pharmacological inhibition of Src.  相似文献   

14.
The presence of two protein-tyrosine phosphatase (PTP) domains is a striking feature in most transmembrane receptor PTPs (RPTPs). The generally inactive membrane-distal PTP domains (RPTP-D2s) bind and are proposed to regulate the membrane-proximal PTP domains (RPTP-D1s). We set out to characterize the interactions between RPTP-D1s and RPTP-D2s in vivo by co-immunoprecipitation of hemagglutinin-tagged fusion proteins encoding the transmembrane domain and RPTP-D1 and myc-tagged RPTP-D2. Seven RPTPs from four different subfamilies were used: RPTPalpha, RPTPepsilon, LAR, RPTPvarsigma, RPTPdelta, CD45, and RPTP(mu). We found that RPTP-D2s bound to RPTPs with different affinities. The presence of intrinsic RPTP-D2 altered the binding specificity toward other RPTP-D2s positively or negatively, depending on the identity of the RPTPs. Furthermore, the C terminus of RPTP-D2s and the "wedge" in RPTP-D1s played a central role in binding specificity. Finally, full-length RPTPalpha and LAR heterodimerized in an oxidative stress-dependent manner. Like RPTPalpha-D2, the LAR-D2 conformation was affected by oxidative stress, suggesting a common regulatory mechanism for RPTP complex formation. Taken together, interactions between RPTP-D1s and RPTP-D2s are a common but specific mechanism that is likely to be regulated. The RPTP-D2s and the wedge structures are crucial determinants of binding specificity, thus regulating cross-talk between RPTPs.  相似文献   

15.
It is widely accepted that receptor protein-tyrosine kinases (RTKs) are activated upon dimerization by binding to their extracellular ligands. However, EGF receptor (EGFR) dimerization per se does not require ligand binding. Instead, its cytoplasmic kinase domains have to form characteristic head-to-tail asymmetric dimers to become active, where one 'activator' domain activates the other 'receiver' domain. The non-catalytic, cytoplasmic regions of RTKs, namely the juxtamembrane and carboxy terminal portions, also regulate kinase activity. For instance, the juxtamembrane region of the RTK MuSK inhibits the kinase domain probably together with a cellular factor(s). These findings suggest that RTKs could be activated by cytoplasmic proteins. Indeed, Dok-7 and cytohesin have recently been identified as such activators of MuSK and EGFR, respectively. Given that failure of Dok-7 signaling causes myasthenia, and inhibition of cytohesin signaling reduces the proliferation of EGFR-dependent cancer cells, cytoplasmic activators of RTKs may provide new therapeutic targets.  相似文献   

16.
Receptor tyrosine kinases of the discoidin domain family, DDR1 and DDR2, are activated by different types of collagen and play important roles in cell adhesion, migration, proliferation, and matrix remodeling. In a previous study, we found that collagen binding by the discoidin domain receptors (DDRs) requires dimerization of their extracellular domains (Leitinger, B. (2003) J. Biol. Chem. 278, 16761-16769), indicating that the paradigm of ligand-induced receptor dimerization may not apply to the DDRs. Using chemical cross-linking and co-immunoprecipitation of differently tagged DDRs, we now show that the DDRs form ligand-independent dimers in the biosynthetic pathway and on the cell surface. We further show that both the extracellular and the cytoplasmic domains are individually dispensable for DDR1 dimerization. The DDR1 transmembrane domain contains two putative dimerization motifs, a leucine zipper and a GXXXG motif. Mutations disrupting the leucine zipper strongly impaired collagen-induced transmembrane signaling, although the mutant DDR1 proteins were still able to dimerize, whereas mutation of the GXXXG motif had no effect. A bacterial reporter assay (named TOXCAT) showed that the DDR1 transmembrane domain has a strong potential for self-association in a biological membrane and that this interaction occurs via the leucine zipper and not the GXXXG motif. Our results demonstrate that the DDRs exist as stable dimers in the absence of ligand and that receptor activation requires specific interactions made by the transmembrane leucine zipper.  相似文献   

17.
We have previously reported an important role of increased tyrosine phosphorylation activity by Src in the modulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Here we provide evidence showing a novel mechanism of decreased tyrosine phosphorylation on HCN channel properties. We found that the receptor-like protein-tyrosine phosphatase-alpha (RPTPalpha) significantly inhibited or eliminated HCN2 channel expression in HEK293 cells. Biochemical evidence showed that the surface expression of HCN2 was remarkably reduced by RPTPalpha, which was in parallel to the decreased tyrosine phosphorylation of the channel protein. Confocal imaging confirmed that the membrane surface distribution of the HCN2 channel was inhibited by RPTPalpha. Moreover, we detected the presence of RPTPalpha proteins in cardiac ventricles with expression levels changed during development. Inhibition of tyrosine phosphatase activity by phenylarsine oxide or sodium orthovanadate shifted ventricular hyperpolarization-activated current (I(f), generated by HCN channels) activation from nonphysiological voltages into physiological voltages associated with accelerated activation kinetics. In conclusion, we showed a critical role RPTPalpha plays in HCN channel function via tyrosine dephosphorylation. These findings are also important to neurons where HCN and RPTPalpha are richly expressed.  相似文献   

18.
Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.  相似文献   

19.
The MUC1 protein is aberrantly expressed on an estimated 75% of all human solid tumor cancers. We recently reported that a transmembrane cleavage product, MUC1*, is the predominant form of the protein on cancer cells [1]. Further, our evidence indicated that MUC1* functions as a growth factor receptor on tumor cells, while the full-length protein appeared to have no growth promoting activity. Here, we report that MUC1* acts as a growth factor receptor on undifferentiated human embryonic stem cells (hESCs). Cleavage of the full-length ectodomain to form MUC1*, a membrane receptor, appears to make binding to its ligand, NM23, possible. Unexpectedly, we found that newly differentiated cells no longer express the cleaved form, MUC1*, or its ligand, NM23. Newly differentiated stem cells exclusively present full-length MUC1. Antibody-induced dimerization of the MUC1* receptor on hESCs stimulated cell growth to a far greater degree than currently used methods that require the addition of exogenous basic fibroblast growth factor (bFGF) as well as factors secreted by fibroblast "feeder cells". Further, MUC1* mediated growth was shown to be independent of growth stimulated by bFGF or the milieu of factors secreted by feeder cells. Stimulating the MUC1* receptor with either the cognate antibody or its ligand NM23 enabled hESC growth in a feeder cell-free system and produced pluripotent colonies that resisted spontaneous differentiation. These findings suggest that this primal growth mechanism could be utilized to propagate large numbers of pluripotent stem cells for therapeutic interventions.  相似文献   

20.
Receptor-protein tyrosine phosphatases (RPTPs), like receptor tyrosine kinases, regulate neuronal differentiation. While receptor tyrosine kinases are dimerized and activated by extracellular ligands, the extent to which RPTPs dimerize, and the effects of dimerization on phosphatase activity, are poorly understood. We have examined a neuronal type III RPTP, PTPRO; we find that PTPRO can form dimers in living cells, and that disulfide linkages in PTPROs intracellular domain likely regulate dimerization. Dimerization of PTPROs transmembrane and intracellular domains, achieved by ligand binding to a chimeric fusion protein, decreases activity toward artificial peptides and toward a putative substrate, tropomyosin-related kinase C (TrkC). Dephosphorylation of TrkC by PTPRO may be physiologically relevant, as it is efficient, and TrkC and PTPRO can be co-precipitated from transfected cells. Inhibition of PTPROs phosphatase activity by dimerization is interesting, as dimerization of a related RPTP, CD148/PTPRJ, increases activity. Thus, our results suggest a complex relationship between dimerization and activity in type III RPTPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号