首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple probes like absorbance, circular dichroism, fluorescence and biochemical changes have been exploited to understand the role of PLP (pyridoxal 5′ phosphate) in guanidine hydrochloride (GdnHCl) mediated unfolding and refolding processes of cystathionine gamma synthase from Mycobacterium tuberculosis (MtCGS). Unfolding by GdnHCl inactivates the enzyme due to loss of ketoenamine tautomer. Though PLP induces difference in secondary structure content, it is unable to provide stabilizing effect during the overall secondary structure unfolding process. But it induces tertiary structure stability of the protein thereby counteracting the deleterious effect of denaturant. In silico modelling and cofactor docking provide insights into molecular structure of the enzyme.  相似文献   

2.
The secondary and tertiary structures of bacteriophage cro protein were studied by circular dichroism. The pH dependence of this structure was investigated: cro protein is stable over pH 4.5-10.5. At these pH-values cro protein contains approximately 35% alpha-helix, approximately 20% antiparallel beta-structure and approximately 15% beta-turn, while the remaining part of the protein molecule is in the irregular state. The secondary and tertiary structures of the protein are modified abruptly at more acid and more alkaline pH-values. The curves characterizing the secondary and tertiary structures of the protein are symbatic. The effect of Gu-HCl on the secondary and tertiary structures of cro protein at 22 degrees C and pH 7.2 was studied also. The conformational transition occurs within 0.6-1.9 M Gu-HCl. The changes in the secondary and tertiary structures of the protein have a symbatic character. Thermal denaturation of cro protein was examined. A possible mechanism of the protein denaturation is discussed.  相似文献   

3.
The enzymes involved in the lysine biosynthetic pathway have long been considered to be attractive targets for novel antibiotics due to the absence of this pathway in humans. Recently, a novel pyridoxal 5'-phosphate (PLP) dependent enzyme called LL-diaminopimelate aminotransferase (LL-DAP-AT) was identified in the lysine biosynthetic pathway of plants and Chlamydiae. Understanding its function and substrate recognition mechanism would be an important initial step toward designing novel antibiotics targeting LL-DAP-AT. The crystal structures of LL-DAP-AT from Arabidopsis thaliana in complex with various substrates and analogues have been solved recently. These structures revealed how L-glutamate and LL-DAP are recognized by LL-DAP-AT without significant conformational changes in the enzyme's backbone structure. This review article summarizes the recent developments in the structural characterization and the inhibitor design of LL-DAP-AT from A. thaliana. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.  相似文献   

4.
A simple bio-conjugation procedure to surround a single horseradish peroxidase (HRP) enzyme molecule with dendritic polyester macromolecules (polyester-32-hydroxyl-1-carboxyl bis-MPA dendron, generation 5) was proposed. The characterization of resultant nanoparticles entitled HRP dendrozyme, was performed by transmission electron microscopy, dynamic light scattering, gel permeation chromatography and Fourier transform infrared spectroscopy. The results showed that HRP nanoparticles were spherical in shape and have an average size of 14 ± 2 nm in diameter. Furthermore, bio-conformational characterization of HRP dendrozyme was performed by means of circular dichroism and fluorescence spectroscopy to evaluate the secondary and tertiary structure changes after enzyme modification. These investigations revealed that protein conformation had small changes (in secondary and tertiary structures) after bio-conjugation. We also reported here that dendritic modification did not significantly affect the kinetic parameters of free HRP. The stabilization of HRP with dendron macromolecules as single enzyme nanoparticles resulted in improvement of half-life over 70 days storage at 4 °C as well as its tolerance under different elevated temperatures up to 80 °C and in the presence of organic solvents for 15 min. These significant results promise extensive applications of HRP particularly in harsh environmental conditions.  相似文献   

5.
The secondary and tertiary structure of T4 bacteriophage dihydrofolate reductase is investigated by vacuum ultraviolet circular dichroism (CD) spectroscopy and probability analysis of the primary amino acid sequence. The far ultraviolet CD spectrum of the enzyme in the range of 260-178 nm is analyzed by the generalized inverse and variable selection methods developed by our laboratory. Variable selection yields an average content of 26% alpha-helix, 21% antiparallel beta-sheet, 10% parallel beta-sheet, 20% beta-turns, and 32% "other" structures within the T4 protein. The characteristic peaks of the CD spectrum indicate that the enzyme has a lot of antiparallel beta-sheet, which is typical of the alpha + beta tertiary class of globular proteins. The secondary structure of the protein is also analyzed by using four statistical methods on the amino acid sequence. Although the secondary structures predicted by each individual statistical method vary to a considerable extent, the fractions of each structure jointly predicted by a majority of the methods are in excellent agreement with our CD analysis. The alternating arrangement for some segments of alpha-helix and beta-sheet predicted from primary structure to be within the enzyme is characteristic of proteins containing parallel beta-sheet. This supports our conclusion that the protein contains both parallel and antiparallel beta-sheet structures, but finding both types of beta-sheet also means that the protein may have the variation on alpha/beta tertiary structure recently found in EcoRI endonuclease and thymidylate synthase. These observations, in conjunction with other physical properties of the T4 reductase, suggest that the enzyme perhaps shares an evolution in common with the dihydrofolate reductases derived from type I R-plasmids rather than with the host-cell protein.  相似文献   

6.
A photoaffinity substrate analogue, 8-azido-ADP-[14C]glucose, reacts specifically and covalently with Escherichia coli ADP-glucose synthetase. The site(s) of reaction of 8-azido-ADP-[14C]glucose with the enzyme was identified by isolation of tryptic peptides containing the labeled analogue by use of high performance liquid chromatography technique and subsequent NH2-terminal sequence analysis of the purified radioactive peptides. One major binding region of the azido analogue is a peptide segment composed of residues 107-114 of the enzyme's polypeptide chain. Lys 108 and Arg 114 become trypsin-resistant sites when the enzyme is photoinactivated by 8-azido-ADP-[14C] glucose, suggesting that the analogue binds at or near the vicinity of these 2 basic amino acid residues. Conformational analysis of this peptide segment (residues 107-114) shows a strong probability of a reverse beta-turn secondary structure, suggesting that this peptide segment is on the enzyme surface. Two minor reaction regions of the enzyme with the analogue were also identified by chemical characterization. One region was composed of residues 162-207. Lys 194 was previously suggested as the activator-binding site by chemical modification studies with pyridoxal phosphate (Parsons, T. F., and Preiss, J. (1978) J. Biol. Chem. 253, 7638-7645). Another minor region where the analogue binds the tryptic peptide composed of residues 380-385 is near the COOH-terminal side of the enzyme. It is postulated that all these peptide segments are juxtaposed in tertiary structure.  相似文献   

7.
Threonine synthase (TS) is a fold-type II pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the ultimate step of threonine synthesis in plants and microorganisms. Unlike the enzyme from microorganisms, plant TS is activated by S-adenosylmethionine (AdoMet). The mechanism of activation has remained unknown up to now. We report here the crystallographic structures of Arabidopsis thaliana TS in complex with PLP (aTS) and with PLP and AdoMet (aTS-AdoMet), which show with atomic detail how AdoMet activates TS. The aTS structure reveals a PLP orientation never previously observed for a type II PLP-dependent enzyme and explains the low activity of plant TS in the absence of its allosteric activator. The aTS-AdoMet structure shows that activation of the enzyme upon AdoMet binding triggers a large reorganization of active site loops in one monomer of the structural dimer and allows the displacement of PLP to its active conformation. Comparison with other TS structures shows that activation of the second monomer may be triggered by substrate binding. This structure also discloses a novel fold for two AdoMet binding sites located at the dimer interface, each site containing two AdoMet effectors bound in tandem. Moreover, aTS-AdoMet is the first structure of an enzyme that uses AdoMet as an allosteric effector.  相似文献   

8.
UDP-galactose 4-epimerase from Escherichia coli is a homodimer of 39 kDa subunit with non-covalently bound NAD acting as cofactor. The enzyme can be reversibly reactivated after denaturation and dissociation using 8 M urea at pH 7.0. There is a strong affinity between the cofactor and the refolded molecule as no extraneous NAD is required for its reactivation. Results from equilibrium denaturation using parameters like catalytic activity, circular-dichroism, fluorescence emission (both intrinsic and with extraneous fluorophore 1-aniline 8-naphthalene sulphonic acid), 'reductive inhibition' (associated with orientation of NAD on the native enzyme surface), elution profile from size-exclusion HPLC and light scattering have been compiled here. These show that inactivation, integrity of secondary, tertiary and quaternary structures have different transition mid-points suggestive of non-cooperative transition. The unfolding process may be broadly resolved into three parts: an active dimeric holoenzyme with 50% of its original secondary structure at 2.5 M urea; an active monomeric holoenzyme at 3 M urea with only 40% of secondary structure and finally further denaturation by 6 M urea leads to an inactive equilibrium unfolded state with only 20% of residual secondary structure. Thermodynamical parameters associated with some transitions have been quantitated. The results have been discussed with the X-ray crystallographic structure of the enzyme.  相似文献   

9.
Conformational changes induced in pepsin and pepsinogen by iodination of tyrosine residues and the possible role of lysine residues on conformational stability of pepsinogen are investigated by circular dichroism (CD) studies in solution. At low degrees of iodination (6 I/molecule) the pepsin molecule denatured, with complete loss of β-structure at pH 5.5. Pepsinogen showed greater resistance to conformational change on iodination (10 I/molecule) and about 30% of its ordered structure is retained. In the aromatic region, the tyrosyl CD bands of iodinated pepsin decreased in intensity, indicating a change in the environment of tyrosine residues. A comparison with the CD spectra of expanded structures of pepsin in 6 m guanidine hydrochloride or alkaline solutions (pH 9.75) indicated retention of a significant amount of tertiary structure in iodinated pepsin. Changes in tertiary structures were marginal on iodination of pepsinogen. Less than 1% (residue moles) of poly-l-lysine, a known inhibitor, was found to destabilize the secondary and tertiary structure of pepsin at pH 6.75, although the lysine-rich 1–44 segment of pepsinogen tends to stabilize the conformation of the pepsin chain. This seems to suggest that the inhibitory effects of polylysine on pepsin occur by a mechanism different from that of the activity-limiting effect of the lysine-rich 1–44 segment of pepsinogen.  相似文献   

10.
Ahmad A  Akhtar MS  Bhakuni V 《Biochemistry》2001,40(7):1945-1955
Glucose oxidase (GOD) from Aspergillus niger is an acidic dimeric enzyme having a high degree of localization of negative charges on the enzyme surface and dimer interface. We have studied the effect of monovalent cations on the structure and stability of GOD using various optical spectroscopic techniques, limited proteolysis, size exclusion chromatography, differential scanning calorimetry, and enzymic activity measurements. The monovalent cations were found to influence the enzymic activity and tertiary structure of GOD, but no effect on the secondary structure of the enzyme was observed. The monovalent cation-stabilized GOD was found to have a more compact dimeric structure but lower enzymic activity than the native enzyme. The enzyme's K(m) for D-glucose was found to be slightly enhanced for the monovalent cation-stabilized enzyme (maximum enhancement of about 35% for LiCl) as compared to native GOD. Comparative denaturation studies on the native and monovalent cation-stabilized enzyme demonstrated a significant resistance of cation-stabilized GOD to urea (about 50% residual activity at 6.5 M urea) and thermal denaturation (Delta T(m) maximum of 10 degrees C compared to native enzyme). However, pH-induced denaturation showed a destabilization of monovalent cation-stabilized GOD as compared to the native enzyme. The effectiveness of monovalent cations in stabilizing GOD structure against urea and thermal denaturation was found to follow the Hofmeister series: K(+) > Na(+) > Li(+).  相似文献   

11.
We describe a model for the three-dimensional structure of E. coli serine hydroxymethyltransferase based on its sequence homology with other PLP enzymes of the alpha-family and whose tertiary structures are known. The model suggests that certain amino acid residues at the putative active site of the enzyme can adopt specific roles in the catalytic mechanism. These proposals were supported by analysis of the properties of a number of site-directed mutants. New active site features are also proposed for further experimental testing.  相似文献   

12.
Extraction of control human spleen glucocerebrosidase with sodium cholate and butan-l-ol reversibly inactivates the enzyme in terms of its ability to hydrolyse the water-soluble substrate 4-methylumbelliferyl beta-D-glucopyranoside (MUGlc). The acidic brain lipid galactocerebroside 3-sulphate (sulphatide) reconstitutes beta-glucosidase activity in a strongly concentration-dependent manner. In this study we show that sulphatide exhibits three critical micellar concentrations (CMCs): CMC1, 3.72 microM; CMC2, 22.6 microM; CMC3, 60.7 microM. We designate the aggregates formed at these CMCs as primary, secondary and tertiary micelles respectively. From the results of kinetic studies performed at various sulphatide concentrations (0.012-248 microM), we found that sulphatide monomers (less than 3 microM) decreased the Km (for MUGlc) of control glucocerebrosidase from 11 to 4.6 mM, and lowered the Vmax. 2-fold. However, secondary and tertiary micelles were required for expression of high control glucocerebrosidase activities. Glucocerebrosidase prepared from the spleen of a patient with non-neuronopathic type 1 Gaucher's disease exhibited a very low Km (2.8 mM) even in the absence of exogenous lipid, and sulphatide monomers had no effect on the mutant enzyme's Km or Vmax. However, secondary or tertiary micelles markedly increased the Vmax. of the type 1 glucocerebrosidase to 60% of the corresponding control enzyme value. In contrast, for the glucocerebrosidase of the neuronopathic type 2 case, although sulphatide decreased the Km from 9.2 to 1.7 mM, the Vmax. never reached more than 5% that of the control enzyme, even at high concentrations of sulphatide. In addition, we found that secondary and tertiary sulphatide micelles enhanced the rate of inactivation of all three glucocerebrosidase preparations by chymotrypsin. Collectively, these results indicate the presence of two sulphatide-binding sites on glucocerebrosidase: one that enhances substrate binding, and another that enhances catalysis.  相似文献   

13.
To study the influence of N-linked carbohydrate moiety on the catalytic and biochemical properties of glycosylated enzyme, a recombinant β-d-glucuronidase (PGUS-P) from Penicillium purpurogenum as a model glycoprotein, was deglycosylated with peptide-N-glycosidase F (PNGase-F) under native conditions. The enzymatic deglycosylation procedure resulted in the complete removal of carbohydrate moiety. Compared with the glycosylated PGUS-P, the deglycosylated PGUS-P exhibited 20-70% higher activity (p<0.05) within pH 6-9, but 15-45% lower activity (p<0.05) at 45-70°C. The apparent decrease in the thermal stability of the deglycosylated enzyme was reflected by a decrease in the denaturation temperature (T(d)) values determined by differential scanning calorimetry (DSC). The removal of N-linked glycans also reduced enzyme's sensitivity to certain metal ions. The deglycosylated PGUS-P displayed lower K(m) vaules, but higher k(cat)/K(m) ratios than the glycosylated isoform towards glycyrrhizin. The consequent conformational changes were also determined by circular dichroism (CD) and fluorescence spectroscopy which revealed no significant difference in the secondary but a slight dissimilarity between the tertiary structures of both isoforms of PGUS-P.  相似文献   

14.
Recombinant microbial transglutaminase has been expressed in Escherichia coli as insoluble inclusion bodies. After we searched for refolding conditions, refolding of the protein could be done by first dilution of the unfolded enzyme in a buffer at pH 4.0, and then by titration of the pH from 4.0 to 6.0. CD analysis showed that a burst of secondary structure formation occurred within the dead time of the experiment and accounted for 75% of the signal change in the far UV CD, with little tertiary structure being formed. This burst was followed by slow rearrangement of the secondary structure accompanied by formation of tertiary structure. The secondary and tertiary structures of the final sample at pH 4.0, corresponding to the folding intermediate, were different from these structures at pH 6.0. Once the native structure was obtained, acidification of the native protein to pH 4.0 did not lead to a structure like that of the folding intermediate. Sedimentation velocity analysis showed that the folding intermediate had an expanded structure and contained no other structure species including large aggregates.  相似文献   

15.
The activity of lipases from Rhizopus delemar, Rhizopus arrhizus, and Penicillium simplicissimum entrapped in microemulsions formulated by bis-(2-ethylhexyl)sulfo-succinate sodium salt (AOT) in isooctane has been studied in esterification reactions of various aliphatic alcohols with fatty acids. The effect of the nature of the fatty acids (chain length) and of the alcohols (primary, secondary, or tertiary; chain length; cyclic structures) on the lipase activities was investigated in relation to the reverse micellar structure. The lipases tested showed a selectivity regarding the structure of the substrates used when hosted in the AOT/isooctane microemulsion systems. Penicillium simplicissimum lipase showed higher reaction rates in the esterification of long chain alcohols as well as secondary alcohols. Primary alcohols had a low reaction rate and tertiary a very slow rate of esterification. Long chain fatty acids were better catalyzed as compared to the shorter ones. Rhizopus delemar and R. arrhizus lipases showed a preference for the esterification of short chain primary alcohols, while the secondary alcohols had a low rate of esterification and the tertiary ones could not be converted. The reaction of medium chain length fatty acids was also better catalyzed than in the case of the long ones. The observed lipase selectivity appeared to be related to the localization of the enzyme molecule within the micellar microstructure due to the hydrophobic/hydrophilic character of the protein. The reverse micellar structural characteristics, as well as the localization of the enzyme, were examined by fluorescence quenching measurements and spectroscopical studies. (c) 1993 John Wiley & Sons, Inc.  相似文献   

16.
The pyridoxal-5'-phosphate-binding domain (PLPbd) of bsSHMT (Bacillus subtilis serine hydroxymethyltransferase) was cloned and over-expressed in Escherichia coli. The recombinant protein was solublized, refolded and purified from inclusion bodies by rapid mixing followed by ion exchange chromatography. Structural and functional studies suggested the native form of the domain, which obtained as a monomer and had similar secondary and tertiary structural properties as when present in the bsSHMT. The domain also binds to the PLP however with slightly lesser affinity than the native enzyme. GdmCl (guanidium chloride)-induced equilibrium unfolding of the recombinant PLP-binding domain showed a single monophasic transition which corresponds with the second phase transition of the GdmCl-induced unfolding of bsSHMT. The results indicate that PLPbd of bsSHMT is an independent domain, which attains its tertiary structure before the dimerization of partially folded monomer and behaves as a single cooperative unfolding unit under equilibrium conditions.  相似文献   

17.
A W229H mutant of 4-alpha-glucanotransferase (4-alpha-GTase) from Pyrococcus furiosus was constructed and its catalytic properties were studied to investigate the role of W229 in the catalytic specificities of the enzyme. Various activities and kinetic parameters were determined for the wild-type and W229H mutant enzymes. The transglycosylation factor and transglycosylation activity of the mutant enzyme markedly decreased, but its hydrolysis activity was scarcely affected. It was discovered that the k(cat)/K(m) value of transglycosylation activity significantly decreased to about 15% of that of the wild type, while k(cat)/K(m) value of hydrolysis activity changed little for the mutant enzyme. The hydrophobicity of W229 was thought to be critical to the transglycosylation activity of the enzyme based on the enzyme's modeled tertiary structures.  相似文献   

18.
Conformational changes occurring in the catalytic cycle of the H+/K+-ATPase were monitored by Fourier transform infrared spectroscopy (FTIR). Caged compounds were used to release ATP, in the presence of Ca2+, to induce the transition between the E1 and E1-P conformation of the H+/K+-ATPase. In addition to bands associated with the photolysis of the caged compounds, some peaks of the difference infrared spectra were associated with changes in secondary structure and modifications of the ionization in the side chains of amino-acid residues (Glu or Asp). These changes were specific to the reaction between the ligand and the enzyme. We estimated that 39 amino acids changed their secondary structure during the reaction and four amino-acid residues were deprotonated. Similar spectral changes appeared when ADP was released from its precursor. The release of Pi from the same caged molecule did not induce similar changes. Changes in tertiary structure occurring during the binding of adenosine and phosphorylation of the enzyme were demonstrated by recording hydrogen/deuterium exchange kinetics by attenuated total reflectance FTIR spectroscopy (ATR-FTIR). At least 129 amide protons were involved in a tertiary structure change induced by ATP. This suggested that secondary structure change transduced a much larger tertiary structure modification.  相似文献   

19.
L-Dopa decarboxylase (DDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme that catalyses the decarboxylation of L-Dopa to dopamine. In this study we show the expression of DDC in human placental tissue and present data on the molecular cloning and in vitro expression of the active recombinant enzyme. Our analyses indicated the presence of both alternative DDC mRNA splice variants (neuronal and nonneuronal) in human placenta. Cloning of the coding region of the DDC cDNA into the pTrcHisA expression vector led to the production of the enzymatically active recombinant protein. The obtained recombinant enzyme specific activity values were in good agreement with the results obtained for the purified enzyme from human kidney. The availability of active recombinant human DDC could provide information leading to the better understanding of the enzyme's structure and substrate specificity, as well as its regulation and involvement in pathological conditions.  相似文献   

20.
At fertilization, sea urchin ovoperoxidase (OPO) is incorporated into a nascent fertilization envelope in association with proteoliaisin and plays an essential role in its hardening. By cDNA cloning based on the previously reported partial amino acid sequences of Hemicentrotus pulcherrimus OPO, the cDNA and deduced amino acid sequences of the enzyme precursor were determined. Its 814-residue sequence consists of 125-residue signal- plus pro-peptides and 689-residue mature enzyme and has 92.2 and 81.4% identity with the OPOs of Strongylocentrotus purpuratus and Lytechinus variegatus, respectively. Compared with human myeloperoxidase, it has 30.3% identity and 9.6% similarity and has an additional C-terminal sequence of about 100 residues, suggesting its possible role as the site for interaction with proteoliaisin, if not for the entire sequence. The linker peptide sequence between L- and H-chains (e.g., ASFVTG and FSFFTG) cleaved off upon activation in mammalian promyeloperoxidases is intrinsically lacking in OPO, uniquely rendering the single 70K polypeptide a basic unit. The positions of distal and proximal histidines, distal arginine, and six disulfide bridges are highly conserved among mammalian and sea urchin peroxidases. The secondary structure was predicted by EMBL-PHD on the Internet for the whole sequence of mature OPO, and both secondary and tertiary structures were predicted by Swiss-Model for the partial sequences residues 18-65 and 123-570 with canine myeloperoxidase as a template. The overall architecture of the OPO molecule is close to that of human myeloperoxidase but its secondary structure has some differences based on the sequence variation, as depicted by RasMol. Another software, Swiss-PdbViewer, produced a slightly but significantly different image of the OPO structure for the same predicted atomic coordinates. A discrepancy was also found between the secondary structures of human myeloperoxidase in the PDB file and in its Swiss-PdbViewer presentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号