首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large interindividual differences exist in resting sympathetic nerve activity (SNA) among normotensive humans with similar arterial pressure (AP). We recently showed inverse relationships of resting SNA with cardiac output (CO) and vascular adrenergic responsiveness that appear to balance the influence of differences in SNA on blood pressure. In the present study, we tested whether nitric oxide (NO)-mediated vasodilation has a role in this balance by evaluating hemodynamic responses to systemic NO synthase (NOS) inhibition in individuals with low and high resting muscle SNA (MSNA). We measured MSNA via peroneal microneurography, CO via acetylene uptake and AP directly, at baseline and during increasing systemic doses of the NOS inhibitor NG-monomethyl-L-arginine (L-NMMA). Baseline MSNA ranged from 9 to 38 bursts/min (13 to 68 bursts/100 heartbeats). L-NMMA caused dose-dependent increases in AP and total peripheral resistance and reflex decreases in CO and MSNA. Increases in AP with L-NMMA were greater in individuals with high baseline MSNA (PANOVA<0.05). For example, after 8.5 mg/kg of L-NMMA, in the low MSNA subgroup (n=6, 28+/-4 bursts/100 heartbeats), AP increased 9+/-1 mmHg, whereas in the high-MSNA subgroup (n=6, 58+/-3 bursts/100 heartbeats), AP increased 15+/-2 mmHg (P<0.01). The high-MSNA subgroup had lower baseline CO and smaller decreases in CO with L-NMMA, but changes in total peripheral resistance were not different between groups. We conclude that differences in CO among individuals with varying sympathetic traffic have important hemodynamic implications during disruption of NO-mediated vasodilation.  相似文献   

2.
We sought toexamine further the potential role of nitric oxide (NO) in the neurallymediated cutaneous vasodilation in nonacral skin during body heating inhumans. Six subjects were heated with a water-perfused suit whilecutaneous blood flow was measured by using laser-Doppler flowmetersplaced on both forearms. The NO synthase inhibitorNG-monomethyl-L-arginine(L-NMMA) was given selectivelyto one forearm via a brachial artery catheter after marked cutaneousvasodilation had been established. During body heating, oraltemperature increased by 1.1 ± 0.1°C while heart rate increasedby 30 ± 6 beats/min. Mean arterial pressure stayed constant at 84 ± 2 mmHg. In the experimental forearm, cutaneous vascularconductance (CVC; laser-Doppler) decreased to 86 ± 5% of the peakresponse to heating (P < 0.05 vs.pre-L-NMMA values) afterL-NMMA infusion. In somesubjects, L-NMMA caused CVC tofall by ~30%; in others, it had little impact on the cutaneouscirculation. CVC in the control arm showed a similar increase withheating, then stayed constant whileL-NMMA was given to thecontralateral side. These results demonstrate that NO contributesmodestly, but not consistently, to cutaneous vasodilation during bodyheating in humans. They also indicate that NO is not the only factorresponsible for the dilation.

  相似文献   

3.
Endotoxin shock is characterized by systemic hypotension, hyporeactiveness to vasoconstrictors and acute lung edema. A nitric oxide synthase (NOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA) has been shown to be effective in reversing acute lung injury. In the present study, we evaluated the effects of NOS blockade by different mechanisms on the endotoxin-induced changes. In anesthetized rats, lipopolysaccharide (LPS,Klebsiella pneumoniae) was administered intravenously in a dose of 10 mg/kg. LPS caused sustained systemic hypotension accompanied by an eightfold increase of exhaled NO during an observation period of 4 h. After the experiment, the lung weight was obtained and lung tissues were taken for the determination of mRNA expressions of inducible NOS (iNOS), interleukin-1 (IL-1) and tumor necrosis factor--(TNF-). Histological examination of the lungs was also performed. In the control group injected with saline solution, mRNA expressions of iNOS, IL-1 and TNF- were absent. Four hours after LPS, the mRNA expressions of iNOS and IL-1 were still significantly enhanced, but TNF- was not discernibly expressed. LPS also caused a twofold increase in lung weight. Pathological examination revealed endothelial damage and interstitial edema. Various NOS inhibitors were given 1 h after LPS administration. These agents included N-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg), a constitutive NOS and iNOS inhibitor; S,S-1,4-phenylene-bis-(1,2-ethanedinyl) bis-isothiourea dihydrobromide (1,4-PBIT, 10 mg/kg), a relatively specific iNOS inhibitor, and dexamethasone (3 mg/kg), an inhibitor of iNOS expression. These NOS inhibitors all effectively reversed the systemic hypotension, reduced the exhaled NO concentration and prevented acute lung injury. The LPS-induced mRNA expressions of iNOS and IL-1 were also significantly depressed by these NOS inhibitors. Our results suggest that NO production through the iNOS pathway is responsible for endotoxin-induced lung injury. Certain cytokines such as IL-1 are possibly involved. These changes are minimized by NOS inhibitors through different mechanisms.  相似文献   

4.
The present experiments were carried out to determine the role of nitric oxide in influencing systemic and renal hemodynamics in conscious young sheep. Parameters of cardiovascular function were measured before and for 4 h after intravenous injection of either L-NAME (NG-nitro-L-arginine methyl ester) or D-NAME (N(G)-nitro-D-arginine methyl ester) at doses of 10, 20, or 40 mg/kg in 13 conscious, chronically instrumented young sheep aged 43 +/-5 days. Blood pressure increased and heart rate decreased in a dose-dependent manner following administration of L-NAME. Renal vascular resistance was increased for 10 min following a dose of 10 mg/kg of L-NAME and for 120 min following a dose of 40 mg/kg of L-NAME. The renal vasodilatory response to close arterial injection of 1 microg/kg of acetylcholine was attenuated by L-NAME in a dose-dependent manner. These experiments provide the first information that under normal physiological conditions in conscious young animals, nitric oxide influences systemic and renal hemodynamics.  相似文献   

5.
The purpose of this study was to determine whether nitric oxide synthase (NOS) inhibition decreased basal and exercise-induced skeletal muscle mitochondrial biogenesis. Male Sprague-Dawley rats were assigned to one of four treatment groups: NOS inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME, ingested for 2 days in drinking water, 1 mg/ml) followed by acute exercise, no l-NAME ingestion and acute exercise, rest plus l-NAME, and rest without l-NAME. The exercised rats ran on a treadmill for 53 +/- 2 min and were then killed 4 h later. NOS inhibition significantly (P < 0.05; main effect) decreased basal peroxisome proliferator-activated receptor-gamma coactivator 1beta (PGC-1beta) mRNA levels and tended (P = 0.08) to decrease mtTFA mRNA levels in the soleus, but not the extensor digitorum longus (EDL) muscle. This coincided with significantly reduced basal levels of cytochrome c oxidase (COX) I and COX IV mRNA, COX IV protein and COX enzyme activity following NOS inhibition in the soleus, but not the EDL muscle. NOS inhibition had no effect on citrate synthase or beta-hydroxyacyl CoA dehydrogenase activity, or cytochrome c protein abundance in the soleus or EDL. NOS inhibition did not reduce the exercise-induced increase in peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) mRNA in the soleus or EDL. In conclusion, inhibition of NOS appears to decrease some aspects of the mitochondrial respiratory chain in the soleus under basal conditions, but does not attenuate exercise-induced mitochondrial biogenesis in the soleus or in the EDL.  相似文献   

6.
Hypercapnia elicits hypothermia in a numberof vertebrates, but the mechanisms involved are not well understood. Inthe present study, we assessed the participation of the nitric oxide(NO) pathway in hypercapnia-induced hypothermia and hyperventilation bymeans of NO synthase inhibition by usingN-nitro-L-arginine(L-NNA). Measurements ofventilation, body temperature, and oxygen consumption were performed inawake unrestrained rats before and afterL-NNA injection(intraperitoneally) and L-NNA injection followed by hypercapnia (5%CO2). Control animals received saline injections. L-NNA alteredthe breathing pattern during the control situation but not duringhypercapnia. A significant (P < 0.05) drop in body temperature was measured after bothL-NNA (40 mg/kg) and 5%inspired CO2, with a drop inoxygen consumption in the first situation but not in the second.Hypercapnia had no effect onL-NNA-induced hypothermia. Theventilatory response to hypercapnia was not changed byL-NNA, even thoughL-NNA caused a drop in bodytemperature. The present data indicate that the two responses elicitedby hypercapnia, i.e., hyperventilation and hypothermia, do not share NOas a common mediator. However, theL-arginine-NO pathwayparticipates, although in an unrelated way, in respiratory function andthermoregulation.

  相似文献   

7.
In glomerular immune injury, the inducible isoform of nitric oxide synthase (iNOS) becomes a major catalyst of NO production. Although iNOS-catalyzed NO production is sustained and can be cytotoxic, iNOS inhibition exacerbates the magnitude of proteinuria that accompanies immune injury. To investigate putative mechanisms of this effect, we assessed changes in glomerular permeability to albumin by using the following two approaches: (i) an in vivo rat model of glomerular immune injury induced by antibody against the glomerular basement membrane (GBM), in which urine albumin excretion was measured under conditions of iNOS inhibition, and (ii) an ex vivo model of isolated rat glomeruli, in which changes in glomerular capillary permeability to albumin were assessed under conditions of NOS inhibition. In rats with anti-GBM antibody-induced glomerular injury, there was an increase in urine albumin excretion. Treatment with two structurally dissimilar iNOS inhibitors at doses sufficient to decrease urine nitrate and/or nitrite exacerbated proteinuria. In these animals, urine excretion of the isoprostane 8-iso-PGF2alpha (marker of oxidative stress) was increased. In isolated glomeruli incubated with the NOS inhibitor L-NMMA, the permeability to albumin increased. This effect was reversed by the NO donor DETA NONOate and by the superoxide dismutase mimetic Tempol. We conclude that NOS-catalyzed NO production is an important mechanism in regulating glomerular permeability to protein. This mechanism involves control of the bioavailability of superoxide.  相似文献   

8.
Gozal, David, José E. Torres, Yair M. Gozal, andSanford M. Littwin. Effect of nitric oxide synthase inhibition on cardiorespiratory responses in the conscious rat. J. Appl. Physiol. 81(5): 2068-2077, 1996.Nitricoxide synthase (NOS) blockade was used to test the cardioventilatoryresponses to hypercapnia and hypoxia in freely behaving animals.Chronically instrumented adult Sprague-Dawley rats were studied beforeand after intravenous administration of either 100 mg/kg ofNG-nitro-L-arginine methylester (L-NAME), a nonspecificNOS blocker, or 10 mg/kg ofS-methyl-L-thiocitrulline(SMTC), a selective neural NOS inhibitor.L-NAME injection inducedsustained blood pressure (BP) elevation with transient tachycardia andincreased minute ventilation (E), whichreturned to baseline within minutes. SMTC elicited similar, althoughtransient, BP increases; however, heart rate andE decreased.L-NAME and SMTC did not modifyoverall steady-state hypercapnic responses. In controlconditions, hypoxia induced early Eincreases with further E enhancementsat 30 min. L-NAME increased theearly E response to 10%O2 but induced lateE reductions in hypoxia. SMTC did notchange early E responses but inducedmarked reductions in the later Ehypoxic responses. In control animals, hypoxia induced a significantheart rate increase. This increase was absent during the early response after SMTC and was followed in bothL-NAME- and SMTC-treated animals by significant heart rate reductions to values below room air. Similarly, the sustained BP response to hypoxia in control animals wasabsent after administration of NOS inhibitors. These findings suggestthat NOS activity exerts excitatory influences on respiration andcardiac chronotropy and sustained vasomotor tone during hypoxia. Wespeculate that NOS-mediated mechanisms may play an important role inhypoxia-induced ventilatory roll-off during wakefulness.

  相似文献   

9.
The loss of compensatory splanchnic vasoconstriction during hyperthermia was assessed in rats after administration of either 0, 10, 30, or 100mg/kg N(w)-nitro-L-arginine methyl ester,L-NAME. Rectal temperature (T(re)), heart rate (HR), mean arterial blood pressure (MAP), breathing frequency (BF), and renal, mesenteric and caudal blood flows (Q(R), Q(M) and Q(C)) were measured until irreversible cardiovascular collapse occurred. HR, MAP and BF increased as T(re) rose to 42 degrees C, then fell as circulatory collapse occurred. As dose increased T(re) at collapse decreased. Q(M) decreased until a T(re) of 41.5-42 degrees C and then increased. Q(R) and Q(C) were unaffected by either hyperthermia orL-NAME. Inhibition of NO synthase did not prevent the circulatory collapse of heatstroke; the higher doses ofL-NAME may have exacerbated the onset of circulatory failure.  相似文献   

10.
Nitric oxide (NO), produced by nitric oxide synthase (NOS) in brain tissue, is essential for a variety of kinds of learning in vertebrates. In invertebrates, there are clear examples of an association between NO signalling and olfaction, feeding behaviour and learning. The role of NO as a neurotransmitter in the manipulative behaviour of Sepia officinalis was tested. Manipulative behaviour requires extensive chemotactile sensory processing, fine motor control and probably motor learning processes. NADPH-diaphorase activity (a reliable histochemical marker for nitric oxide synthase) was found in sensory epithelia and in the axial nerve cord of the arms. NOS inhibitor injections (L-NAME) produced an increase in the latency of prey paralysis. By placing mechanical constraints on the base of the fifth periopods of the crab, we prevented the cuttlefish from injecting cephalotoxin and, thus, forced it to change injection sites. We showed that L-NAME pretreatment did not affect the flexibility of the manipulative behaviour. The implications of the involvement of NO in the acquisition of chemo-tactile information and in the programming of the motor skills of the manipulative behaviour is discussed.  相似文献   

11.
Ephedrine is a mixed adrenergic agonist, stimulating both alpha- and beta-adrenergic receptors. The effects of ephedrine use include increases in heart rate, cardiac output, peripheral resistance, and blood pressure, and its use is associated with serious cardiovascular events such as stroke, arrhythmias, and myocardial infarction. The vascular endothelium plays a fundamental role in the regulation of vascular tone by releasing vasoactive factors such as nitric oxide (NO). The loss of NO bioactivity, often referred to as endothelial dysfunction, is characterized by the loss of endothelium-dependent vasodilation and is thought to be a common pathway for cardiovascular events such as vasospasm, hypertension, and myocardial infarction. Since endothelial dysfunction is characterized by loss of NO activity, and since ephedrine and endothelial dysfunction may be associated with similar cardiovascular events, the current study was undertaken to determine the effect of inhibition of NO production on responses to ephedrine in the rat. A sodium nitroprusside (SNP) infusion procedure was used to restore baseline vascular parameters to pre-L-NAME levels, allowing for direct comparison of agonist responses before and after NOS inhibition. The results demonstrate that the vascular response to ephedrine in the rat is modulated by NO and that NO production in response to ephedrine may be secondary to beta 2-receptor stimulation.  相似文献   

12.
We studied the dose-response characteristics and the temporal profile of inhibition of brain nitric oxide (NO) synthase (NOS) elicited by i.v. administration of the NOS inhibitor nitro-l-arginine methyl ester (L-NAME). L-NAME was administered i.v. in awake rats equipped with a venous cannula. L-NAME was injected in cumulative doses of 5, 10, 20 and 40 mg/kg and rats were sacrificed 30 min after the last dose. NOS catalytic activity was assayed in forebrain cytosol as the conversion of [3H]l-arginine into [3H]l-citrulline. L-NAME attenuated brain NOS activity in a dose-dependent manner but enzyme activity could not be inhibited by more than 50%. After a single 20 mg/kg injection of L-NAME the inhibition of brain NOS activity was time dependent and reached a stable level at 2 hrs (52% of vehicle). Inhibition after a single injection was still present at 96 hrs, albeit to a lower magnitude. We conclude that intravenous administration of L-NAME in rats at concentrations commonly used in physiological experiments leads to a dose and time-dependent but partial inhibition of brain NOS catalytic activity. The finding that the inhibition persists for several days after a single administration is consistent with the hypothesis that nitro-L-arginine, the active principle of L-NAME, binds to NOS irreversibly.  相似文献   

13.
The binding of calcium/calmodulin stimulates electron transfer between the reductase and oxygenase domains of neuronal nitric oxide synthase (nNOS). Here, we demonstrate using electron spin resonance spin-trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide that pterin-free nNOS generates superoxide from the reductase and the oxygenase domain by a calcium/calmodulin-dependent mechanism. Tetrahydrobiopterin (BH(4)) diminishes the formation of superoxide by a mechanism that does not cause inhibition of NADPH consumption. In contrast, BH(4) analogs 7,8-dihydrobiopterin and sepiapterin do not affect superoxide yields. L-Arginine alone inhibits the generation of superoxide by nNOS but not by C331A-nNOS mutant that has a low affinity for L-arginine. A greater decrease in superoxide yields is observed when nNOS is preincubated with L-arginine. This effect is in accordance with the slow binding rates of L-arginine to NOS in the absence of BH(4). L-Arginine alone or in combination with BH(4) decreases the rates of NADPH consumption. The effect of L-arginine on superoxide yields, however, was less dramatic than that caused by BH(4) as much higher concentrations of L-arginine are necessary to attain the same inhibition. In combination, L-arginine and BH(4) inhibit the formation of superoxide generation and stimulate the formation of L-citrulline. We conclude that, in contrast to L-arginine, BH(4) does not inhibit the generation of superoxide by controlling electron transfer through the enzyme but by stimulating the formation of the heme-peroxo species.  相似文献   

14.
This investigation compared patterns of regional cerebral blood flow (rCBF) during exercise recovery both with and without postexercise hypotension (PEH). Eight subjects were studied on 3 days with randomly assigned conditions: 1) after 30 min of rest; 2) after 30 min of moderate exercise (M-Ex) at 60-70% heart rate (HR) reserve during PEH; and 3) after 30 min of light exercise (L-Ex) at 20% HR reserve with no PEH. Data were collected for HR, mean blood pressure (MBP), and ratings of perceived exertion and relaxation, and rCBF was assessed by use of single-photon-emission computed tomography. With the use of ANOVA across conditions, there were differences (P < 0.05; mean +/- SD) from rest during exercise recovery from M-Ex (HR = +12 +/- 3 beats/min; MBP = -9 +/- 2 mmHg), but not from L-Ex (HR = +2 +/- 2 beats/min; MBP = -2 +/- 2 mmHg). After M-Ex, there were decreases (P < 0.05) for the anterior cingulate (-6.7 +/- 2%), right and left inferior thalamus (-10 +/- 3%), right inferior insula (-13 +/- 3%), and left inferior anterior insula (-8 +/- 3%), not observed after L-Ex. There were rCBF decreases for leg sensorimotor regions after both M-Ex (-15 +/- 4%) and L-Ex (-12 +/- 3%) and for the left superior anterior insula (-7 +/- 3% and -6 +/- 3%), respectively. Data show that there are rCBF reductions within specific regions of the insular cortex and anterior cingulate cortex coupled with a postexercise hypotensive response after M-Ex. Findings suggest that these cerebral cortical regions, previously implicated in cardiovascular regulation during exercise, may also be involved in PEH.  相似文献   

15.
The interdependent relationships among nitric oxide synthase (NOS), its coenzyme, cofactors and nitric oxide (NO(free radical) were studied using electron paramagnetic resonance spectroscopy. It was found that superoxide-dependent hydroxyl free radical (OH(free radical), derived from NOS coenzyme and cofactors, inhibits NOS activity, and that endogenous NO(free radical) generated by NOS scavenges OH(free radical) and protects NOS function. These results reveal a new role for NO(free radical) that may be important in NOS function and cellular free radical homeostasis.  相似文献   

16.
T S Maurer  H L Fung 《Nitric oxide》2000,4(4):372-378
The binding affinity (K(I)) and inactivation rate (k(inact)) parameters of nitric oxide synthase (NOS) inhibitors are typically estimated by kinetic activity studies. Methods currently used in the estimation of these parameters frequently employ radiolabeled materials and require intensive sample preparation. We have devised a simple, reproducible, and sensitive method for the kinetic analysis of NOS activity and inhibition kinetics using chemiluminescence. We have used this method to characterize enzyme activity for purified murine macrophage nitric oxide synthase (NOS II). Using this method, we have also estimated the inhibitory parameters for a series of competitive antagonists and mechanism-based inactivators of NOS II. The estimated parameters are in agreement with those reported using other methods. We conclude that the chemiluminescence method can be used for kinetic studies of NOS activity and inhibition. This method represents a more efficient means for conducting kinetic studies of NOS inhibition.  相似文献   

17.
Recent studies have shown that nitric oxide (NO) biosynthesis increases in pregnancy and that inhibition of nitric oxide synthase (NOS) induces some pathological processes characteristic of preeclampsia. The current project sought to study the effect of the NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 10 microg x min(-1), sc for 7 days) on plasma volume, plasma atrial natriuretic factor (ANF), plasma endothelin-1 (ET), and plasma renin activity (PRA) during gestation in conscious rats. NOS inhibition caused mean arterial pressure to increase in both virgin and 21-day pregnant rats. Plasma volume fell in the pregnant rats [L-NAME, 4.5 +/- 0.3 mL x 100 g(-1) body wt. (n = 7) vs. D-NAME, 6.8 +/- 0.2 mL x 100 g(-1) body wt. (n = 10); P < 0.05] but not in the virgin rats [L-NAME, 4.3 +/- 0.1 mL x 100 g(-1) body wt. (n = 6) vs. D-NAME, 4.8 +/- 0.2 mL x 100 g(-1) body wt. (n = 8)]. There was no effect of NOS inhibition on plasma ANF levels or PRA in either the virgin or pregnant rats. However, L-NAME did decrease plasma ET levels in the pregnant rats [L-NAME, 19.6 +/- 1.6 pg x mL(-1) (n = 8) vs. D-NAME, 11.6 +/- 2.5 pg x mL(-1) (n = 9); P < 0.05]. Our results confirm that NO is involved in cardiovascular homeostasis in pregnancy; NOS inhibition selectively reduces plasma volume in pregnant rats, thus mimicking a major pathophysiological perturbation of preeclampsia. However, it does not induce the hormonal changes characteristic of preeclampsia, namely the decrease in PRA and increase in plasma ET and ANF levels.  相似文献   

18.
Nitric oxide (NO) is potentially involved in several responses to acute exercise. We tested the hypotheses that inhibition of NO formation reduces maximal O(2) delivery to muscle, but does not affect O(2) utilization by muscle, therefore lowering maximal O(2) consumption. To test these hypotheses, swine (approximately 30 kg) drank either tap water (Con, n = 25) or water with N(G)-nitro-l-arginine methyl ester (8.0 +/- 0.4 mg x kg(-1) x day(-1) for >or=4 wk; LN, n = 24). Treatment efficacy was reflected by higher mean arterial pressure and lower plasma NO metabolite concentration in LN than Con (both P < 0.05). Swine completed two graded treadmill running tests to maximum. In the first test, O(2) consumption was determined at rest through maximal exercise intensity. O(2) consumption did not differ between groups at rest or at most exercise intensities, including maximum (Con, 40.8 +/- 1.8 ml x min(-1) x kg(-1); LN, 40.4 +/- 2.9; not significant). In the second test, tissue-specific blood flows were determined using the radiolabeled-microsphere technique. At rest, blood flows were lower (P < 0.05) in LN compared with Con for a number of tissues, including kidney, adrenal, lung, and several skeletal muscles. During both submaximal and maximal exercise, however, blood flows were similar between Con and LN for all 16 muscles examined; only blood flows to kidney (Con, 99 +/- 16 ml x min(-1) x 100 g; LN, 55 +/- 15; P < 0.05) and pancreas (Con, 25 +/- 7; LN, 6 +/- 2; P < 0.05) were lower in LN at maximum. Endothelium-dependent, but not -independent, relaxation of renal arterial segments was reduced (P < 0.05) in vitro. These data indicate that exercise-induced increases in muscle blood flows are maintained with chronic inhibition of NO formation and that maximal O(2) consumption is therefore preserved. Redundant vasodilatory pathways and/or upregulation of these pathways may underlie these findings.  相似文献   

19.
We investigated the role that endothelial nitric oxide synthase plays in post-exercise hypotension in spontaneously hypertensive rats. To accomplish this, rats were subjected to a single bout of dynamic exercise on a treadmill at 15 m/min for 20 min. l-Nitroarginine methyl ester (l-NAME, 40 mg/kg, i.p.) significantly inhibited post-exercise hypotension (25 ± 11 and 5 ± 3 mm Hg, respectively; P < 0.05). In addition, the superoxide anion generation was decreased, while the plasma nitrite production and serine phosphorylation of endothelial nitric oxide synthase were significantly elevated in spontaneously hypertensive rats at 30 min after the termination of exercise. Taken together, these data demonstrate that the increased phosphorylation of endothelial nitric oxide synthase plays a crucial role in the reduction of arterial pressure following a single bout of dynamic exercise in spontaneously hypertensive rats.  相似文献   

20.
Nitric oxide synthase (NOS) is regulated by protein-protein interactions.  We had earlier shown that PKG inhibits activated NOS in endothelial cells and speculated that PKG phosphorylation of NOS terminates its activity. The present work examines if PKG activation increases breakdown of NOS. Diamino-fluorescein fluorescence spectrometry of real time NO production was used to establish that isolated ovine lung microvascular endothelial cells responded to PKG modulation as previously reported. Fluorescence activated cell sorter (FACS) analysis was used to establish that 8-Br-cGMP, a PKG activator, caused carboxy terminal deletion on NOS, a sign of degradation. Western blot analysis was used to investigate NOS fragments in control and 5 min 8-Br-cGMP treated cells. PKG activator 8-Br-cGMP, at 20 nM, 200 nM, and 2 μM,  decreased nitric oxide production in a dose dependent manner (p<0.05 in all cases).  PKG inhibitors: 100 μM Rp-8-Br-PET-cGMPS, 50 nM Rp-8-pCPT-cGMPS, or 4 μM Rp-8-Br-cGMPS Na significantly increased NO production (p<0.05) showing that PKG normally inhibits basal NO production.  8-Br-cGMP (100 nM) abrogated the elevation in NO production produced by the PKG inhibitors.  FACS analysis revealed that PKG decreased NOS carboxy terminal labeling.  Western blot analysis revealed that 8-Br-cGMP increased N-terminal serine-116 phosphorylated NOS fragments of molecular weights of about 60, 50 and 35 kDa. PKG may be a post-activation inhibitor of NOS, possibly important for the degradation of the spent enzyme.Keywords: Protein kinase G, Nitric oxide synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号