首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of erythrocytes as targets in photodynamic therapy is a controversially discussed topic in the literature. Therefore five different, but well known photosensitisers (three zinc phthalocyanines, tetrabenzoporphine and pheophorbide a delivered in liposomes were used for photodynamic treatment of human erythrocytes. The phototoxic effect on these cells showed pronounced differences. It was in the range: zinc phthalocyanine = pheophorbide a > tetrabenzoporphine > zinc octa-n-alkyl phthalocyanines. Data from the zinc octa-n-alkyl phthalocyanines were compared with photodynamic effects within cutaneous cell lines, treated under the same experimental conditions. The results show that erythrocytes are unlikely to make good models for predicting the efficiency of the photosensitiser in general, and the same applies to cells other than erythrocytes and in vivo. Possible reasons could be differences in dye accumulation. However, erythrocytes may well serve as model cells to explore the cellular and molecular mechanisms of photodynamic treatment.  相似文献   

2.
Antifungal photodynamic therapy   总被引:2,自引:0,他引:2  
In photodynamic antimicrobial chemotherapy (PACT), a combination of a sensitising drug and visible light causes selective destruction of microbial cells. The ability of light-drug combinations to kill microorganisms has been known for over 100 years. However, it is only recently with the beginning of the search for alternative treatments for antibiotic-resistant pathogens that the phenomenon has been investigated in detail. Numerous studies have shown PACT to be highly effective in the in vitro destruction of viruses and protozoa, as well as Gram-positive and Gram-negative bacteria and fungi. Results of experimental investigations have demonstrated conclusively that both dermatomycetes and yeasts can be effectively killed by photodynamic action employing phenothiazinium, porphyrin and phthalocyanine photosensitisers. Importantly, considerable selectivity for fungi over human cells has been demonstrated, no reports of fungal resistance exist and the treatment is not associated with genotoxic or mutagenic effects to fungi or human cells. In spite of the success of cell culture investigations, only a very small number of in vivo animal and human trials have been published. The present paper reviews the studies published to date on antifungal applications of PACT and aims to raise awareness of this area of research, which has the potential to make a significant impact in future treatment of fungal infections.  相似文献   

3.
RNA interference is not only very promising in identifying new targets for drug development, siRNA/shRNA themselves may be directly used as therapeutic agents. In inhibiting viral infections by RNA interference, both viral targets and cellular proteins have been evaluated. Most of the early studies in this field had chosen viral targets for RNA interference. However, recent efforts are mainly focusing on cellular proteins for RNA silencing due to the realization that a variety of viral responses substantially minimize siRNA effects. With the application of siRNA approaching, many new cellular targets relevant to HIV infection have been identified. The value of siRNA/shRNA in the treatment of AIDS is largely dependent on better understanding of the biology of HIV replication. Efforts in the identification of cellular processes with the employment of siRNA/shRNA have shed some new lights on our understanding of how HIV infection occurs. Furthermore, the relative specific effects and simplicity of design makes siRNA/shRNA themselves to be favorable drug leads. J. Zhang and Y. O. Wu contributed equally to this article.  相似文献   

4.
Owing to morphological and rheological differences of the tumour vascular system as compared to the vascular system of the surrounding tissue, the efficacy of several experimental and clinical therapeutic approaches is limited. This fact has put the vascular system of solid tumours into focus and two new therapeutic strategies, anti-angiogenesis and vascular targeting, have emerged. Under the term vascular targeting various therapeutic approaches are summarized, e.g. chemoembolization, chemotherapy, hyperthermia, vascular targeting agents (VTA) and photodynamic therapy (PDT). As shown using the clinically approved photosensitiser Photofrin the irreversible destruction of the tumour vascular system is primarily responsible for an effective PDT of solid tumours. However, the clinical disadvantages of Photofrin are well known. Thus, several new photosensitisers, e.g. aminolaevulinic acid (ALA), porphycenes and indocyanine green (ICG), have been evaluated in vitro and in vivo regarding their suitability for vascular targeting of solid tumours. The promising experimental findings with the photosensitiser ICG led to first clinical results in treating Kaposi's sarcomas. In summary, systemic PDT is only effective when leading to complete ischaemia of solid tumours with subsequent necrosis. An essential prerequisite is the use of a chemically and photophysically defined photosensitiser localizing in the intravascular space due to e.g. a high molecular weight. The specific properties of such a photosensitiser are outlined.  相似文献   

5.
Photodynamic therapy (PDT) and fluorescence diagnosis (FD) are being developed for a number of clinical applications. Since fluorophores and photosensitising drugs are usually given systemically their effect on blood elements are of significant importance. Photodynamic effects on erythrocytes occur naturally in patients with erythropoietic protoporphyria (EPP). Exposure to small fluences, as obtained by the erythrocytes when they pass capillaries in the skin, leads to transfer of the photosensitiser protoporphyrin IX (PP IX), from EPP erythrocytes to endothelial cells. Thus, the erythrocytes are partly protected while the endothelial cells suffer photodamage. During photodynamic therapy in vivo erythrocytes are regularly photosensitised. This side effect is partly intended but mostly unwanted, and a summary of this topic is given. Furthermore, the effect of UV-A on erythrocytes that is accompanied with the formation of bilirubin is reviewed. Erythrocytes serve as convenient model cells for experimental research. Such use of erythrocytes to screen new photosensitisers may be of limited value. A combination of photohaemolysis and haemoglobin oxygenation may become the basis for an assay for in vitro phototoxicity. Erythrocytes from birds are good model cells for exploration of physiological and molecular mechanisms involved in PDT. A potential mechanism of PDT induced behaviour resembling apoptosis in erythrocytes is provided.PDT for sterilisation of erythrocyte concentrates has a potential for medical use. Photodynamic effects on the erythrocytes themselves should be avoided. This is realised by choosing a virus-selective photosensitiser, low fluences and treatment of the concentrates with agents like dipyridamole and antioxidants. Future aspects of applications of photosensitisation of red blood cells are discussed.  相似文献   

6.
Wald O  Weiss ID  Galun E  Peled A 《Cytokine》2007,39(1):50-62
Hepatitis C virus infection and its associated liver inflammatory disease is a major global health problem affecting over 170 million people worldwide. Following viral infection, multiple pro-inflammatory mediators contribute to recruitment of immune cells to the liver and to the generation of an anti-viral immune response. However, when this vigorous immune response fails to eliminate the virus, chronic infection is established. This in turn, results in an ongoing process of inflammation, regeneration and fibrosis that in many cases leads to the development of cirrhosis and of hepatocellular carcinoma. Multiple recent publications mark chemokines and their receptors as key players in leukocyte recirculation through the inflamed liver. Furthermore, chemokines may also be involved in liver regeneration, fibrosis, and in malignant transformation, which is induced by the persistence of inflammation. Accumulating data indicates that distinct chemokines and chemokine receptors may be associated with different stages of the chronic hepatitis C virus infection-associated liver disease. Multiple small molecules and peptide antagonizing chemokines and their receptors are in advanced phase 3 and phase 2 clinical trials. In the near future, such drugs are expected to enter clinical use raising the question whether they may be applicable for the treatment of chronic viral infection-associated liver disease. In this review, recent advances in understanding the role of chemokines and their receptors in the pathogenesis of chronic viral infection-associated liver disease are presented. Furthermore, the clinical implications of these novel findings, which mark chemokines as prognostic markers and therapeutic targets for immune-modulation during chronic liver viral infection, are documented.  相似文献   

7.
Curcumin, a natural compound has several antineoplastic activities and is a promising natural photosensitizer used in photodynamic therapy. However, its low solubility in physiological medium limit the clinical use of curcumin. This study aimed to analyze the action of curcumin-nanoemulsion, a new and well-designed Drug Delivery System (DDS+) molecule, used as a photosensitizing agent in photodynamic therapy in an in vitro breast cancer model, MCF-7 cells. The empty nanoemulsion fulfils all necessary requirements to be an excellent DDS. Furthermore, the use of curcumin-nanoemulsion in photodynamic therapy resulted in a high phototoxic effect after activation at 440?nm, decreasing to <10% viable tumor cells after two irradiations and increasing the reactive oxygen species (ROS) production. The use of curcumin-nanoemulsion associated with photodynamic therapy resulted in an increase in the levels of caspase 3/7 activity for the studied MCF-7 cell model, indicating that this therapy triggers a cascade of events that lead to cell death, such as cellular apoptosis. In conclusion, curcumin-nanoemulsion proved to be efficient as a photosensitizing agent, had phototoxic effects, significantly decreased the proliferation of MCF-7 cells and stimulating the ROS production in combination with photodynamic therapy, so, this formulation has a great potential for use in treatment of breast cancer.  相似文献   

8.
Photodynamic molecules represent an alternative approach for cancer therapy for their property (i) to be photo-reactive; (ii) to be not-toxic for target cells in absence of light; (iii) to accumulate specifically into tumour tissues; (iv) to be activable by a light beam only at the tumour site and (v) to exert cytotoxic activity against tumour cells. However, to date their clinical use is limited by the side effects elicited by systemic administration. Extracellular vesicles are endogenous nanosized-carriers that have been recently introduced as a natural delivery system for therapeutic molecules. We have recently shown the ability of human exosomes to deliver photodynamic molecules. Therefore, this review focussed on extracellular vesicles as a novel strategy for the delivery of photodynamic molecules at cancer sites. This completely new approach may enhance the delivery and decrease the toxicity of photodynamic molecules, therefore, represent the future for photodynamic therapy for cancer treatment.  相似文献   

9.
In the past few years, many retrovirus receptors, coreceptors, and cofactors have been identified. These molecules are important for some aspects of viral entry, although in some cases it remains to be determined whether they are required for binding or postbinding stages in entry, such as fusion. There are certain common features to the molecules that many retroviruses use to gain entry into the cell. For example, the receptors for most mammalian oncoretroviruses are multiple membrane-spanning transport proteins. However, avian retroviruses use single-pass membrane proteins, and a sheep retrovirus uses a glycosylphosphatidylinositol-anchored molecule as its receptor. For some retroviruses, particularly the lentiviruses, two cell surface molecules are required for efficient entry. More recently, a soluble protein that is required for viral entry has been identified for a feline oncoretrovirus. In this review, we will focus on the various strategies used by mammalian retroviruses to gain entry into the cell. The choice of receptors will also be discussed in light of pressures that drive viral evolution and persistence.  相似文献   

10.
In the past few years, many retrovirus receptors, coreceptors, and cofactors have been identified. These molecules are important for some aspects of viral entry, although in some cases it remains to be determined whether they are required for binding or postbinding stages in entry, such as fusion. There are certain common features to the molecules that many retroviruses use to gain entry into the cell. For example, the receptors for most mammalian oncoretroviruses are multiple membrane-spanning transport proteins. However, avian retroviruses use single-pass membrane proteins, and a sheep retrovirus uses a glycosylphosphatidylinositol-anchored molecule as its receptor. For some retroviruses, particularly the lentiviruses, two cell surface molecules are required for efficient entry. More recently, a soluble protein that is required for viral entry has been identified for a feline oncoretrovirus. In this review, we will focus on the various strategies used by mammalian retroviruses to gain entry into the cell. The choice of receptors will also be discussed in light of pressures that drive viral evolution and persistence.  相似文献   

11.
"Comet assay" showed light activated (3.15 Jcm-2 over 30 min) phenothiazinium based photosensitisers (PhBPs) to induce photo-damage of Staphylococcus aureus DNA, as indicated by DNA "tails" between 80 and 120 microm. In general, PhBPs exhibited significant singlet oxygen yields (Phi(DeltaPhBP)>0.7), suggesting the use of type II mechanisms of photo-oxidation. However, the photodynamic action of PhBPs on DNA showed generally insignificant production of 7,8-dihydro-8-oxo-2'-deoxyguanosine, normally a major product of type II DNA photo-oxidation. These combined results show DNA to be a major site of action of PhBPs and suggest that this action may involve type II attack on a nucleoside(s) other than guanosine.  相似文献   

12.
The history of emergence of the probiotics concept as well as basic knowledge on the mechanism of their action is described. The possibilities of the therapeutic use of probiotics, in particular for cases of Crohn's disease, viral gastroenteritis and travelers' diarrhea are discussed. The conclusion is made that the effectiveness of the use of probiotics has not yet been proved due to the fact that in clinical trials of these preparations many uncontrolled variables are not taken into consideration. For this reason at the present moment the prophylactic and curative use of probiotics is an idea whose constructive character has yet to be proved.  相似文献   

13.
In the past few years, the emergence of combinatorial chemistry has drawn increasing attention and a great deal of analytical research has been centered around this new methodology. These new methods capable of producing vast numbers of samples, which are in many cases highly complex, demand fast and reliable analytical techniques able to provide high quality information concerning sample compositions. Mass spectrometry (MS) is the method of choice to face these analytical challenges. In particular, the introduction of electrospray ionization (ESI and matrix assisted laser desorption/ionization (MALDI)) have been the driving forces for many of the recent innovations, not only within the fields of the biosciences, but also in combinatorial chemistry. These ionization techniques are extremely versatile for the characterization of both single compound collections and compound mixture collections. The high-throughput capabilities, as well as many possible couplings with separation techniques (HPLC, CE) have been thus facilitated. However, mass spectrometry is not only limited to use as an instrument for synthesis control, but also plays an increasing role in the identification of active compounds from complex libraries. Recently, new initiatives for library analysis and screening have arisen from the application of the latest developments in mass spectrometry, Fourier transform ion cyclotron resonance (FTICR).  相似文献   

14.
Kai Lin 《中国病毒学》2010,25(4):246-266
Over 170 million people worldwide are infected with hepatitis C virus (HCV), a major cause of liver diseases. Current interferon-based therapy is of limited efficacy and has significant side effects and more effective and better tolerated therapies are urgently needed. HCV is a positive, single-stranded RNA virus with a 9.6 kb genome that encodes ten viral proteins. Among them, the NS3 protease and the NSSB polymerase are essential for viral replication and have been the main focus of drug discovery efforts. Aided by structure-based drug design,potent and specific inhibitors of NS3 and NSSB have been identified, some of which are in late stage clinical trials and may significantly improve current HCV treatment. Inhibitors of other viral targets such as NSSA are also being pursued. However, HCV is an RNA virus characterized by high replication and mutation rates and consequently, resistance emerges quickly in patients treated with specific antivirals as monotherapy. A complementary approach is to target host factors such as cyclophilins that are also essential for viral replication and may present a higher genetic barrier to resistance. Combinations of these inhibitors of different mechanism are likely to become the essential components of future HCV therapies in order to maximize antiviral efficacy and prevent the emergence of resistance.  相似文献   

15.
Most molecules that are not actively imported by living cells are impermeable to cell membranes, including practically all macromolecules and even many small molecules whose physicochemical properties prevent passive membrane diffusion. The use of peptide vectors capable of transporting such molecules into cells in the form of covalent conjugates has become an increasingly attractive solution to this problem. Not only has this technology permitted the study of modulating intracellular target proteins, but it has also gained importance as an alternative to conventional cellular transfection with oligonucleotides. Peptide vectors derived from viral, bacterial, insect, and mammalian proteins endowed with membrane translocation properties have now been proposed as delivery vectors. These are discussed comprehensively and critically in terms of relative utility, applications to compound classes and specific molecules, and relevant conjugation chemistry. Although in most cases the mechanisms of membrane translocation are still unclear, physicochemical studies have been carried out with a number of peptide delivery vectors. Unifying and distinguishing mechanistic features of the various vectors are discussed. Until a few years ago speculations that it might be possible to deliver peptides, proteins, oligonucleotides, and impermeable small molecules with the aid of cellular delivery peptides not only to target cells in vitro, but in vivo, was received with scepticism. However, the first studies showing pharmacological applications of conjugates between macromolecules and peptide delivery vectors are now being reported, and therapies based on such conjugates are beginning to appear feasible.  相似文献   

16.
Nucleoside chemistry represents an important research area for drug discovery, as many nucleoside analogs are prominent drugs and have been widely applied for cancer and viral chemotherapy. However, the synthesis of modified nucleosides presents a major challenge, which is further aggravated by poor solubility of these compounds in common organic solvents. Most of the currently available methods for nucleoside modification employ toxic high boiling solvents; require long reaction time and tedious workup methods. As such, there is constant effort to develop process chemistry in alternative medium to limit the use of organic solvents that are hazardous to the environment and can be deleterious to human health. One such approach is to use ionic liquids, which are ‘designer materials’ with unique and tunable physico-chemical properties. Studies have shown that methodologies using ionic liquids are highly efficient and convenient for the synthesis of nucleoside analogs, as demonstrated by the preparation of pharmaceutically important anti-viral drugs. This article summarizes recent efforts on nucleoside modification using ionic liquids.  相似文献   

17.
Forward chemical genetics has been highlighted as a new method for the study of various biological pathways using exogenous ligands. However, limited success in the field has demonstrated that, in many cases, it is not feasible to determine the protein targets of small-molecule probes. Identifying protein targets is an integral part of forward chemical genetics and is also the most challenging. Over the past decade, several biochemical and genetic methods have been developed to facilitate target identification processes. Even so, one of the major difficulties is that these methods require the chemical modification of active compounds, with a significant amount of structure-activity relationship (SAR) study to ensure that the small-molecule tags do not compromise bioactivity. In this article, we will highlight a new strategy for small molecule libraries that have built-in linkers in order to avoid this well-known problem and demonstrate their successful use in forward chemical genetics.  相似文献   

18.
As many types of cells exposed to photodynamic therapy (PDT) appear to undergo apoptosis, various apoptosis inhibitors have already been used in studies of PDT-induced apoptosis. Although these inhibitors decrease apoptosis, their real effect on the phototoxic efficacy of photosensitisers is unclear. The good phototoxicity of m-THPC was confirmed on murine melanoma B16-A45 cells. Toxicity and phototoxicity studies were then carried out using four apoptosis inhibitors: BAPTA-AM, Forskolin, DSF, and Z.VAD.fmk. Although all inhibitors tested blocked PDT-induced apoptosis, none produced a significant modification of the phototoxic effect of m-THPC on B16 cells. It has been suggested that apoptosis and necrosis share common initiation pathways and that the final outcome is determined by the presence of an active caspase. This implies that apoptosis inhibition reorients cells to necrosis, i.e. those cells sufficiently damaged by PDT appear to be killed, regardless of the mechanism involved.  相似文献   

19.
Immunization against common bacterial and viral diseases has helped prevent millions of deaths worldwide. More recently, the concept of vaccination has been developed into a potentially novel strategy to treat and prevent cancer formation, progression, and spread. Over the past few years, a handful of anti-cancer vaccines have been licensed and approved for use in clinical practice, thus providing a breakthrough in the field. However, the path has not always been easy, with many hurdles that have had to be overcome in order to reach this point. Nevertheless, with more anti-cancer vaccines currently in development, there is still hope that they can eventually become routine tools used in the treatment and prevention of cancer in the future. This review will discuss in detail both types of anti-cancer vaccine presently used in clinical practice — therapeutic and preventive — before considering some of the more promising anti-cancer vaccines that are currently in development. Finally, the issue of side effects and the debate surrounding the overall cost-effectiveness of anti-cancer vaccines will be examined.  相似文献   

20.
Several drugs inhibiting protein kinases have been launched successfully, demonstrating the attractiveness of protein kinases as therapeutic targets. Functional genomics research within both academia and industry has led to the identification of many more kinases as potential drug targets. Although a number of well-known formats are used for measuring protein kinase activity, some less well-characterized protein kinases identified through functional genomics present particular challenges for existing assay formats when there is limited knowledge of the endogenous substrates or activation mechanisms for these novel kinase targets. This is especially the case when a very sensitive assay is required to differentiate often highly potent inhibitors developed by late-stage medicinal chemistry programs. ACK1 is a non-receptor tyrosine kinase that has been shown to be involved in tumorigenesis and metastasis. Here we describe the development of an extremely sensitive high-throughput assay for ACK1 capable of detecting 240 fmol per well of the kinase reaction product employing a BV-tag-based electrochemiluminescence assay. This assay is universally applicable to protein tyrosine kinases using a BV-tag-labeled monoclonal antibody against phosphotyrosine. Furthermore, this assay can be extended to the evaluation of Ser/Thr kinases in those cases where an antibody recognizing the phospho-product is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号