首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutagenesis screens are a valuable method to identify genes that are required for normal development. Previous mouse mutagenesis screens for lethal mutations were targeted at specific time points or for developmental processes. Here we present the results of lethal mutant isolation from two mutagenesis screens that use balancer chromosomes. One screen was localized to mouse chromosome 4, between the STS markers D4Mit281 and D4Mit51. The second screen covered the region between Trp53 and Wnt3 on mouse chromosome 11. These screens identified all lethal mutations in the balancer regions, without bias towards any phenotype or stage of death. We have isolated 19 lethal lines on mouse chromosome 4, and 59 lethal lines on chromosome 11, many of which are distinct from previous mutants that map to these regions of the genome. We have characterized the mutant lines to determine the time of death, and performed a pair-wise complementation cross to determine if the mutations are allelic. Our data suggest that the majority of mouse lethal mutations die during mid-gestation, after uterine implantation, with a variety of defects in gastrulation, heart, neural tube, vascular, or placental development. This initial group of mutants provides a functional annotation of mouse chromosomes 4 and 11, and indicates that many novel developmental phenotypes can be quickly isolated in defined genomic intervals through balancer chromosome mutagenesis screens.  相似文献   

2.
3.
4.
5.
In the mouse, random mutagenesis with N-ethyl-N-nitrosourea (ENU) has been used since the 1970s in forward mutagenesis screens. However, only in the last decade has ENU mutagenesis been harnessed to generate a myriad of new mouse mutations in large-scale genetic screens and focused, smaller efforts. The development of additional genetic tools, such as balancer chromosomes, refinements in genetic mapping strategies, and evolution of specialized assays, has allowed these screens to achieve new levels of sophistication. The impressive productivity of these screens has led to a deluge of mouse mutants that wait to be harnessed. Here the basic large- and small-scale strategies are described, as are the basics of screen design. Finally, and importantly, this review describes the mechanisms by which such mutants may be accessed now and in the future. Thus, this review should serve both as an overview of the power of forward mutagenesis in the mouse and as a resource for those interested in developing their own screens, adding onto existing efforts, or obtaining specific mouse mutants that have already been generated.  相似文献   

6.
The Gal4/ UAS binary method is powerful for gene and neural circuitry manipulation in Drosophila. For most neurobiological studies, however, Gal4 expression is rarely tissue-specific enough to allow for precise correlation of the circuit with behavioral readouts. To overcome this major hurdle, we recently developed the FINGR method to achieve a more restrictive Gal4 expression in the tissue of interest. The FINGR method has three components: 1) the traditional Gal4/UAS system; 2) a set of FLP/FRT-mediated Gal80 converting tools; and 3) enhancer-trap FLP (ET-FLP). Gal4 is used to define the primary neural circuitry of interest. Paring the Gal4 with a UAS-effector, such as UAS-MJD78Q or UAS-Shits, regulates the neuronal activity, which is in turn manifested by alterations in the fly behavior. With an additional UAS-reporter such as UAS-GFP, the neural circuit involved in the specific behavior can be simultaneously mapped for morphological analysis. For Gal4 lines with broad expression, Gal4 expression can be restricted by using two complementary Gal80-converting tools: tubP>Gal80> (''flip out'') and tubP>stop>Gal80 (''flip in''). Finally, investigators can turn Gal80 on or off, respectively, with the help of tissue-specific ET-FLP. In the flip-in mode, Gal80 will repress Gal4 expression wherever Gal4 and ET-FLP intersect. In the flip-out mode, Gal80 will relieve Gal4 repression in cells in which Gal4 and FLP overlap. Both approaches enable the restriction of the number of cells in the Gal4-defined circuitry, but in an inverse pattern. The FINGR method is compatible with the vast collection of Gal4 lines in the fly community and highly versatile for traditional clonal analysis and for neural circuit mapping. In this protocol, we demonstrate the mapping of FLP expression patterns in select ET-FLPx2 lines and the effectiveness of the FINGR method in photoreceptor cells. The principle of the FINGR method should also be applicable to other genetic model organisms in which Gal4/UAS, Gal80, and FLP/FRT are used.  相似文献   

7.
Phenotype-driven mutagenesis screens are used to discover gene function in model organisms. Mutations that are induced by chemical mutagens can occur anywhere in the genome. However, the use of a balancer chromosome (where a phenotypically marked segment of a chromosome is inverted) in a mutagenesis screen enables mutations to be mapped in a defined region of the genome and maintained stably in a heterozygous state. Mouse balancer chromosomes can be engineered using Cre-loxP technology in selected regions of the genome. Balancer mutagenesis screens will provide a systematic functional analysis of the genes on mouse chromosomes, and consequently, will facilitate a functional annotation of the mammalian genome sequence.  相似文献   

8.
In the mouse, random mutagenesis with N-ethyl-N-nitrosourea (ENU) has been used since the 1970s in forward mutagenesis screens. However, only in the last decade has ENU mutagenesis been harnessed to generate a myriad of new mouse mutations in large-scale genetic screens and focused, smaller efforts. The development of additional genetic tools, such as balancer chromosomes, refinements in genetic mapping strategies, and evolution of specialized assays, has allowed these screens to achieve new levels of sophistication. The impressive productivity of these screens has led to a deluge of mouse mutants that wait to be harnessed. Here the basic large- and small-scale strategies are described, as are the basics of screen design. Finally, and importantly, this review describes the mechanisms by which such mutants may be accessed now and in the future. Thus, this review should serve both as an overview of the power of forward mutagenesis in the mouse and as a resource for those interested in developing their own screens, adding onto existing efforts, or obtaining specific mouse mutants that have already been generated.  相似文献   

9.
胁迫应答基因的转录激活是细胞应答胁迫作用的关键步骤。转录激活因子与启动子顺式作用元件结合是胁迫应答基因转录激活的关键环节。进化保守的Gal4是半乳糖代谢相关基因的转录激活因子。酵母Gal4通过其N端的DNA结合结构域识别并结合启动子UAS,通过其C端的激活结构域与转录因子作用,起始RNA聚合酶Ⅱ复合体的组装和转录。该过程不仅受转录调控因子Gal80和Gal3的调节,还与Gal4二聚体的形成有关。概述了酵母半乳糖代谢相关基因转录激活因子Gal4的研究进展。  相似文献   

10.
Gal1p carries out two functions in the galactose pathway of yeast. It activates Gal4p by interacting with Gal80p – a function that can also served by Gal3p – and it catalyzes the formation of galactose-1-phosphate. Recently, we and others have presented biochemical evidence for complex formation between Gal1p and Gal80p. Here, we extend these data and present genetic evidence for an interaction between Gal1p and Gal80p in vivo, using a two-hybrid assay. Interaction between Gal1p and Gal80p depends on the presence of galactose, but not on the catalytic activity of Gal1p. A new class of Kluyveromyces lactis mutants was isolated, designated Klgal1-m, which have lost the derepressing activity but retain galactokinase activity, indicating that the two Gal1p activities are functionally independent. The KlGal1-m proteins are defective in their ability to interact with Gal80p in a two-hybrid assay. The locations of gal1-m mutations identify putative interaction sites in Gal1p and Gal80p. A dominant mutation, KlGAL1-d, leads to a high level of constitutive expression of genes of the galactose pathway. The behavior of chimeric proteins consisting of Gal3p and KlGal1p sequences indicates that both the N-terminal and C-terminal halves of KlGal1p are involved in specific interaction with KlGal80p. Received: 12 November 1998 / Accepted: 18 December 1998  相似文献   

11.
The homeostasis of Drosophila midgut is maintained by multipotent intestinal stem cells (ISCs), each of which gives rise to a new ISC and an immature daughter cell, enteroblast (EB), after one asymmetric cell division. In Drosophila, the Gal4‐UAS system is widely used to manipulate gene expression in a tissue‐ or cell‐specific manner, but in Drosophila midgut, there are no ISC‐ or EB‐specific Gal4 lines available. Here we report the generation and characterization of Dl‐Gal4 and Su(H)GBE‐Gal4 lines, which are expressed specifically in the ISCs and EBs separately. Additionally, we demonstrate that Dl‐Gal4 and Su(H)GBE‐Gal4 are expressed in adult midgut progenitors (AMPs) and niche peripheral cells (PCs) separately in larval midgut. These two Gal4 lines will serve as invaluable tools for navigating ISC behaviors. genesis 48:607–611, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
Manipulating an exogenous or endogenous gene of interest at a defined level is critical for a wide variety of experiments.The Gal4/UAS system has been widely used to direct gene expression for studying complex genetic and biological problems in Drosophila melanogaster and other model organisms.Driven by a given tissue-specific Gal4,expressing UAS-transgene or UAS-RNAi(RNA interference)could be used to up-or down-regulate target gene expression,respectively.However,the efficiency of the Gal4/UAS system is roughly predefined by properties of transposon vector constructs and the insertion site in the transgenic stock.Here,we describe a simple way to modulate optomotor blind(omb)expression levels in its endogenous expression region of the wing disc.We co-expressed UAS-omb and UAS-omb-RNAi together under the control of dpp-Gal4 driver which is expressed in the omb expression region of the wing pouch.The repression effect is more sensitive to temperature than that of overexpression.At low temperature,overexpression plays a dominant role but the efficiency is attenuated by UAS-omb-RNAi.In contrast,at high temperature RNAi predominates in gene expression regulation.By this strategy,we could manipulate omb expression levels at a moderate level.It allows us to manipulate omb expression levels in the same tissue between overexpression and repression at different stages by temperature control.  相似文献   

14.
In Drosophila, the Gal4‐UAS system is used to drive ectopic gene expression in a tissue‐specific manner. In this system, transgenic flies expressing tissue specific Gal4 are crossed to a line in which the gene to be expressed is under the control of a Gal4‐responsive UAS sequence. The resulting progeny express the gene of interest in the pattern of the particular Gal4 line. Since a given UAS‐transgene can be driven by any Gal4 line, this system is predominantly limited by available Gal4 lines. Here we report the characterization of a novel line, DE‐Gal4, which in the eye is expressed in the dorsal compartment for the majority of development. Furthermore, we use functional tests to show that the DE‐Gal4 line is a useful tool with which to manipulate gene expression in half of the developing eye. genesis 48:3–7, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Transposon mutagenesis allows for the discovery and characterization of genes by creating mutations that can be easily mapped and sequenced. Moreover, this method allows for a relatively unbiased approach to isolating genes of interest. Recently, a system of transposon based mutagenesis for Schizosaccharomyces pombe became available. This mutagenesis relies on Hermes, a DNA transposon from the house fly that readily integrates into the chromosomes of S. pombe. The Hermes system is distinct from the retrotransposons of S. pombe because it efficiently integrates into open reading frames. To mutagenize S. pombe, cells are transformed with a plasmid that contains a drug resistance marker flanked by the terminal inverted repeats of Hermes. The Hermes transposase expressed from a second plasmid excises the resistance marker with the inverted repeats and inserts this DNA into chromosomal sites. After S. pombe with these two plasmids grow 25 generations, approximately 2% of the cells contain insertions. Of the cells with insertions, 68% contain single integration events. The protocols listed here provide the detailed information necessary to mutagenize a strain of interest, screen for specific phenotypes, and sequence the positions of insertion.  相似文献   

16.
17.
18.
19.
20.
【目的】Gal80~(ts)与Gal4组合驱动UAS转基因表达是黑腹果蝇Drosophila melanogaster研究中常用的转基因过表达遗传学工具,通过温度控制实现对UAS转基因表达的灵活开关。Gal80~(ts)是一种温度敏感型蛋白,低温下(18℃)与Gal4蛋白结合并抑制其转录活力,高温下(29℃)解除对Gal4的抑制,从而允许Gal4结合UAS位点,启动UAS转基因的表达。但是从18~29℃的开关只能强烈过表达UAS转基因,而不能灵活调控转基因的表达水平。本实验系统研究一系列温度下转基因的表达水平,从而实现该体系对转基因的表达水平的灵活控制。【方法】以果蝇翅芽这一常用器官组织为研究模型,以2种Gal4品系(dpp-Gal4和en-Gal4,分别由decapentaplgic和engrailed基因的启动子驱动)分别与tub-Gal80~(ts)(微管蛋白基因tubulin启动子驱动)基因重组后,再分别与UAS-wg(wingless)转基因品系杂交;在一系列温度(18,25,27.5,28,28.5和30℃)下进行子代幼虫培养,通过免疫组化染色揭示并量化分析转基因wg在3龄幼虫翅芽上的表达水平。【结果】18~25℃培养条件下,Gal80~(ts)与Gal4组合系统中的UAS转基因不能表达;30℃时培养,转基因强烈地过表达;在25~30℃区间内,随着温度升高,转基因表达水平逐渐上升。【结论】在25~30℃之间的温度调控可以实现对Gal80~(ts)与Gal4组合系统中的UAS转基因表达水平的调控。本研究结果对调控转基因表达程度有重要价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号