首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Linoleate metabolism via the cyclooxygenase pathway enhances the proliferation of mammary epithelial cells in serum-free culture in the presence of epidermal growth factor and insulin (Bandyopadhyay, G.K., Imagawa, W., Wallace, D., and Nandi, S. (1987) J. Biol. Chem. 262, 2750-2756). Prostaglandin E2 (PGE2) can fully substitute for linoleic acid provided endogenous hydroxyeicosatetraenoic acids (HETEs, lipoxygenase metabolites) are available. The PGE2 effect is partial if lipoxygenase activity is inhibited by nordihydroguaiaretic acid. Any combination of two HETEs out of three tested (5-, 12-, and 15-HETEs) stimulates growth synergistically with PGE2; and together (i.e. PGE2 + HETEs), they completely substitute for linoleate. In the absence of PGE2, maximal stimulation cannot be attained with HETEs. Exogenous 5-HETE, compared with 12- or 15-HETE, is preferentially incorporated by the mammary epithelial cells, and about 25-30% of it is retained esterified in phospholipids. The cellular level of nonesterified, free HETE is low. Radioimmunoassay revealed that the concentrations of 12- and 15-HETEs in the culture media (with or without added linoleate) were always higher than that of 5-HETE. Both intra- and extracellular free HETEs are rapidly metabolized by the cells. Since these cells are capable of producing eicosanoids from linoleate, periodic supplementation of the cultures with linoleate allows maintenance of higher HETE and PGE2 levels. Thus, it appears that not only are HETEs short-lived in the cell cultures, but cells handle 5-HETE differently than 12- and 15-HETEs. Whatever may be the pathways of interaction, synergism between HETEs and PGE2 seems to explain how linoleate stimulates the growth of mammary epithelial cells in the presence of epidermal growth factor and insulin.  相似文献   

2.
Supplementation of growing MDCK canine kidney tubular epithelial cultures with linoleic acid produced a 3.6- to 4.9-fold increase in bradykinin-stimulated PGE2 release as measured by radioimmunoassay. Under these conditions the cell phospholipids contained 3.9-times more linoleic acid and 5.6-times more arachidonic acid, with the inositol, ethanolamine and choline phosphoglycerie fractions becoming enriched in arachidonic acid. By contrast, supplementation with arachidonic acid did not enhance bradykinin-stimulated PGE2 release even though the arachidonic acid content of the cell phospholipids was increased 8.8-fold. The distribution of radioactive prostaglandin products was unchanged by these fatty acid enrichments, with PGE2 accounting for 55 to 68% of the total output from [1-14C]arachidonic acid. Linoleic acid supplementation also produced a 2.5-fold increase in PGE2 formation stimulated by extracellular arachidonic acid, whereas supplementation during culture with arachidonic acid caused a 55 to 80% inhibition. This difference cannot be accounted for by changes in the ability of the cells to incorporate extracellular arachidonic acid. it is suggested that at least some of the effects of linoleate supplementation on prostaglandin production are due to the resulting enrichment of the intracellular phospholipid substrate pools with arachidonic acid. In addition, it appears that prolonged exposure to arachidonic acid during culture has an overriding inhibitory effect on prostaglandin production even though the total cell lipids bocome highly enriched in arachidonate.  相似文献   

3.
4.
We have investigated the extent to which modifications in the essential fatty acid content of mammalian cells can affect prostaglandin production. Swiss mouse 3T3 cells stimulated with the calcium ionophore A23187 produced 1.7 to 7 times more prostaglandin E(2) (PGE(2)) when the cultures were supplemented with linoleic acid. Increases in PGE(2) production as a result of linoleic acid supplementation occurred under all culture conditions except during the first 24 hr after attachment, when prostaglandin production was very high. Arachidonic acid supplementation produced a similar enhancement in the capacity of the cells to produce PGE(2), but no appreciable increase occurred when the cultures were supplemented with oleic acid. The phospholipids of the cells exposed to the linoleate-enriched medium contained 4 times more arachidonic acid and twice as much linoleic acid as compared with the corresponding controls. The choline phosphoglycerides were most highly enriched in arachidonic acid, but 2- to 3-fold increases also occurred in the inositol and ethanolamine phosphoglycerides. When cultures initially enriched with linoleic acid were transferred to an unsupplemented medium, the fatty acid composition as well as the capacity of the cells to produce PGE(2) reverted almost to control values. The amount of exogenous arachidonic acid converted to PGE(2) as measured by radioimmunoassay also was greater when the cells were enriched with linoleic acid. Studies with radioactive arachidonic acid indicated that the distribution of prostaglandin metabolites was not affected appreciably by linoleic acid enrichment. These findings suggest that at least two factors contribute to the increased capacity of the cultures supplemented with linoleate to produce PGE(2). One is enrichment of the phospholipid substrate pools with arachidonic acid. The other is an increased ability of the cells to synthesize PGE(2) from unesterified arachidonic acid, perhaps because the prostaglandin-forming enzymes are more active.-Denning, G. M., P. H. Figard, and A. A. Spector. Effect of fatty acid modification on prostaglandin production by cultured 3T3 cells.  相似文献   

5.
Mammary epithelial cells from virgin Balb/c mice were isolated by collagenase digestion and cultured within collagen gels in serum-free basal medium containing insulin (10 micrograms/ml). Previous work has shown that linoleate or its metabolite, prostaglandin E2 (PGE2), stimulate the growth of these cells only in the presence of a growth stimulant such as epidermal growth factor (EGF). Since PGE2 can stimulate cyclic AMP (cAMP) production, the role of cAMP in linoleate and EGF-stimulated growth was examined. The cAMP phosphodiesterase inhibitor, IBMX (0.1 mM), was found to augment growth when cells were cultured in the presence of both EGF and linoleate or PGE2, but not either factor alone. These results indicated that EGF does not stimulate proliferation via cyclic AMP mediated events but could synergize with cAMP events if cAMP levels were elevated by PGE2. When assayed in cells plated on top of collagen-coated culture dishes, cellular cyclic AMP levels were stimulated by PGE2, but only marginally by EGF. Although the stimulation of endogenous cAMP by PGE2 and IBMX was insufficient to stimulate growth in the absence of EGF, exogenous dibutyryl-cAMP (greater than 100 micrograms/ml) was able to do so showing that a sustained, and high level of cAMP (greater than 100 micrograms/ml) could stimulate growth in insulin-containing basal medium. EGF was capable of enhancing the cellular sensitivity to dibutyryl-cAMP but the converse was not observed. cAMP stimulation of growth was dependent upon a superphysiological concentration of insulin (10 micrograms/ml) or a physiological concentration of somatomedin-C. These results indicate that the proliferation of mouse mammary epithelial cells can be stimulated separately or in synergism by cAMP-dependent or -independent events.  相似文献   

6.
The mammary gland is under complex regulation involving the participation of hormones, growth factors, and stromal components, including lipids. Our laboratory has developed a unique primary culture system that allows undifferentiated mammary epithelial cells from immature virgin rats to proliferate and differentiate to an extent equivalent to the lactating mammary gland. Using this model system we have examined the effects of the unsaturated fatty acids oleate and linoleate on mammary epithelial cell proliferation as well as both morphological and functional differentiation. Neither fatty acid showed any effect on cell proliferation whether added to cells in the presence of optimal serum-free medium or under suboptimal conditions of epidermal growth factor (EGF) and prolactin. Morphological differentiation also was not affected by fatty acid addition under either optimal or suboptimal conditions, although a decrease was observed when medium depleted in EGF and prolactin was compared to optimal medium. The notable finding in this study was that both oleate and linoleate modulated functional differentiation, as assessed by casein accumulation, in a time- and hormone-dependent manner. At early times in culture, casein levels were stimulated by both oleate and linoleate; this effect was most dramatic under suboptimal conditions of prolactin and EGF. In marked contrast, however, linoleate decreased casein levels by approximately 50% in optimal medium, at all concentrations tested, after at least 7 days in culture. This decrease was also observed in suboptimal medium, although the concentration of EGF and prolactin influenced the extent of the reduction. Although the mechanism is currently unknown, it is tempting to speculate that the cellular and biochemical events that result in linoleate-induced inhibition of functional differentiation may also be involved in the tumor-enhancing properties of this fatty acid.  相似文献   

7.
Alteration of the fatty acid composition of monolayer cultures of LM cells grown in chemically defined medium was achieved by supplementation with fatty acids complexed to bovine serum albumin. Phospholipids containing up to 40% linoleate were found in cells grown in medium containing 20 mu g of linoleate/ml. Incorporation of linoleate into phospholipids reached a plateau after 12-24 hr, and cells remained viable for at least 3-4 days. Although linoleic, linolenic, and arachidonic acids were incorporated into LM cells equally well, only the latter was elongated by these cells under these experimental conditions. Nonadecanoic acid was incorporated to a lesser extent than the polyunsaturated fatty acids. Phosphatidylcholine and phosphatidylethanolamine of LM cells had different fatty acid compositions; phosphatidylethanolamine contained more longer chain and unsaturated fatty acids. Cells were also grown in the absence of choline and presence of choline analogs such as N,N-dimethylethanolamine, N-methylethanolamine, 3-amino-1-propanol, and 1-2-amino-1-butanol. The analog phospholipids in these cells had fatty acid compositions which were intermediate between those of phosphatidylethanolamine and phosphatidylcholine of control cells grown in the presence of choline. Linoleate was found in both phosphatidylcholine and phosphatidylethanolamine of cells supplemented with linoleate. The sphingolipid fraction of these cells, however, did not contain significant amounts of linoleate. When linoleate was present in the phospholipids, compensatory decreases in the oleate and palmitoleate content of phospholipids were observed. Lowering of the growth temperature to 28 degrees produced an increase in unsaturate fatty acid content of the phospholipids. When linoleate was supplied to cells grown at 28 degrees, there was no further increase in the unsaturated fatty acid composition of the phospholipids. Using both fatty acid supplementation and lowered growth temperature, LM cell membranes can be produced which have phospholipids with vastly different fatty acid compositions.  相似文献   

8.
We have investigated whether exposure of human platelets to elevated concentrations of linoleic acid, the principal dietary polyunsaturate, would influence platelet thromboxane A2 release. Platelets were incubated with albumin-bound linoleic acid at 30°C for 24 h, with prostaglandin E1 added to prevent aggregation. The linoleic acid supplemented platelets released, on averaged, 50% less thromboxane A2 in response to stimulation with thrombin than corresponding control platelets. Other fatty acids were without appreciable effect. The inhibition of thrombin-stimulated thromboxane A2 release was dependent on the time and temperature of incubation, as well as on the concentration of added linoleic acid. Supplementation increased the amount of linoleic acid in the platelet phospholipids, but the arachidonic acid content of the phospholipids was reduced. [1-14C]Linoleic acid was not converted to arachidonic acid by the platelets. Linoleic acid was released exclusively form the inositol phosphoglycerides when the enriched platelets were stimulated with thrombin. The linoleate-enriched platelets converted less [1-14C]arachidonic acid to all prostaglandin products, suggesting that the platelet cyclooxygenase was partially inhibited.  相似文献   

9.
Prolonged exposure of Swiss 3T3 cells to vasopressin causes heterologous mitogenic desensitization to bombesin and structurally related peptides including gastrin-releasing peptide (GRP) without down-regulation of the bombesin receptor. The number and affinity of bombesin/GRP receptor sites and modulation of 125I-GRP binding by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) are unaffected in membrane preparations from vasopressin-treated cultures. Stimulation of inositol phosphate accumulation, mobilization of intracellular calcium, production of diacylglycerol, and transmodulation of the epidermal growth factor receptor by bombesin are similarly unaffected. Thus, the heterologous mitogenic desensitization is not due to uncoupling of bombesin receptor from transducing G protein(s) or to an inability to activate phospholipase C. Bombesin, unlike vasopressin, causes a rapid dose-dependent release of [3H]arachidonic acid and prostaglandin E2 from Swiss 3T3 cells (EC50 approximately 4 nM), which is inhibited by the specific bombesin receptor antagonist [Leu13-psi(CH2NH)-Leu14]bombesin. Crucially, release of [3H]arachidonic acid and prostaglandin E2 by bombesin is completely suppressed by prolonged pretreatment with vasopressin (EC50 = 0.6 nM). The mitogenic action of bombesin is restored by adding arachidonic acid to vasopressin-treated cells. We conclude first that arachidonic acid release is an early signal in the mitogenic response to bombesin and second that pretreatment with vasopressin induces heterologous mitogenic desensitization to bombesin by a novel mechanism: inhibition of arachidonic acid release.  相似文献   

10.
The skin displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA), an 18-carbon (n-6) PUFA, results in characteristic scaly skin disorder and excessive epidermal water loss. Although arachidonic acid (AA), a 20-carbon (n-6) PUFA, is metabolized via cyclooxygenase pathway into predominantly prostaglandin E2 (PGE2) and PGF2alpha. The 15-lipoygenase is very active in this tissue and catalyzes the transformation of 20-carbon AA into predominantly 15-hydroxyeicosatetraenoic acid (15-HETE). Similarly, the epidermal 15-lipoxygenase also catalyzes the transformation of 18-carbon LA and 20-carbon dihomo-gamma-linolenic acid (DGLA) to 13-hydroxyoctadecadienoic acid (13-HODE) and 15-hydroxyeicosatrienoic acid (15-HETrE), respectively. The monohydroxy fatty acids are incorporated in phospholipids which undergo catalysis to yield substituted-diacylglycerols (13-HODE-DAG) and 15-HETrE-DAG) which exert anti-inflammatory/antiproliferative effects on the skin.  相似文献   

11.
These experiments were aimed at using a recently developed serum-free culture system for growth of normal rat mammary epithelial (RME) cells in vitro to examine the interactions of specific hormones and growth factors on the proliferative potential of these cells. RME cells were obtained by enzymatic dissociation of mammary tissues of Lewis rats. Primary cultures were started by plating 2 X 10(5) RME cells per 60-mm type I collagen-coated tissue culture dish. Cultures were maintained in a basal medium that consisted of Ham's F-12 medium supplemented with bovine serum albumin (BSA), ethanolamine (EA), and transferrin (Tf), which, by itself, did not support RME cell proliferation. Insulin (I), hydrocortisone (HC), and epidermal growth factor (EGF), when added to the basal medium interacted synergistically to stimulate RME cell proliferation, but this effect was dependent on the additional presence of cholera toxin (CT). Under these conditions a greater-than-tenfold increase in cell number over a 10-day culture period was obtained. Insulin could be replaced by physiological levels of insulin-like growth factor-I (IGF-I). CT could be replaced by other agents that elevate intracellular levels of cyclic adenosine 3':5' monophosphate (cAMP) such as dibutyryl-cAMP (db-cAMP), prostaglandin E1 (PGE-1), and/or isobutylmethylxanthine (IBMX). Prolactin (M) or progesterone (P) potentiated the effect of I, HC, EGF, and CT, resulting in an additional twofold increase in cell number over that found in their absence. However, addition of both hormones was no more effective than either one alone. Furthermore, addition of M or P in the absence of EGF had no effect on RME cell proliferation. Addition of 17-B-estradiol (E2) to the I-, HC-, EGF-, and CT-containing medium also resulted in enhanced RME cell proliferation. These results point to a number of hormone and growth factor interactions that influence the proliferation of normal RME cells in vitro.  相似文献   

12.
Using the Geodia cydonium system, we showed that after incubation of competent sponge cells in the presence of lectin, phospholipase A2 was released from the cells. The substrates for this enzyme, phosphatidylethanolamine and phosphatidylcholine, were identified in the extracellular material of sponge tissue. In addition, the phospholipase A2 inhibitor calelectrin was identified by immunobiochemical techniques; this molecule was associated with the aggregation factor. Reconstitution experiments strongly suggested that phospholipase A2 catalyzed the release of arachidonic acid, which is then taken up by the cells. Intracellularly, arachidonic acid was metabolized primarily to prostaglandin E2. Inhibition studies revealed that prostaglandin E2 is involved in the ultimate increase of DNA synthesis. These findings suggest that the phospholipase A2-arachidonic acid system is involved in the matrix-initiated signal transduction pathway in sponges.  相似文献   

13.
Effects of phorbol esters and epidermal growth factor (EGF) on prostaglandin E2 production by cultured porcine thyroid cells were examined. Both phorbol 12-myristate 13-acetate (PMA) and EGF stimulated prostaglandin E2 production by the cells in dose related fashion. PMA stimulated prostaglandin E2 production over fifty-fold with the dose of 10(-7) M compared with control. EGF (10(-7) M) also stimulated it about ten-fold. The ED50 values of PMA and EGF were respectively around 1 X 10(-9) M and 5 X 10(-10) M. Thyroid stimulating hormone (TSH), however, did not stimulate prostaglandin E2 production from 1 to 24-h incubation. The release of radioactivity from [3H]-arachidonic acid prelabeled cells was also stimulated by PMA and EGF, but not by TSH. These results indicate that both PMA and EGF are potent stimulators of prostaglandin E2 production, associated with the activity to stimulate arachidonic acid release in porcine thyroid cells.  相似文献   

14.
Substance P (SP), fibroblast growth factor (FGF), and epidermal growth factor (EGF) are mitogens for fibroblasts. EGF acts as a progression factor, whereas FGF and SP have competence factor activity. The ability of eicosanoids to regulate proliferation of fibroblasts and the increased production of prostaglandins by fibroblasts in response to the growth factors, led us to investigate the involvement of cyclooxygenase-dependent arachidonic acid metabolites in the mitogenic response of serum-starved human skin fibroblasts to SP, FGF, and EGF. We tested the interaction of a submaximal concentration of SP(10−9 M) with baFGF (40 μg/ml) and EGF(0.01 μg/ml) both on fibroblast proliferation and release of arachidonic acid metabolites. A combination of SP and EGF synergistically stimulated fibroblast proliferation and prostaglandin E2 release, whereas addition of SP to FGF-containing cultures did not affect cell growth. Inhibition of cyclooxygenase by acetylsalicylic acid augmented the growth response of fibroblasts to all: SP, FGF, and EGF. In the presence of acetylsalicylic acid, SP combined with FGF enhanced fibroblast proliferation, whereas a combination with EGF inhibited cellular growth with respect to growth induced by EGF alone. Thus, interactions of SP with FGF and EGF differently affected the mitogenic response depending on the formation of arachidonic acid metabolites. The findings indicate that eicosanoids may be important mediators of competence and progression factor activities that may determine the effects of substance P on fibroblast proliferation in a cytokine network. © 1996 Wiley-Liss, Inc.  相似文献   

15.
The stimulation of cell proliferation by platelet-derived and other growth factors is associated with a rapid increase in the expression of the c-fos protooncogene. We and others have shown that phosphosphoinositide turnover and protein kinase C play a role in the activation of this gene by growth factors, but that a second, kinase C-independent pathway(s) exist. Because cAMP potentiates the actions of a number of growth factors and is elevated in platelet-derived growth factor-stimulated Swiss 3T3 cells, we examined the ability of cAMP to stimulate c-fos expression in this cell type. Forskolin, a direct activator of adenylate cyclase, elicited marked increases in c-fos mRNA levels. Receptor-mediated activation of adenylate cyclase by prostaglandin E1 and stimulation with the cAMP analog 8-bromo-cAMP also enhanced c-fos expression. In cells made protein-kinase C deficient, c-fos induction by phorbol ester was abolished; by contrast, c-fos was still induced by cAMP-elevating agents in protein kinase C-depleted cells. Platelet-derived growth factor causes cAMP accumulation by stimulating arachidonic acid release and the formation of prostaglandins capable of activating adenylate cyclase. The addition of arachidonic acid and the arachidonate metabolite prostaglandin E2 to Swiss 3T3 cultures stimulated c-fos expression. These data suggest the existence of a pathway from growth factor receptor to gene induction that is mediated by cAMP and does not depend on a phorbol ester-sensitive protein kinase C.  相似文献   

16.
Mammary epithelial cells were isolated from mid-pregnant BALB/c mice, grown within collagen gels and maintained on DME/F12 (1:1) media containing 10% bovine calf serum and 10 μ/ml insulin. Initial time-course and dose-response studies showed that epidermal growth factor (EGF)-induced autophosphorylation of the EGF-receptor (EGF-R) in these cells was maximal 5 min after exposure to 75 ng/ml EGF. Mammary epithelial cells displaying little or no growth during their first 2 days in primary culture cells were found to contain low levels of EGF-R. However, EGF-induced autophosphorylation of the EGF-R in these cells was extremely intense. Subsequent studies demonstrated that during the proliferative and plateau phases of growth, EGF-R levels progressively increased, while conversely EGF-induced autophosphorylation of the EGF-R decreased over time in primary culture. These results demonstrate that EGF-R levels and autophosphorylation do not show a direct correlation with mammary epithelial cell mitogen-responsiveness. Intense EGF-R autophosphorylation appears to be required for initiating growth, but sustained mammary epithelial cell proliferation occurs when EGF-R autophosphorylation is low. This inverse relationship between EGF-R levels and autophosphorylation may reflect changes in receptor affinity and function during the various phases of mammary epithelial cell growth in primary culture.  相似文献   

17.
We have shown previously that phosphatidic acid esterified to polyunsaturated fatty acids is mitogenic for primary cultures of mouse mammary epithelial cells embedded within collagen gels. We hypothesized that this mitogenic competence resulted from the ability of this phospholipid to activate multiple signal transduction pathways in mammary epithelium. A closer examination of this hypothesis was undertaken by examining the effect of exogenous phosphatidic acid on phosphoinositide (PI) hydrolysis and its intracellular metabolism to diglyceride, an activator of protein kinase C. For assays of phosphoinositide-specific phospholipase C activation, mammary epithelial cells from virgin Balb/c mice were isolated by collagenase dissociation of mammary glands and cultured on the surface of Type I collagen-coated culture dishes. Phosphatidic acid (PA) stimulated a sustained increase in inositol phosphates and caused inositol phospholipid depletion when added to cells in which inositol phospholipids were prelabeled with 3H-myoinositol. This effect was specific for PA among phospholipids tested. Neither lineoleic acid, that can be released from PA, nor prostaglandin E2 affected PI hydrolysis. When mammary epithelial cells were cultured inside collagen gels in the presence of exogenous PA or phosphatidylcholine (PC) radiolabeled with 3H-glycerol, PA was found to persist intracellularly and be dephosphorylated to diglyceride (an activator of protein kinase C) to a greater extent than PC, a nonmitogenic phospholipid. In contrast to PA, epidermal growth factor (EGF) only slightly stimulated PI hydrolysis, showing that these two different growth-promoting factors do not actively couple to the same signal transduction pathways in mammary epithelial cells. These results show that PA may activate multiple pathways in mammary epithelial cells either directly or via its metabolism to diglyceride. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Epidermal growth factor stimulated cell proliferation in a primary mammary epithelial cell culture derived from mice at different stages of pregnancy. Moreover, the peptide hormone inhibited casein production induced by the synergistic actions of insulin, cortisol and prolactin. The inhibitory effect of epidermal growth factor was influenced by the gestational stages of the mammary gland. These effects of epidermal growth factor were exerted at physiological concentrations. The dual actions of epidermal growth factor on mammary cells implicate its participation in regulation of the growth and differentiation of the mammary gland during pregnancy.  相似文献   

19.
Polyoma-virus-transformed 3T3 fibroblasts (py 3T3 cells) produce considerably more prostaglandin E2 than regular 3T3 cells during growth in cell culture. Incubations with exogenous arachidonic acid showed no increase in prostaglandin-producing capacity in the transformed cells. The rates of degradation of prostaglandin E2 were similar in the two lines. After labeling of cells with [1-14C]arachidonic acid, py 3T3 cultures continuously released radioactivity while the release by regular 3T3 cells was almost completed after 3 h. Prostaglandin E2 production during short incubations in buffer at various times after medium change was constantly higher in the transformed cells. Furthermore, hydrocortisone completely inhibited prostaglandin synthesis by the transformed cells. These results suggest that the increased formation of prostaglandin by py 3T3 cells is due to continuously elevated activity of phospholipase A2 or another acyl hydrolase.  相似文献   

20.
The growth response of cultured rat intestinal epithelial (RIE-1) cells to epidermal growth factor (EGF) depends on the cell population density. EGF stimulated the proliferation of RIE-1 cells in dense cultures, but inhibited the proliferation of cells growing at low population densities. In contrast, insulin enhanced RIE-1 cell growth irrespective of the population density. The tumour promoter 12-0-tetradecanoylphorbol 13-acetate (TPA), like EGF, inhibited the proliferation of low-density RIE-1 cells, but differed from EGF in that it did not stimulate the growth of dense cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号