首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E-cadherin, which has a widely acknowledged role in mediating calcium-dependent cell-cell adhesion between epithelial cells, also functions as a tumor suppressor. The ectodomain of human E-cadherin contains four potential Nglycosylation sites at Asn residues 554, 566, 618, and 633. We investigated the role of E-cadherin N-glycosylation in cell cycle progression by site-directed mutagenesis. We showed previously that all four potential N-glycosylation sites of E-cadherin w ere N-gly cosylated in human breast carcinoma MDA-MB-435 cells. Removal of N-glycan at Asn633 dramatically affected E-cadherin stability. In this study we showed that E-cadherin mutant missing N-glycans at AsnS54, Asn566 and Asn618 failed to induce cell cycle arrest in Gt phase and to suppress cell proliferation in comparison with wild-type E-cadherin. Moreover, N-glycans at Asn554 and Asn566, but not at Asn618, seemed to be indispensable for E-cadherin-mediated suppression of cell cycle progression. Removal of N-glycans at either Asn554 or Asn566 of E-cadherin was accompanied with the activation of the extracellular signal-regulated protein kinase signaling pathway. After treatment with PD98059, an inhibitor of the extracellular signal-regulated protein kinase signaling pathway, wild-type E-cadherin transfected MDA-MB-435 and E-cadherin N-glycosylation-deficient mutant transfected MDA-MB-435 cells had equivalent numbers of cells in G1 phase. These rmdings implied that N-glycosylation might be crucial for E-cadherin-mediated suppression of cell cycle progression.  相似文献   

2.
Epithelial cell-cell adhesion is mediated by E-cadherin, an intercellular N-glycoprotein adhesion receptor that functions in the assembly of multiprotein complexes anchored to the actin cytoskeleton named adherens junctions (AJs). E-cadherin ectodomains 4 and 5 contain three potential N-glycan addition sites, although their significance in AJ stability is unclear. Here we show that sparse cells lacking stable AJs produced E-cadherin that was extensively modified with complex N-glycans. In contrast, dense cultures with more stable AJs had scarcely N-glycosylated E-cadherin modified with high mannose/hybrid and limited complex N-glycans. This suggested that variations in AJ stability were accompanied by quantitative and qualitative changes in E-cadherin N-glycosylation. To further examine the role of N-glycans in AJ function, we generated E-cadherin N-glycosylation variants lacking selected N-glycan addition sites. Characterization of these variants in CHO cells, lacking endogenous E-cadherin, revealed that site 1 on ectodomain 4 was modified with a prominent complex N-glycan, site 2 on ectodomain 5 did not have a substantial oligosaccharide, and site 3 on ectodomain 5 was decorated with a high mannose/hybrid N-glycan. Removal of complex N-glycan from ectodomain 4 led to a dramatically increased interaction of E-cadherin-catenin complexes with vinculin and the actin cytoskeleton. The latter effect was further enhanced by the deletion of the high mannose/hybrid N-glycan from site 3. In MDCK cells, which produce E-cadherin, a variant lacking both complex and high mannose/hybrid N-glycans functioned like a dominant positive displaying increased interaction with gamma-catenin and vinculin compared with the endogenous E-cadherin. Collectively, our studies show that N-glycans, and complex oligosaccharides in particular, destabilize AJs by affecting their molecular organization.  相似文献   

3.
Zhou F  Su J  Fu L  Yang Y  Zhang L  Wang L  Zhao H  Zhang D  Li Z  Zha X 《Glycoconjugate journal》2008,25(8):727-740
The human E-cadherin is a single transmembrane domain protein involved in Ca2+-dependent cell–cell adhesion. In a previous study, we demonstrated that all of four potential N-glycosylation sites in E-cadherin are occupied by N-glycans in human breast carcinoma cells in vivo and the elimination of N-glycan at Asn-633 dramatically affected E-cadherin expression and made it degraded. In this study we investigated the molecular mechanism of E-cadherin, which lacks N-glycosylation at Asn-633 (M4), degradation and the role of the N-glycan at Asn-633 in E-cadherin folding. We treated cells stably expressed M4 E-cadherin with MG123, DMM, respectively. Either MG132 or DMM could efficiently block degradation of M4 E-cadherin. M4 E-cadherin was recognized as the substrate of ERAD and was retro-translocated from ER lumen to cytoplasm by p97. It was observed that the ration of M4 E-cadherin binding to calnexin was significantly increased compared with that of other variants, suggesting that it was a misfolded protein, though cytoplasmic domain of M4 E-cadherin could associate with β-catenin. Furthermore, we found that N-glycans of M4 E-cadherin were modified in immature high mannose type, suggesting that it could not depart to Golgi apparatus. In conclusion, this study revealed that N-glycosylation at Asn-633 is essential for E-cadherin expression, folding and trafficking.  相似文献   

4.
We have found a new cell-cell adhesion system at cadherin-based cell-cell adherens junctions (AJs) consisting of at least nectin and l-afadin. Nectin is a Ca(2+)-independent homophilic immunoglobulin-like adhesion molecule, and l-afadin is an actin filament-binding protein that connects the cytoplasmic region of nectin to the actin cytoskeleton. Both the trans-interaction of nectin and the interaction of nectin with l-afadin are necessary for their colocalization with E-cadherin and catenins at AJs. Here, we examined the mechanism of interaction between these two cell-cell adhesion systems at AJs by the use of alpha-catenin-deficient F9 cell lines and cadherin-deficient L cell lines stably expressing their various components. We showed here that nectin and E-cadherin were colocalized through l-afadin and the COOH-terminal half of alpha-catenin at AJs. Nectin trans-interacted independently of E-cadherin, and the complex of E-cadherin and alpha- and beta-catenins was recruited to nectin-based cell-cell adhesion sites through l-afadin without the trans-interaction of E-cadherin. Our results indicate that nectin and cadherin interact through their cytoplasmic domain-associated proteins and suggest that these two cell-cell adhesion systems cooperatively organize cell-cell AJs.  相似文献   

5.
E-cadherin is a Ca(2+)-dependent cell-cell adhesion molecule at adherens junctions (AJs) of epithelial cells. A fragment of N-cadherin lacking its extracellular region serves as a dominant negative mutant (DN) and inhibits cell-cell adhesion activity of E-cadherin, but its mode of action remains to be elucidated. Nectin is a Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecule at AJs and is associated with E-cadherin through their respective peripheral membrane proteins, afadin and catenins, which connect nectin and cadherin to the actin cytoskeleton, respectively. We showed here that overexpression of nectin capable of binding afadin, but not a mutant incapable of binding afadin, reduced the inhibitory effect of N-cadherin DN on the cell-cell adhesion activity of E-cadherin in keratinocytes. Overexpressed nectin recruited N-cadherin DN to the nectin-based cell-cell adhesion sites in an afadin-dependent manner. Moreover, overexpression of nectin enhanced the E-cadherin-based cell-cell adhesion activity. These results suggest that N-cadherin DN competitively inhibits the association of the endogenous nectin-afadin system with the endogenous E-cadherin-catenin system and thereby reduces the cell-cell adhesion activity of E-cadherin. Thus, nectin plays a role in the formation of E-cadherin-based AJs in keratinocytes.  相似文献   

6.
The Ca2+-independent immunoglobulin-like molecule nectin first forms cell-cell adhesion and then assembles cadherin at nectin-based cell-cell adhesion sites, resulting in the formation of adherens junctions (AJs). Afadin is a nectin- and actin filament-binding protein that connects nectin to the actin cytoskeleton. Here, we studied the roles and modes of action of nectin and afadin in the formation of AJs in cultured MDCK cells. The trans-interaction of nectin assembled E-cadherin, which associated with p120(ctn), beta-catenin, and alpha-catenin, at the nectin-based cell-cell adhesion sites in an afadin-independent manner. However, the assembled E-cadherin showed weak cell-cell adhesion activity and might be the non-trans-interacting form. This assembly was mediated by the IQGAP1-dependent actin cytoskeleton, which was organized by Cdc42 and Rac small G proteins that were activated by the action of trans-interacting nectin through c-Src and Rap1 small G protein in an afadin-independent manner. However, Rap1 bound to afadin, and this Rap1-afadin complex then interacted with p120(ctn) associated with non-trans-interacting E-cadherin, thereby causing the trans-interaction of E-cadherin. Thus, nectin regulates the assembly and cell-cell adhesion activity of E-cadherin through afadin, nectin signaling, and p120(ctn) for the formation of AJs in Madin-Darby canine kidney cells.  相似文献   

7.
The small guanosine triphosphatase Rac1 is activated by E-cadherin-mediated cell-cell adhesion and is required for the accumulation of actin filaments, E-cadherin, and β-catenin at sites of cell-cell contact. However, the modes of activation and action of Rac1 remain to be clarified. We here found that suppression of IQGAP1, an actin-binding protein and an effector of Rac1, by small interfering RNA apparently reduced the accumulation of actin filaments, E-cadherin, and β-catenin at sites of cell-cell contact in Madin-Darby canine kidney II epithelial cells under the conditions in which knockdown of Rac1 reduced them. Knockdown of Rac1 did not affect the localization of these junctional components in cells expressing a constitutively active IQGAP1 mutant defective in Rac1/Cdc42 binding. Knockdown of either Rac1 or IQGAP1 accelerated the 12-O-tetradecanoylphorbol-13-acetate-induced cell-cell dissociation. The basal Rac1 activity, which was maintained by E-cadherin-mediated cell-cell adhesion, was inhibited in the IQGAP1-knocked down cells, whereas the Rac1 activity was increased in the cells overexpressing IQGAP1. Together, these results indicate that Rac1 enhances the accumulation of actin filaments, E-cadherin, and β-catenin by acting on IQGAP1 and suggest that there exists a positive feedback loop comprised of “E-cadherin-mediated cell-cell adhesion→Rac1 activation→actin-meshwork formation by IQGAP1→increasing E-cadherin-mediated cell-cell adhesion.”  相似文献   

8.
Adherens junctions (AJs) are a major cell-cell adhesion structure in epithelial cells that are formed by two major cell-cell adhesion molecules, E-cadherin and nectin. We have previously shown that nectin first forms cell-cell adhesion and then recruits non-trans-interacting E-cadherin to the nectin-based cell-cell adhesion sites, which gradually trans-interact there, eventually forming AJs. We have examined here the effect of trans-interacting nectin on non-trans-interacting E-cadherin endocytosis. Trans-interacting nectin capable of associating with afadin, but not trans-interacting nectin mutant incapable of associating with afadin, inhibited non-trans-interacting E-cadherin endocytosis in intact cells. Afadin is a nectin- and actin filament-binding protein that connects nectin to the actin cytoskeleton. Studies on the mode of action of the nectin-afadin system using cell-free assay revealed that afadin associated with nectin bound Rap1 activated by trans-interacting nectin, interacted with p120ctn, and strengthened the binding of p120ctn to E-cadherin, eventually reducing non-trans-interacting E-cadherin endocytosis. Afadin, which did not bind Rap1, was inactive in this capacity. These results indicate that trans-interacting nectin inhibits non-trans-interacting E-cadherin endocytosis through afadin, Rap1, and p120ctn and thereby further accumulates non-trans-interacting E-cadherin to the nectin-based cell-cell adhesion sites for the formation of AJs.  相似文献   

9.
Cadherins are cell adhesion molecules concentrated at intercellular adherens junctions, where they form a multiprotein complex with cytoplasmic catenins. Although cell-cell interactions affect many aspects of cell behavior, little is known about signaling pathways triggered by cadherin engagement. We show here that E-cadherin-mediated cell-cell adhesion leads to a rapid increase in tyrosine phosphorylation at sites of cell-cell contact and that this stimulation of tyrosine phosphorylation can be mimicked by aggregation of E-cadherin with antibodies. The proteins that become phosphorylated are distinct from those previously shown to be tyrosine phosphorylated in response to integrin-mediated adhesion and include ras-GAP. We also find that E-cadherin-mediated tyrosine phosphorylation is not required for the assembly of adherens-type junctions.  相似文献   

10.
Epithelial cell-cell adhesion is controlled by multiprotein complexes that include E-cadherin-mediated adherens junctions (AJs) and ZO-1-containing tight junctions (TJs). Previously, we reported that reduction of E-cadherin N-glycosylation in normal and cancer cells promoted stabilization of AJs through changes in the composition and cytoskeletal association of E-cadherin scaffolds. Here, we show that enhanced interaction of hypoglycosylated E-cadherin-containing AJs with protein phosphatase 2A (PP2A) represents a mechanism for promoting TJ assembly. In MDCK cells, attenuation of cellular N-glycosylation with siRNA to DPAGT1, the first gene in the N-glycosylation pathway, reduced N-glycosylation of surface E-cadherin and resulted in increased recruitment of stabilizing proteins γ-catenin, α-catenin, vinculin and PP2A to AJs. Greater association of PP2A with AJs correlated with diminished binding of PP2A to ZO-1 and claudin-1 and with increased pools of serine-phosphorylated ZO-1 and claudin-1. More ZO-1 was found in complexes with occludin and claudin-1, and this corresponded to enhanced transepithelial resistance (TER), indicating physiological assembly of TJs. Similar maturation of AJs and TJs was detected after transfection of MDCK cells with the hypoglycosylated E-cadherin variant, V13. Our data indicate that E-cadherin N-glycans coordinate the maturity of AJs with the assembly of TJs by affecting the association of PP2A with these junctional complexes.  相似文献   

11.
Cadherins are cell adhesion molecules concentrated at intercellular adherens junctions, where they form a multiprotein complex with cytoplasmic catenins. Although cell-cell interactions affect many aspects of cell behavior, little is known about signaling pathways triggered by cadherin engagement. We show here that E-cadherin-mediated cell-cell adhesion leads to a rapid increase in tyrosine phosphorylation at sites of cell-cell contact and that this stimulation of tyrosine phosphorylation can be mimicked by aggregation of E-cadherin with antibodies. The proteins that become phosphorylated are distinct from those previously shown to be tyrosine phosphorylated in response to integrin-mediated adhesion and include ras-GAP. We also find that E-cadherin-mediated tyrosine phosphorylation is not required for the assembly of adherens-type junctions.  相似文献   

12.
E-cadherin and nectins are major cell-cell adhesion molecules at adherens junctions (AJs) in epithelial cells. When Madin-Darby canine kidney (MDCK) cells stably expressing nectin-1 (nectin-1-MDCK cells) are cultured at normal Ca(2+), E-cadherin and nectin-1 are concentrated at the cell-cell contact sites. When these cells are cultured at low Ca(2+), E-cadherin disappears from the cell-cell contact sites, but nectin-1 persists there. When these cells are re-cultured at normal Ca(2+), E-cadherin is recruited to the nectin-based cell-cell contact sites. We found here that this recruitment was dependent on protein synthesis, because a protein synthesis inhibitor, cycloheximide, prevented the accumulation of E-cadherin. When nectin-1-MDCK cells, precultured at low Ca(2+) in the presence of a proteasome inhibitor, ALLN (N-acetyl-Leu-Leu-norleucinal), were re-cultured at normal Ca(2+), E-cadherin was recruited to the nectin-based cell-cell contact sites but the level of E-cadherin was reduced. Similar results were obtained when wild-type MDCK cells were used instead of nectin-1-MDCK cells. These results suggest that degradation of one or more protein factors and de novo synthesis of the same or different protein factor(s) are needed for the formation of the E-cadherin-based AJs. We biochemically identified the annexin II-S100A10 complex as such a candidate. Depletion of plasma membrane cholesterol, which abolished the localization of the annexin II-S100A10 complex at the plasma membrane, inhibited the re-concentration of E-cadherin at the nectin-based cell-cell contact sites in the Ca(2+) switch experiment. Knockdown of annexin II by RNA interference also inhibited the re-concentration of E-cadherin. These results indicate that the annexin II-S100A10 complex is involved in the formation of the E-cadherin-based AJs in MDCK cells.  相似文献   

13.
Nectins are Ca(2+)-independent immunoglobulin (Ig)-like cell-cell adhesion molecules (CAMs), which comprise a family consisting of four members. Each nectin homophilically and heterophilically trans-interacts and causes cell-cell adhesion. Biochemical, cell biological, and knockout mice studies have revealed that nectins play important roles in formation of many types of cell-cell junctions and cell-cell contacts, including cadherin-based adherens junctions (AJs) and synapses. Mode of action of nectins in the formation of AJs has extensively been investigated. Nectins form initial cell-cell adhesion and recruit E-cadherin to the nectin-based cell-cell adhesion sites. In addition, nectins induce activation of Cdc42 and Rac small G proteins, which eventually enhances the formation of cadherin-based AJs through the reorganization of the actin cytoskeleton. Nectins furthermore heterophilically trans-interact with nectin-like molecules (Necls), other Ig-like CAMs, and assist or modify their various functions, such as cell adhesion, migration, and proliferation. We describe here the roles and modes of action of nectins as CAMs.  相似文献   

14.
Protein C inhibitor (PCI) is a serine protease inhibitor, displaying broad protease specificity, found in blood and other tissues. In blood, it is capable of inhibiting both procoagulant and anticoagulant proteases. Mechanisms that provide specificity to PCI remain largely unrevealed. In this study we have for the first time provided a full explanation for the marked size heterogeneity of blood-derived PCI and identified functional differences between naturally occurring PCI variants. The heterogeneity was caused by differences in N-glycan structures, N-glycosylation occupancy, and the presence of a Delta6-N-cleaved form. Bi-, tri-, and tetra-antennary complex N-glycans were identified. Fucose residues were identified both on the core GlcNAc and as parts of sialyl-Le(a/x) epitopes. Moreover, a glycan with a composition that implied a di-sialyl antenna was observed. PCI was N-glycosylated at all three potential N-glycosylation sites, Asn-230, Asn-243, and Asn-319, but a small fraction of PCI lacked the N-glycan at Asn-243. The overall removal of N-glycans affected the maximal heparin- and thrombomodulin-enhanced rates of thrombin inhibition differently in different solution conditions. In contrast, the Delta6-N-region increased both the heparin- and the thrombomodulin-enhanced rates of thrombin inhibition at all conditions examined. These results thus demonstrate that the N-linked glycans and the N-terminal region of blood-derived PCI in different ways affect the cofactor-enhanced rates of thrombin inhibition and provide information on the mechanisms by which this may be achieved. The findings are medically important, in view of the documented association of PCI with atherosclerotic plaques and the promising effect of PCI on reducing hypercoagulability states.  相似文献   

15.
The majority of cell adhesion molecules are N-glycosylated, but the role of N-glycans in intercellular adhesion in epithelia remains ill-defined. Reducing N-glycan branching of cellular glycoproteins by swainsonine, the inhibitor of N-glycan processing, tightens and stabilizes cell-cell junctions as detected by a 3-fold decrease in the paracellular permeability and a 2-3-fold increase in the resistance of the adherens junction proteins to extraction by non-ionic detergent. In addition, exposure of cells to swainsonine inhibits motility of MDCK cells. Mutagenic removal of N-glycosylation sites from the Na,K-ATPase beta(1) subunit impairs cell-cell adhesion and decreases the effect of swainsonine on the paracellular permeability of the cell monolayer and also on detergent resistance of adherens junction proteins, indicating that the extent of N-glycan branching of this subunit is important for intercellular adhesion. The N-glycans of the Na,K-ATPase beta(1) subunit and E-cadherin are less complex in tight renal epithelia than in the leakier intestinal epithelium. The complexity of the N-glycans linked to these proteins gradually decreases upon the formation of a tight monolayer from dispersed MDCK cells. This correlates with a cell-cell adhesion-induced increase in expression of GnT-III (stops N-glycan branching) and a decrease in expression of GnTs IVC and V (promote N-glycan branching) as detected by real-time quantitative PCR. Consistent with these results, partial silencing of the gene encoding GnT-III increases branching of N-glycans linked to the Na,K-ATPase beta(1) subunit and other glycoproteins and results in a 2-fold increase in the paracellular permeability of MDCK cell monolayers. These results suggest epithelial cells can regulate tightness of cell junctions via remodeling of N-glycans, including those linked to the Na,K-ATPase beta(1)-subunit.  相似文献   

16.
Recently, we identified dysadherin, a novel carcinoma-associated glycoprotein, and showed that overexpression of dysadherin in human hepatocarcinoma PLC/PRF/5 cells could suppress E-cadherin-mediated cell-cell adhesion and promote tumor metastasis. The present study shows evidence that dysadherin is actually O-glycosylated. This was based on a direct carbohydrate composition analysis of a chimera protein of an extracellular domain of dysadherin fused to an Fc fragment of immunoglobulin. To assess the importance of O-glycosylation in dysadherin function, dysadherin-transfected hepatocarcinoma cells were cultured in a medium containing benzyl-alpha-GalNAc, a modulator of O-glycosylation. This treatment facilitated homotypic cell adhesion among dysadherin transfectants accompanied with morphological changes, indicating that the anti-adhesive effect of dysadherin was weakened. Modification of O-glycan synthesis also resulted in down-regulation of dysadherin expression and up-regulation of E-cadherin expression in dysadherin transfectants but did not affect E-cadherin expression in mock transfectants. Structural analysis of O-glycans released from the dysadherin chimera proteins indicated that a series of O-glycans with core 1 and 2 structures are attached to dysadherin, and their sialylation is remarkably inhibited by benzyl-alpha-GalNAc treatment. However, sialidase treatment of the cells did not affect calcium-dependent cell aggregation, which excluded the possibility that sialic acid itself is directly involved in cell-cell adhesion. We suggest that aberrant O-glycosylation in carcinoma cells inhibits stable expression of dysadherin and leads to the up-regulation of E-cadherin expression by an unknown mechanism, resulting in increased cell-cell adhesion. The carbohydrate-directed approach to the regulation of dysadherin expression might be a new strategy for cancer therapy.  相似文献   

17.
18.
E-cadherin is a key cell-cell adhesion molecule at adherens junctions (AJs) and undergoes endocytosis when AJs are disrupted by the action of an extracellular signal, such as hepatocyte growth factor (HGF)/scatter factor. Rab5 small G protein has been implicated in the HGF-induced endocytosis of E-cadherin, but the molecular mechanism for the regulation of Rab5 activity remains unknown. We first studied this mechanism by using the cell-free assay system for the endocytosis of E-cadherin of the AJ-enriched fraction from rat livers. HGF induced activation of Ras small G protein, which then bound to RIN2, a Rab5 GDP/GTP exchange factor with the Vps9p-like guanine nucleotide exchange factor and Ras association domains, and activated it. Activated RIN2 then activated Rab5, eventually inducing the endocytosis of E-cadherin. We then studied whether RIN2 was involved in the HGF-induced endocytosis of E-cadherin in intact Madin-Darby canine kidney cells. RIN2 localized at the cell-cell adhesion sites, and its guanine nucleotide exchange factor activity was required for the HGF-induced endocytosis of E-cadherin in Madin-Darby canine kidney cells. These results indicate that RIN2 connects Ras to Rab5 in the HGF-induced endocytosis of E-cadherin.  相似文献   

19.
Cadherins are key Ca(2+)-dependent cell-cell adhesion molecules at adherens junctions (AJs) in fibroblasts and epithelial cells, whereas claudins are key Ca(2+)-independent cell-cell adhesion molecules at tight junctions (TJs) in epithelial cells. The formation and maintenance of TJs are dependent on the formation and maintenance of AJs. Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules which comprise a family of four members, nectin-1, -2, -3, and -4, and are involved in the formation of AJs in cooperation with cadherins, and the subsequent formation of TJs. We show here that the velocity of the formation of the E-cadherin-based AJs is increased by overexpression of nectin-1 and is reduced by addition of the nectin-1 inhibitors to the medium in L cells stably expressing E-cadherin and Madin-Darby canine kidney cells. Moreover, the velocity of the formation of the claudin-based TJs is increased by overexpression of nectin-1 and is reduced by addition of the nectin-1 inhibitors to the medium in Madin-Darby canine kidney cells. These results indicate that nectins regulate the velocity of the formation of the E-cadherin-based AJs and the subsequent formation of the claudin-based TJs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号