首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurofibromatosis type I (NF1) is an autosomal dominant disorder caused by mutations in the NF1 gene, leading to a variety of abnormalities in cell growth and differentiation, and to learning disabilities. The protein encoded by NF1, neurofibromin, has several biochemical functions and is expressed in a variety of different cell populations. Hence, determination of the molecular and cellular mechanisms that underlie the different NF1 symptoms is difficult. However, studies using mouse models of NF1 are beginning to unravel the mechanisms that underlie the various symptoms associated with the disease. This knowledge will aid the development of treatments for the different pathological processes associated with NF1.  相似文献   

2.
Triton X-100 insoluble neurofilament (NF) fractions were obtained from two parts of the stellate ganglion and the main giant axon. These were analyzed by one- and two-dimensional gradient polyacrylamide gel electrophoresis, cyclic assembly and disassembly, and electron microscopy. The NF fractions from the ganglion cell bodies (GCB) and from the part of the ganglion mainly consisting of axon initial segments (GIS) were of similar composition; neither contained detectable amounts of the 220 kda and high molecular weight (greater than 400 kda) NF subunits that were prominent in the axonal NF fraction. However, the GCB and GIS did contain large quantities of a set of 65 kda polypeptides that were minor constituents of the axonal NF fraction. The 65 kda-containing NF fraction from the ganglion could be cyclically disassembled and reassembled, but only under low salt conditions, in contrast to the high salt conditions used to cycle axonal NFs. A comparison of the peptide map of the 65 kda polypeptides with that of the 60 kda axonal NF subunit showed them to be different. These biochemical differences between the ganglionic and axonal NF fractions correlated with morphologic distinctions: ganglionic NFs were relatively smooth surfaced, whereas axonal NFs had long sidearms. Such observations support the hypothesis that the NF cytoskeleton of the neuron soma is different from that of the axon. Furthermore, the change from the somal form to the axonal form of NFs appears to occur in the region where the axon initial segment increases in diameter to become the axon proper.  相似文献   

3.
In neurons the phosphorylation of neurofilament (NF) proteins NF-M and NF-H is topographically regulated. Although kinases and NF subunits are synthesized in cell bodies, extensive phosphorylation of the KSP repeats in tail domains of NF-M and NF-H occurs primarily in axons. The nature of this regulation, however, is not understood. As obligate heteropolymers, NF assembly requires interactions between the core NF-L with NF-M or NF-H subunits, a process inhibited by NF head domain phosphorylation. Phosphorylation of head domains at protein kinase A (PKA)-specific sites seems to occur transiently in cell bodies after NF subunit synthesis. We have proposed that transient phosphorylation of head domains prevents NF assembly in the soma and inhibits tail domain phosphorylation; i.e. assembly and KSP phosphorylation in axons depends on prior dephosphorylation of head domain sites. Deregulation of this process leads to pathological accumulations of phosphorylated NFs in the soma as seen in some neurodegenerative disorders. To test this hypothesis, we studied the effect of PKA phosphorylation of the NF-M head domain on phosphorylation of tail domain KSP sites. In rat cortical neurons we showed that head domain phosphorylation of endogenous NF-M by forskolin-activated PKA inhibits NF-M tail domain phosphorylation. To demonstrate the site specificity of PKA phosphorylation and its effect on tail domain phosphorylation, we transfected NIH3T3 cells with NF-M mutated at PKA-specific head domain serine residues. Epidermal growth factor stimulation of cells with mutant NF-M in the presence of forskolin exhibited no inhibition of NF-tail domain phosphorylation compared with the wild type NF-M-transfected cells. This is consistent with our hypothesis that transient phosphorylation of NF-M head domains inhibits tail domain phosphorylation and suggests this as one of several mechanisms underlying topographic regulation.  相似文献   

4.
Neurofilaments (NFs) are composed of a heteropolymer of three related subunits in mammalian neurons, where they are a major component of the cytoskeleton in large neurons and are thought to regulate axonal diameter. NFs in the lamprey, while ultrastructurally and functionally indistinguishable from mammalian NFs, are polymers of a single subunit protein, NF180. In this study, we use the simplicity of lamprey NFs and the accessibility of the lamprey central nervous system (CNS) to examine the effects of overproducing NFs in an identified giant neuron in vivo, and thus to elucidate the role of NFs in regulating neuronal size and axonal caliber in the vertebrate CNS. We show that overexpression of NF180 tagged with a variant of Green Fluorescent Protein (EYFP) in identified lamprey neurons (ABCs) and in human neuroblastoma (NB2a) cells results in the assembly of exogenous NF180 into ultrastructurally normal NFs that are tightly packed and unphosphorylated. These accumulate in the somata of NB2a cells and produce somatic swelling by 3 days post-transfection. NF180 overexpression in lamprey ABCs in vivo causes exogenous NFs to accumulate in ABC axons, somata, and dendrites, and induces a significant increase in axonal diameter without increasing axonal NF packing density. Overexpression of EYFP alone has none of these effects. We conclude that NF180 normally plays a critical role in determining axonal caliber in ABCs and may influence neuronal size in situations where NFs accumulate in the soma, such as after axonal injury.  相似文献   

5.
The assembly characteristics of the neuronal intermediate filament protein plasticin were studied in SW13 cells in the presence and absence of a cytoplasmic filament network. Full-length plasticin cannot polymerize into homopolymers in filament-less SW13c1.2Vim(-) cells but efficiently coassembles with vimentin in SW13c1.1Vim(-) cells. By cotransfecting plasticin and vimentin in SW13c1.1Vim(-) cells, we show that plasticin assembly requires vimentin in noncatalytic amounts. Differing effects on assembly were seen with point mutations of plasticin monomers that were analogous to the keratin mutations that cause epidermolysis bullosa simplex (EBS). In particular, plasticin monomers with point mutations analogous to those in EBS do not uniformly inhibit neurofilament (NF) network formation. A point mutation in the helix termination sequence resulted in complete filament aggregation when coexpressed with vimentin but showed limited coassembly with low- and medium-molecular-weight NF proteins (NF-L and NF-M, respectively). In transfected SW13c1.1Vim(+) cells, a point mutation in the first heptad of the alpha-helical coil region formed equal amounts of filaments, aggregates, and a mixture of filaments and aggregates. Furthermore, coexpression of this point mutation with NF-L and NF-M was associated with a shift toward increased numbers of aggregates. These results suggest that there are important structural differences in assembly properties between homologous fish and mammalian intermediate filament proteins. These structural differences may contribute to the distinctive growth characteristics of the teleost visual pathway.  相似文献   

6.
Newly synthesized neurofilaments or protofilaments are incorporated into a highly stable stationary cytoskeleton network as they are transported along axons. Although the heavily phosphorylated carboxyl-terminal tail domains of the heavy and medium neurofilament (NF) subunits have been proposed to contribute to this process and particularly to stability of this structure, their function is still obscure. Here we show in NF-H/M tail deletion [NF-(H/M)tailΔ] mice that the deletion of both of these domains selectively lowers NF levels 3–6 fold along optic axons without altering either rates of subunit synthesis or the rate of slow axonal transport of NF. Pulse labeling studies carried out over 90 days revealed a significantly faster rate of disappearance of NF from the stationary NF network of optic axons in NF-(H/M)tailΔ mice. Faster NF disappearance was accompanied by elevated levels of NF-L proteolytic fragments in NF-(H/M)tailΔ axons. We conclude that NF-H and NF-M C-terminal domains do not normally regulate NF transport rates as previously proposed, but instead increase the proteolytic resistance of NF, thereby stabilizing the stationary neurofilament cytoskeleton along axons.  相似文献   

7.
Three members of a Portuguese family, who exhibited clinical evidence of neurofibromatosis type 1 (NF1), were found to possess different heritable and pathological mutations in their NF1 genes: a 1.5-Mb deletion spanning the entire NF1 gene, a truncating CGA-->TGA transition in exon 22 (R1241X), and a frameshift mutation in exon 29 (5406insT). All three lesions occurred de novo and are likely to have been generated by different mutational mechanisms. At least two of the mutations occurred on different chromosomal backgrounds. The probability of finding three non-identical NF1 gene lesions arising de novo in a family with NF1 is very remote, too low to be readily accepted as mere coincidence. A number of possible explanations for this unique finding were therefore explored, but none were found to be wholly convincing. This report nevertheless serves as a reminder that it is unwise, even in the case of an autosomal dominant condition, to extrapolate from the detection of a single mutation in a specific individual to assuming an identical molecular genetic aetiology in other clinically affected members of the same family.  相似文献   

8.
Interaction of tau protein with the dynactin complex   总被引:1,自引:0,他引:1  
Tau is an axonal microtubule-associated protein involved in microtubule assembly and stabilization. Mutations in Tau cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and tau aggregates are present in Alzheimer's disease and other tauopathies. The mechanisms leading from tau dysfunction to neurodegeneration are still debated. The dynein-activator complex dynactin has an essential role in axonal transport and mutations in its gene are associated with lower motor neuron disease. We show here for the first time that the N-terminal projection domain of tau binds to the C-terminus of the p150 subunit of the dynactin complex. Tau and dynactin show extensive colocalization, and the attachment of the dynactin complex to microtubules is enhanced by tau. Mutations of a conserved arginine residue in the N-terminus of tau, found in patients with FTDP-17, affect its binding to dynactin, which is abnormally distributed in the retinal ganglion cell axons of transgenic mice expressing human tau with a mutation in the microtubule-binding domain. These findings, which suggest a direct involvement of tau in axonal transport, have implications for understanding the pathogenesis of tauopathies.  相似文献   

9.
Loss of axonal contact characterizes Schwann cells in benign and malignant peripheral nerve sheath tumors (MPNST) from neurofibromatosis type 1 (NF1) patients. Tumor Schwann cells demonstrate NF1 mutations, elevated Ras activity, and aberrant epidermal growth factor receptor (EGFR) expression. Using cDNA microarrays, we found that brain lipid binding protein (BLBP) is elevated in an EGFR-positive subpopulation of Nf1 mutant mouse Schwann cells (Nf1(-/-) TXF) that grows away from axons; BLBP expression was not affected by farnesyltransferase inhibitor, an inhibitor of H-Ras. BLBP was also detected in EGFR-positive cell lines derived from Nf1:p53 double mutant mice and human MPNST. BLBP expression was induced in normal Schwann cells following transfection with EGFR but not H-Ras12V. Furthermore, EGFR-mediated BLBP expression was not inhibited by dominant-negative H-Ras, indicating that BLBP expression is downstream of Ras-independent EGFR signaling. BLBP-blocking antibodies enabled process outgrowth from Nf1(-/-) TXF cells and restored interaction with axons, without affecting cell proliferation or migration. Following injury, BLBP expression was induced in normal sciatic nerves when nonmyelinating Schwann cells remodeled their processes. These data suggest that BLBP, stimulated by Ras-independent pathways, regulates Schwann cell-axon interactions in normal peripheral nerve and peripheral nerve tumors.  相似文献   

10.
Axonal defects in mouse models of motoneuron disease   总被引:4,自引:0,他引:4  
Human motoneuron disease is characterized by loss of motor endplates, axonal degeneration, and cell death of motoneurons. The identification of the underlying gene defects for familial ALS, spinal muscular atrophy (SMA), and spinal muscular atrophy with respiratory distress (SMARD) has pointed to distinct pathophysiological mechanisms that are responsible for the various forms of the disease. Accumulating evidence from mouse models suggests that enhanced vulnerability and sensitivity to proapoptotic stimuli is only responsible for some but not all forms of motoneuron disease. Mechanisms that modulate microtubule assembly and the axonal transport machinery are defective in several spontaneous and ENU (ethylnitrososurea) mutagenized mouse models but also in patients with mutations in the p150 subunit of dynactin. Recent evidence suggests that axonal growth defects contribute significantly to the pathophysiology of spinal muscular atrophy. Reduced levels of the survival motoneuron protein that are responsible for SMA lead to disturbed RNA processing in motoneurons. This could also affect axonal transport of mRNAs for beta-actin and other proteins that play an essential role in axon growth and synaptic function. The local translation of specific proteins might be affected, because developing motoneurons contain ribosome-like structures in distal axons and growth cones. Altogether, the evidence from these mouse models and the new genetic data from patients suggest that axon growth and maintenance involves a variety of mechanisms, including microtubule assembly and axonal transport of proteins and ribonucleoproteins (RNPs). Thus, defects in axon maintenance could play a leading role in the development of several forms of human motoneuron disease.  相似文献   

11.
The cytoskeleton controls the architecture and survival of central nervous system (CNS) neurons by maintaining the stability of axons and dendrites. Although neurofilaments (NFs) constitute the main cytoskeletal network in these structures, the mechanism that underlies subunit incorporation into filaments remains a mystery. Here we report that NUDEL, a mammalian homologue of the Aspergillus nidulans nuclear distribution molecule NudE, is important for NF assembly, transport and neuronal integrity. NUDEL facilitates the polymerization of NFs through a direct interaction with the NF light subunit (NF-L). Knockdown of NUDEL by RNA interference (RNAi) in a neuroblastoma cell line, primary cortical neurons or post-natal mouse brain destabilizes NF-L and alters the homeostasis of NFs. This results in NF abnormalities and morphological changes reminiscent of neurodegeneration. Furthermore, variations in levels of NUDEL correlate with disease progression and NF defects in a mouse model of neurodegeneration. Thus, NUDEL contributes to the integrity of CNS neurons by regulating NF assembly.  相似文献   

12.
Membrane‐less organelles, because of their capacity to dynamically, selectively and reversibly concentrate molecules, are very well adapted for local information processing and rapid response to environmental fluctuations. These features are particularly important in the context of neuronal cells, where synapse‐specific activation, or localized extracellular cues, induce signaling events restricted to specialized axonal or dendritic subcompartments. Neuronal ribonucleoprotein (RNP) particles, or granules, are nonmembrane bound macromolecular condensates that concentrate specific sets of mRNAs and regulatory proteins, promoting their long‐distance transport to axons or dendrites. Neuronal RNP granules also have a dual function in regulating the translation of associated mRNAs: while preventing mRNA translation at rest, they fuel local protein synthesis upon activation. As revealed by recent work, rapid and reversible switches between these two functional modes are triggered by modifications of the networks of interactions underlying RNP granule assembly. Such flexible properties also come with a cost, as neuronal RNP granules are prone to transition into pathological aggregates in response to mutations, aging, or cellular stresses, further emphasizing the need to better understand the mechanistic principles governing their dynamic assembly and regulation in living systems.  相似文献   

13.
14.
The molecular mechanisms responsible for long-distance, directional spread of alphaherpesvirus infections via axons of infected neurons are poorly understood. We describe the use of red and green fluorescent protein (GFP) fusions to capsid and tegument components, respectively, to visualize purified, single extracellular virions and axonal assemblies after pseudorabies virus (PRV) infection of cultured neurons. We observed heterogeneity in GFP fluorescence when GFP was fused to the tegument component VP22 in both single extracellular virions and discrete puncta in infected axons. This heterogeneity was observed in the presence or absence of a capsid structure detected by a fusion of monomeric red fluorescent protein to VP26. The similarity of the heterogeneous distribution of these fluorescent protein fusions in both purified virions and in axons suggested that tegument-capsid assembly and axonal targeting of viral components are linked. One possibility was that the assembly of extracellular and axonal particles containing the dually fluorescent fusion proteins occurred by the same process in the cell body. We tested this hypothesis by treating infected cultured neurons with brefeldin A, a potent inhibitor of herpesvirus maturation and secretion. Brefeldin A treatment disrupted the neuronal secretory pathway, affected fluorescent capsid and tegument transport in the cell body, and blocked subsequent entry into axons of capsid and tegument proteins. Electron microscopy demonstrated that in the absence of brefeldin A treatment, enveloped capsids entered axons, but in the presence of the inhibitor, unenveloped capsids accumulated in the cell body. These results support an assembly process in which PRV capsids acquire a membrane in the cell body prior to axonal entry and subsequent transport.  相似文献   

15.
MNDs (motorneuron diseases) are neurodegenerative disorders in which motorneurons located in the motor cortex, in the brainstem and in the spinal cord are affected. These diseases in their inherited or sporadic forms are mainly characterized by motor dysfunctions, occasionally associated with cognitive and behavioural alterations. Although these diseases show high variability in onset, progression and clinical symptoms, they share common pathological features, and motorneuronal loss invariably leads to muscle weakness and atrophy. One of the most relevant aspect of these disorders is the occurrence of defects in axonal transport, which have been postulated to be either a direct cause, or a consequence, of motorneuron degeneration. In fact, due to their peculiar morphology and high energetic metabolism, motorneurons deeply rely on efficient axonal transport processes. Dysfunction of axonal transport is known to adversely affect motorneuronal metabolism, inducing progressive degeneration and cell death. In this regard, the understanding of the fine mechanisms at the basis of the axonal transport process and of their possible alterations may help shed light on MND pathological processes. In the present review, we will summarize what is currently known about the alterations of axonal transport found to be either causative or a consequence of MNDs.  相似文献   

16.
The exchange of proteins and lipids between the trans-Golgi network (TGN) and the endosomal system requires multiple cellular machines, whose activities are coordinated in space and time to generate pleomorphic, tubulo-vesicular carriers that deliver their content to their target compartments. These machines and their associated protein networks are recruited and/or activated on specific membrane domains where they select proteins and lipids into carriers, contribute to deform/elongate and partition membrane domains using the mechanical forces generated by actin polymerization or movement along microtubules. The coordinated action of these protein networks contributes to regulate the dynamic state of multiple receptors recycling between the cell surface, endosomes and the TGN, to maintain cell homeostasis as exemplified by the biogenesis of lysosomes and related organelles, and to establish/maintain cell polarity. The dynamic assembly and disassembly of these protein networks mediating the exchange of membrane domains between the TGN and endosomes regulates cell-cell signalling and thus the development of multi-cellular organisms. Somatic mutations in single network components lead to changes in transport dynamics that may contribute to pathological modifications underlying several human diseases such as mental retardation.  相似文献   

17.
Abstract

The exchange of proteins and lipids between the trans-Golgi network (TGN) and the endosomal system requires multiple cellular machines, whose activities are coordinated in space and time to generate pleomorphic, tubulo-vesicular carriers that deliver their content to their target compartments. These machines and their associated protein networks are recruited and/or activated on specific membrane domains where they select proteins and lipids into carriers, contribute to deform/elongate and partition membrane domains using the mechanical forces generated by actin polymerization or movement along microtubules. The coordinated action of these protein networks contributes to regulate the dynamic state of multiple receptors recycling between the cell surface, endosomes and the TGN, to maintain cell homeostasis as exemplified by the biogenesis of lysosomes and related organelles, and to establish/maintain cell polarity. The dynamic assembly and disassembly of these protein networks mediating the exchange of membrane domains between the TGN and endosomes regulates cell-cell signalling and thus the development of multi-cellular organisms. Somatic mutations in single network components lead to changes in transport dynamics that may contribute to pathological modifications underlying several human diseases such as mental retardation.  相似文献   

18.
Focal adhesions (FAs) are integrin‐containing protein complexes regulated by a network of hundreds of protein–protein interactions. They are formed in a spatiotemporal manner upon the activation of integrin transmembrane receptors, which is crucial to trigger cell adhesion and many other cellular processes including cell migration, spreading and proliferation. Despite decades of studies, a detailed molecular level understanding on how FAs are organized and function is lacking due to their highly complex and dynamic nature. However, advances have been made on studying key integrin activators, talin and kindlin, and their associated proteins, which are major components of nascent FAs critical for initiating the assembly of mature FAs. This review will discuss the structural and functional findings of talin and kindlin and their immediate interaction network, which will shed light upon the architecture of nascent FAs and how they act as seeds for FA assembly to dynamically regulate diverse adhesion‐dependent physiological and pathological responses.  相似文献   

19.
DNA mismatch repair (MMR) is the process by which incorrectly paired DNA nucleotides are recognized and repaired. A germline mutation in one of the genes involved in the process may be responsible for a dominantly inherited cancer syndrome, hereditary nonpolyposis colon cancer. Cancer progression in predisposed individuals results from the somatic inactivation of the normal copy of the MMR gene, leading to a mutator phenotype affecting preferentially repeat sequences (microsatellite instability, MSI). Recently, we identified children with a constitutional deficiency of MMR activity attributable to a mutation in the h MLH1 gene. These children exhibited a constitutional genetic instability associated with clinical features of de novo neurofibromatosis type 1 (NF1) and early onset of extracolonic cancer. Based on these observations, we hypothesized that somatic NF1 gene mutation was a frequent and possibly early event in MMR-deficient cells. To test this hypothesis, we screened for NF1 mutations in cancer cells. Genetic alterations were identified in five out of ten tumor cell lines with MSI, whereas five MMR-proficient tumor cell lines expressed a wild-type NF1 gene. Somatic NF1 mutations were also detected in two primary tumors exhibiting an MSI phenotype. Finally, a 35-bp deletion in the murine Nf1 coding region was identified in mlh1-/- mouse embryonic fibroblasts. These observations demonstrate that the NF1 gene is a mutational target of MMR deficiency and suggest that its inactivation is an important step of the malignant progression of MMR-deficient cells.  相似文献   

20.
The two pathological hallmarks of Alzheimer's disease, amyloid plaques and neurofibrillary tangles, involve two apparently unrelated proteins, the amyloid precursor protein (APP) and Tau. Although it is known that aberrant processing of APP is associated with Alzheimer's disease, the definitive role of APP in neurons is not yet clear. Tau regulates microtubule stabilization and assembly in axons and is, thus, an essential component of the microtubule-associated organelle transport machinery. Although several groups have reported physical interaction between APP and Tau, and induction of Tau phosphorylation by APP and beta-amyloid peptide, the functional connection between APP and Tau is unclear. To explore the possibility that the functions of these two proteins may somehow converge on the same cellular process, we overexpressed APPL, the Drosophila homologue of APP, along with Tau in Drosophila neurons. Panneural coexpression of APPL and Tau resulted in adults that, upon eclosion, failed to expand wings and harden the cuticle, which is suggestive of neuroendocrine dysfunction. We analyzed axonal transport when Tau and APPL were coexpressed and found that transport of axonal cargo was disrupted, as evidenced by increased retention of synaptic proteins in axons and scarcity of neuropeptide-containing vesicles in the distal processes of peptidergic neurons. In an independent approach, we demonstrated genetic interaction and phenotypic similarity between APPL overexpression and mutations in the Kinesin heavy chain (Khc) gene, the product of which is a motor for anterograde vesicle trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号