首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group B streptococci have long been known as a leading cause of life-threatening infection in neonates, young infants and pregnant women, and recently have been recognized as an ever-growing cause of serious invasive infections in nonpregnant adults. B7-1 and B7-2 are two molecules with immunoregulatory functions implicated in the differentiation of T cells. The present study examined the role of B7-1 and B7-2 during group B streptococci-induced sepsis and arthritis. B7-1- or B7-2-deficient mice were infected with 1 × 107 streptococci, and mortality, appearance of arthritis, growth of microorganisms in the organs and cytokine profile were assessed. Lack of B7-1 was associated with amelioration of arthritis, while worsening of articular lesions was found in B7-2 deficient mice, in comparison to controls. Amelioration of arthritis in B7-1 deficient mice was accompanied by a lower local production of IL-1 β and IL-18, and increase in IL-4 and IL-10 secretion. On the contrary, B7-2 deficient mice showed an higher proinflammatory cytokine production and lower IL-10 secretion than controls. Taken together, our results provide evidence that signaling delivered by B7-1 and B7-2 plays a role in determining the outcome of group B streptococcal induced arthritis, likely due to the different local secretory pattern.  相似文献   

2.
Polymicrobial sepsis induces suppression of macrophage function as determined by a reduction of pro-inflammatory cytokine production upon re-exposure to lipopolysaccharide (LPS) in vitro. We examined whether macrophages were refractory to only LPS challenge or if they were immunoparalyzed and unable to respond to other stimuli such as lipoteichoic acid (LTA) or zymosan (ZYM). This study evaluated the capacity of peritoneal macrophages to produce pro-inflammatory and anti-inflammatory cytokines as well as chemokines following mild or severe sepsis induced by cecal ligation and puncture (CLP). Peritoneal macrophages were isolated 29 h after CLP and challenged with different stimuli. LPS was a more potent stimulus for cytokine induction than LTA or ZYM in both mild and severe sepsis. In mild sepsis, the macrophage cytokine response to LPS was selective and less refractory than in severe sepsis. While production of IL-6 and KC was reduced, secretion of TNF-alpha and MIP-1alpha was enhanced in those cells isolated from mice with mild sepsis. Production of IL-10 and the IL-1 receptor antagonist , MIP-2, and MCP-1 in response to LPS stimulation was equivalent to the amount produced by naive macrophages. Our results indicate that macrophages are not immunoparalyzed during sepsis and may still be induced to secrete some inflammatory mediators.  相似文献   

3.
Septic arthritis is a clinical manifestation of group B Streptococcus (GBS) infection in both neonates and adults. Because macrophages are known to participate in tissue injury, the role of this cell population in GBS-induced arthritis was investigated. Mice were rendered monocytopenic by administration of etoposide, a drug that selectively depletes the monocyte/macrophage population and then injected with GBS (1 x 10(7) colony-forming units per mouse). Appearance of arthritis, mortality, GBS growth in the organs, and local and systemic cytokine production were examined. Etoposide-treated mice had a significantly less severe arthritis than control animals. Histopathological analysis of the joints confirmed clinical observations. Decreased joint levels of the proinflammatory cytokines interleukin 1 (IL-1) beta and IL-6 accompanied the less severe development of arthritis in monocytopenic mice. In contrast, mortality was increased in the etoposide-treated mice compared with controls. Monocytopenic mice exhibited elevated bacterial load in the blood and kidneys at all time points examined. These results indicate that lack of macrophages leads to less severe joint lesions, but also results in impaired clearance of bacteria, and consequent enhancement of mortality rates.  相似文献   

4.
Injection of anti-type II collagen Ab and LPS induces arthritis in mice. The levels of IL-1 beta, IL-6, and chemokines (macrophage inflammatory protein (MIP)-1 alpha, MIP-2, and monocyte chemoattractant protein-1) in the hind paws increased with the onset of arthritis and correlated highly with arthritis scores. The level of TNF-alpha was also elevated, but only transiently. Quantitative real-time PCR analysis revealed increases in cytokine and chemokine mRNA. To elucidate the contribution of inflammatory cytokines and chemokines in arthritis development more directly, recombinant proteins, neutralizing Abs, and knockout mice were used. The injection of rIL-1 beta or TNF-alpha, but not IL-6 or chemokines, induced arthritis when mice were i.v. preinjected with anti-type II collagen Ab. However, a single injection of recombinant cytokines or chemokines into the hind paws did not induce swelling. Arthritis development was inhibited by neutralizing Ab against IL-1 beta, TNF-alpha, or MIP-1 alpha. In contrast, the inhibitory effect by anti-MIP-2 Ab was partial and, surprisingly, Abs to IL-6 and monocyte chemoattractant protein-1 showed no inhibitory effect. Furthermore, arthritis development in IL-1R(-/-) mice and TNFR(-/-) mice was not observed at all, but severe arthritis was developed in IL-6(-/-) mice. These results suggest that IL-1 beta and TNF-alpha play more crucial roles than IL-6 or chemokines in this model. Because arthritis was also developed in SCID mice, the development of arthritis in the Ab-induced mice model is due to a mechanism that does not involve T or B cells.  相似文献   

5.
Macrophage inflammatory protein (MIP)-3alpha is a chemokine involved in the migration of T cells and immature dendritic cells. To study the contribution of proinflammatory cytokines and chemokines to the recruitment of these cells in rheumatoid arthritis (RA) synovium, we looked at the effects of the monocyte-derived cytokines IL-1beta and TNF-alpha and the T cell-derived cytokine IL-17 on MIP-3alpha production by RA synoviocytes. Addition of IL-1beta, IL-17, and TNF-alpha induced MIP-3alpha production in a dose-dependent manner. At optimal concentrations, IL-1beta (100 pg/ml) was much more potent than IL-17 (100 ng/ml) and TNF-alpha (100 ng/ml). When combined at lower concentrations, a synergistic effect was observed. Conversely, the anti-inflammatory cytokines IL-4 and IL-13 inhibited MIP-3alpha production by activated synoviocytes, but IL-10 had no effect. Synovium explants produced higher levels of MIP-3alpha in RA than osteoarthritis synovium. MIP-3alpha-producing cells were located in the lining layer and perivascular infiltrates in close association with CD1a immature dendritic cells. Addition of exogenous IL-17 or IL-1beta to synovium explants increased MIP-3alpha production. Conversely, specific soluble receptors for IL-1beta, IL-17, and TNF-alpha inhibited MIP-3alpha production to various degrees, but 95% inhibition was obtained only when the three receptors were combined. Similar optimal inhibition was also obtained with IL-4, but IL-13 and IL-10 were less active. These findings indicate that interactions between monocyte and Th1 cell-derived cytokines contribute to the recruitment of T cells and dendritic cells by enhancing the production of MIP-3alpha by synoviocytes. The inhibitory effect observed with cytokine-specific inhibitors and Th2 cytokines may have therapeutic applications.  相似文献   

6.
We investigated the biological role of CC chemokines in the Th1-mediated pathogenesis of spontaneous type I diabetes in nonobese diabetic (NOD) mice. Whereas an elevated ratio of macrophage inflammatory protein-1alpha (MIP-1alpha):MIP-1beta in the pancreas correlated with destructive insulitis and progression to diabetes in NOD mice, a decreased intrapancreatic MIP-1alpha:MIP-1beta ratio was observed in nonobese diabetes-resistant (NOR) mice. IL-4 treatment, which prevents diabetes in NOD mice by polarizing intraislet Th2 responses, decreased CCR5 expression in islets and potentiated a high ratio of MIP-1beta and monocyte chemotactic protein-1 (MCP-1): MIP-1alpha in the pancreas. Furthermore, NOD.MIP-1alpha-/- mice exhibited reduced destructive insulitis and were protected from diabetes. Neutralization of MIP-1alpha with specific Abs following transfer of diabetogenic T cells delayed the onset of diabetes in NOD.Scid recipients. These studies illustrate that the temporal expression of certain CC chemokines, particularly MIP-1alpha, and the CCR5 chemokine receptor in the pancreas is associated with the development of insulitis and spontaneous type I diabetes.  相似文献   

7.
Although MIP-1alpha is an important chemokine in the recruitment of inflammatory cells, it remains unknown whether MIP-1alpha plays any role in the development of systemic inflammatory response following trauma-hemorrhage (T-H). C57BL/6J wild type (WT) and MIP-1alpha-deficient (KO) mice were used either as control, subjected to sham operation (cannulation or laparotomy only or cannulation plus laparotomy) or T-H (midline laparotomy, mean blood pressure 35 +/- 5 mmHg for 90 min, followed by resuscitation) and sacrificed 2 h thereafter. A marked increase in serum alpha-glutathione transferase, TNF-alpha, IL-6, IL-10, MCP-1, and MIP-1alpha and Kupffer cell cytokine production was observed in WT T-H mice compared with shams or control. In addition lung and liver tissue edema and neutrophil infiltration (myeloperoxidase (MPO) content) was also increased following T-H in WT animals. These inflammatory markers were markedly attenuated in the MIP-1alpha KO mice following T-H. Furthermore, compared with 2 h, MPO activities at 24 and 48 h after T-H declined steadily in both WT and KO mice. However, normalization of MPO activities to sham levels within 24 h was seen in KO mice but not in WT mice. Thus, MIP-1alpha plays an important role in mediating the acute inflammatory response following T-H. In the absence of MIP-1alpha, acute inflammatory responses were attenuated; rapidly recovered and less remote organ injury was noted following T-H. Thus, interventions that reduce MIP-1alpha levels following T-H should be useful in decreasing the deleterious inflammatory consequence of trauma.  相似文献   

8.
We used a Balb/c mouse model of pneumococcal pneumonia to investigate the protection mechanisms induced by immunization with a polyvalent 23 epitope polysaccharide pneumonia vaccine. Groups of mice were injected x 4 times s.c. within one month, with this vaccine preparation. Mice were subsequently challenged at day 45, with a lethal, intratracheal inoculum of two strains of Streptococcus pneumoniae - either a highly virulent and strongly immunogenic serotype 3 strain (P4241), or a less virulent and weakly immunogenic serotype 19F strain (P15986). The intratracheal S. pneumoniae challenge-induced lethality, antibody response, bacterial clearance, and cytokine secretions were monitored to analyze the strain-adapted effector mechanisms. Pulmonary levels of TNFalpha, IL-6, IL-1 beta, MIP-1 alpha, KC, MCP-1/JE and MIP-2 cytokines were determined up to 48 hours post-infection. Survival rates were 82% and 100% among vaccinated animals challenged at day 45 with P4241, and P1598 mice respectively, and 0% in non-vaccinated mice (p<0.001). Survival was associated with a rapid bacterial clearance from blood and lungs, which similar for the two strains. Immunization induced a serotype-specific antibody response. Kinetics of the cytokine profile in the lung following intratracheal inoculation with the 4241 strain was different in animals vaccinated 45 days previously, compared to na?ve, control mice. Generally speaking the bacterial-induced inflammatory cytokine response induced with the 4241 strain was much weaker in vaccinated animals than in control mice. The only cytokines showing a greater increase in vaccinated mice compare to control animals were IL-1 beta, KC and MCP-1. Production of TNFalpha and IL-6 was lower in vaccinated animals than in controls. At variance with the previous bacteria strain-induced cytokine profile, infection with the P15986 strain induced a strong inflammatory response, with a substantial increase in all the cytokine tested, which was similar in vaccinated and in na?ve, control animals, except for MIP-1 alpha, which was the only mediator significantly more produced by vaccinated animals than by na?ve, control mice following P15986 infection. The distinct cytokine profiles, which were observed in this study depending upon the two strains of S. pneumoniae used for challenge, demonstrated that protection against each strain was obtained through a different defence strategy.  相似文献   

9.
10.
Yeh CL  Hsu CS  Yeh SL  Chen WJ 《Cytokine》2005,31(5):329-334
Glutamine (Gln) has been demonstrated to have benefit in the modulation of systemic immunity in sepsis. However, the effects of Gln on local immunity and intra-lymphocyte cytokine expression have not been investigated in mice with gut-derived sepsis. This study evaluated the influence of a Gln-enriched diet on interleukin (IL)-6 expression in organs and Th1/Th2 type cytokine production within lymphocytes in septic mice. Male ICR mice were assigned to control and Gln groups. The control group was fed a semi-purified diet, while in the Gln group, Gln replaced part of the casein. After feeding the respective diets for 3 weeks, sepsis was induced by cecal ligation and puncture (CLP). Mice were sacrificed at 0, 6, 12 and 24h after CLP and their organs were harvested for further analysis. Results showed that IL-6 levels in the liver were decreased, whereas levels were increased in the lungs, kidneys and intestines with the progression of sepsis in both groups. Also, intra-lymphocyte interferon (IFN)-gamma expression decreased and IL-4 expression increased during sepsis. Compared to the control group, the Gln group had higher levels of IL-6 in the liver and lower levels in other organs at various time points. Lymphocyte IFN-gamma expression in the Gln group was higher, and IL-4 levels were lower than those of the control group after CLP. These results suggest that Gln supplementation decreased IL-6 production in non-hepatic organs, while reducing intra-lymphocyte IL-4 and enhancing IFN-gamma expressions. This change may reverse the Th2 type response to a more-balanced Th1/Th2 response during sepsis.  相似文献   

11.
To understand the pathogenesis of scrub typhus, we examined chemokine and cytokine production in susceptible (C3H/HeN) and resistant (BALB/c) mice after infection with O. tsutsugamushi Gilliam. C3H/HeN mice produced high levels of chemokines macrophage inflammatory proteins 1 alpha (MIP-1 alpha ), MIP-2, monocyte chemoattractant protein 1 (MCP-1), and cytokines gamma-interferon (IFN-gamma ), interleukin-12 (IL-12), IL-10, and tumor necrosis factor alpha (TNF-alpha ) in response to O. tsutsugamushi infection, compared to BALB/c mice. Chemokine profiles in infected mice correlated well with the kinetics of inflammatory cell infiltration. Hyperproduction of chemokines and cytokines was observed in another susceptible-infection model (BALB/c-Karp). These results suggest that hyperproduction of chemokines and cytokines are associated with susceptibility during O. tsutsugamushi infection.  相似文献   

12.
A point mutation in Toll-like receptor 4 (Tlr4) gene in C3H/HeJ mice underlies a defect in LPS-induced cytokine production by peritoneal macrophages (PMphi;). Whether the C-C and the C-X-C chemokines are induced differently by LPS between alveolar macrophages (AMphi;) and PMphi; in this mice remains unclear. Thus, we examined the expression and regulation of macrophage inflammatory protein-1alpha (MIP-1alpha) and macrophage inflammatory protein-2 (MIP-2) in C3H/HeJ macrophages. These results showed that the accumulation of MIP-1alpha and MIP-2 mRNA increased dose dependently in response to LPS. PMphi; responded to LPS to produce significantly higher levels of both chemokine mRNA and protein than AMphi;. In addition, both macrophages produced much more MIP-2 than MIP-1alpha by the same doses of LPS stimulation. Moreover, the chemokine production by C3H/HeN macrophages was significantly higher than that of the C3H/HeJ macrophages. IFN-gamma suppressed the LPS-induced MIP-1alpha release but enhanced the LPS-induced MIP-2 secretion in both macrophages. These results show that the chemokine production was induced and regulated differentially in AMphi; and PMphi;.  相似文献   

13.
The purpose of this study was to determine the nature of the CD4(+) Th cell responses induced after nasal-pulmonary immunization, especially those coinciding with previously described pulmonary inflammation associated with the use of the mucosal adjuvant, cholera toxin (CT). The major T cell population in the lungs of naive mice was CD4(+), and these cells were shown to be predominantly of Th2 type as in vitro polyclonal stimulation resulted in IL-4, but not IFN-gamma, production. After nasal immunization with influenza Ag alone, Th2 cytokine mRNA (IL-4 and IL-5) levels were increased, whereas there was no change in Th1 cytokine (IL-2 and IFN-gamma) mRNA expression. The use of the mucosal adjuvant, CT, markedly enhanced pulmonary Th2-type responses; however, there was also a Th1 component to the T cell response. Using in vitro Ag stimulation of pulmonary lymphocytes, influenza virus-specific cytokine production correlated with the mRNA cytokine results. Furthermore, there was a large increase in CD4(+) Th cell numbers in lungs after nasal immunization using CT, correlating with the pulmonary inflammatory infiltrate previously described. Coincidentally, both macrophage-inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta mRNA expression increased in the lungs after immunization with Ag plus CT, while only MIP-1beta expression increased when mice were given influenza Ag alone. Our study suggests a mechanism to foster Th1 cell recruitment into the lung, which may impact on pulmonary immune responses. Thus, while Th2 cell responses may be prevalent in modulating mucosal immunity in the lungs, Th1 cell responses contribute to pulmonary defenses during instances of intense immune stimulation.  相似文献   

14.
Adenosine is a biologically active molecule that is formed at sites of metabolic stress associated with trauma and inflammation, and its systemic level reaches high concentrations in sepsis. We have recently shown that inactivation of A2A adenosine receptors decreases bacterial burden as well as IL-10, IL-6, and MIP-2 production in mice that were made septic by cecal ligation and puncture (CLP). Macrophages are important in both elimination of pathogens and cytokine production in sepsis. Therefore, in the present study, we questioned whether macrophages are responsible for the decreased bacterial load and cytokine production in A2A receptor-inactivated septic mice. We showed that A2A KO and WT peritoneal macrophages obtained from septic animals were equally effective in phagocytosing opsonized E. coli. IL-10 production induced by opsonized E. coli was decreased in macrophages obtained from septic A2A KO mice as compared to WT counterparts. In contrast, the release of IL-6 and MIP-2 induced by opsonized E. coli was higher in septic A2A KO macrophages than WT macrophages. These results suggest that peritoneal macrophages are not responsible for the decreased bacterial load and diminished MIP-2 and IL-6 production that are observed in septic A2A KO mice. In contrast, peritoneal macrophages may contribute to the suppressive effect of A2A receptor inactivation on IL-10 production during sepsis.  相似文献   

15.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

16.
To determine the influence of experimental model and strain differences on the relationship of vascular permeability to inflammatory cytokine production after high peak inflation pressure (PIP) ventilation, we used isolated perfused mouse lung and intact mouse preparations of Balb/c and B6/129 mice ventilated at high and low PIP. Filtration coefficients in isolated lungs and bronchoalveolar lavage (BAL) albumin in intact mice increased within 20-30 min after initiation of high PIP in isolated Balb/c lungs and intact Balb/c, B6/129 wild-type, and p55 and p75 tumor necrosis factor (TNF) dual-receptor null mice. In contrast, the cytokine response was delayed and variable compared with the permeability response. In isolated Balb/c lungs ventilated with 25-27 cmH(2)O PIP, TNF-alpha, interleukin (IL)-1 beta, IL-1 alpha, macrophage inflammatory protein (MIP)-2, and IL-6 concentrations in perfusate were markedly increased in perfusate at 2 and 4 h, but only MIP-2 was detectable in intact Balb/c mice using the same PIP. In intact wild-type and TNF dual-receptor null mice with ventilation at 45 cmH(2)O PIP, the MIP-2 and IL-6 levels in BAL were significantly increased after 2 h in both groups, but there were no differences between groups in the BAL albumin and cytokine concentrations or in lung wet-to-dry weight ratios. TNF-alpha was not be detected in BAL fluids in any group of intact mice. These results suggest that the alveolar hyperpermeability induced by high PIP ventilation occurs very rapidly and is initially independent of TNF-alpha participation and unlikely to depend on MIP-2 or IL-6.  相似文献   

17.
18.
We report that the addition of human macrophage inflammatory protein-3 beta (MIP-3 beta) to cultures of human PBMCs that have been activated with LPS or PHA results in a significant enhancement of IL-10 production. This effect was concentration-dependent, with optimal MIP-3 beta concentrations inducing more than a 5-fold induction of IL-10 from LPS-stimulated PBMCs and a 2- to 3-fold induction of IL-10 from PHA-stimulated PBMCs. In contrast, no significant effect on IL-10 production was observed when 6Ckine, the other reported ligand for human CCR7, or other CC chemokines such as monocyte chemoattractant protein-1, RANTES, MIP-1 alpha, and MIP-1 beta were added to LPS- or PHA-stimulated PBMCs. Similar results were observed using activated purified human peripheral blood monocytes or T cells. Addition of MIP-3 beta to nonactivated PBMCs had no effect on cytokine production. Enhancement of IL-10 production by MIP-3beta correlated with the inhibition of IL-12 p40 and TNF-alpha production by monocytes and with the impairment of IFN-gamma production by T cells, which was reversed by addition of anti-IL-10 Abs to the cultures. The ability of MIP-3 beta to augment IL-10 production correlated with CCR7 mRNA expression and stimulation of intracellular calcium mobilization in both monocytes and T cells. These data indicate that MIP-3 beta acts directly on human monocytes and T cells and suggest that this chemokine is unique among ligands binding to CC receptors due to its ability to modulate inflammatory activity via the enhanced production of the anti-inflammatory cytokine IL-10.  相似文献   

19.
BACKGROUND: The role of interleukin (IL)-1 in infectious diseases is controversial; some investigators indicated an enhancing effect of IL-1 on host resistance whereas others demonstrated the protective role of IL-1 receptor antagonist in infection. We evaluated the role of endogenous IL-1 in gut-derived sepsis caused by Pseudomonas aeruginosa, by comparing IL-1-deficient mice and wild-type (WT) mice. METHODS: Gut-derived sepsis was induced by intraperitoneal injection of cyclophosphamide after colonization of P. aeruginosa strain D4 in the intestine. RESULTS: The survival rate of IL-1-deficient mice was significantly lower than that of WT mice (P<0.01). Bacterial counts in the liver, mesenteric lymph node and blood were significantly higher in IL-1-deficient mice than in WT mice. Tumor necrosis factor alpha and IL-6 in the liver were significantly higher in IL-1-deficient mice than in WT mice. In vitro, phagocytosis and cytokine production by macrophages were impaired in IL-1-deficient mice compared with WT mice. CONCLUSION: Our results indicate a critical role for IL-1 during gut-derived P. aeruginosa sepsis. The results also suggest that both impairment of cytokine production and phagocytosis by macrophages are caused by IL-1 deficiency and lead to impaired host response.  相似文献   

20.
We examined the mechanisms involved in the development of lung lesions after infection with Cryptococcus neoformans by comparing the histopathological findings and chemokine responses in the lungs of mice infected with C. neoformans and assessed the effect of interleukin (IL) 12 which protects mice from lethal infection. In mice infected intratracheally with a highly virulent strain of C. neoformans, the yeast cells multiplied quickly in the alveolar spaces but only a poor cellular inflammatory response was observed throughout the course of infection. Very little or no production of chemokines, including MCP-1, RANTES, MIP-1alpha, MIP-1beta and IP-10, was detected at the mRNA level using RT-PCR as well as at a protein level in MCP-1, RANTES and MIP-1alpha. In contrast, intraperitoneal administration of IL-12 induced the synthesis of these chemokines and a marked cellular inflammatory response involving histiocytes and lymphocytes in infected mice. Our findings were confirmed by flow cytometry of intraparenchymal leukocytes obtained from lung homogenates which showed IL-12-induced accumulation of inflammatory cells consisting mostly of macrophages and CD4+ alphabeta T cells. On the other hand, C-X-C chemokines including MIP-2 and KC, which attract neutrophils, were produced in infected and PBS-treated mice but treatment with IL-12 showed a marginal effect on their level, and neutrophil accumulation was similar in PBS- and IL-12-treated mice infected with C. neoforman. Our results demonstrate a close correlation between chemokine levels and development of lung lesions, and suggest that the induction of chemokine synthesis may be one of the mechanisms of IL-12-induced protection against cryptococcal infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号