首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of the pentose phosphate shunt pathway in brain is thought to be linked to neurotransmitter metabolism, glutathione reduction, and synthetic pathways requiring NADPH. There is currently no method available to assess flux of glucose through the pentose phosphate pathway in localized regions of the brain of conscious animals in vivo. Because metabolites of deoxy[1-14C]glucose are lost from brain when the experimental period of the deoxy[14C]glucose method exceeds 45 min, the possibility was considered that the loss reflected activity of this shunt pathway and that this hexose might be used to assay regional pentose phosphate shunt pathway activity in brain. Decarboxylation of deoxy[1-14C]glucose by brain extracts was detected in vitro, and small quantities of 14C were recovered in the 6-phosphodeoxygluconate fraction when deoxy[14C]glucose metabolites were isolated from freeze-blown brains and separated by HPLC. Local rates of glucose utilization determined with deoxy[1-14C]glucose and deoxy[6-14C]glucose were, however, similar in 20 brain structures at 45, 60, 90, and 120 min after the pulse, indicating that the rate of loss of 14CO2 from deoxy[1-14C]glucose-6-phosphate in normal adult rat brain is too low to permit assay pentose phosphate shunt activity in vivo. Further metabolism of deoxy[1-14]glucose-6-phosphate via this pathway does not interfere during routine use of the deoxyglucose method or explain the progressive decrease in calculated metabolic rate when the experimental period exceeds 45 min.  相似文献   

2.
This study provided a pharmacological evaluation of prostaglandin binding to bovine luteal plasma membrane. It was found that [3H]PGF2 alpha' [3H]PGE2' [3H]PGE1 and [3H]PGD2 all bound with high affinity to luteal plasma membrane but had different specificities. Binding of [3H]PGF2 alpha and [3H]PGD2 was inhibited by non-radioactive PGF2 alpha (IC50 values of 21 and 9 nmol l-1, respectively), PGD2 (35 and 21 nmol l-1), and PGE2 (223 and 81 nmol l-1), but not by PGE1 (> 10,000 and 5616 nmol l-1). In contrast, [3H]PGE1 was inhibited by non-radioactive PGE1 (14 nmol l-1) and PGE2 (7 nmol l-1), but minimally by PGD2 (2316 nmol l-1) and PGF2 alpha (595 nmol l-1). Binding of [3H]PGE2 was inhibited by all four prostaglandins, but slopes of the dissociation curves indicated two binding sites. Binding of [3H]PGE1 was inhibited, resulting in low IC50 values, by pharmacological agonists that are specific for EP3 receptor and possibly EP2 receptor. High affinity binding of [3H]PGF2 alpha required a C15 hydroxyl group and a C1 carboxylic acid that are present on all physiological prostaglandins. Specificity of binding for the FP receptor depended on the C9 hydroxyl group and the C5/C6 double bond. Alteration of the C11 position had little effect on affinity for the FP receptor. In conclusion, there is a luteal EP receptor with high affinity for PGE1' PGE2' agonists of EP3 receptors, and some agonists of EP2 receptors. The luteal FP receptor binds PGF2 alpha' PGD2 (high affinity), and PGE2 (moderate affinity) but not PGE1 due to affinity determination by the C9 and C5/C6 moieties, but not the C11 moiety.  相似文献   

3.
1. Investigations of the mechanism of the non-oxidative segment of the pentose phosphate cycle in isolatd hepatocytes by prediction-labelling studies following the metabolism of [2-14C]-, [5-14C]- and [4,5,6-14C]glucose are reported. The 14C distribution patterns in glucose 6-phosphate show that the reactions of the L-type pentose pathway in hepatocytes. 2. Estimates of the quantitative contribution of the L-type pentose cycle are the exclusive form of the pentose cycle to glucose metabolism have been made. The contribution of the L-type pentose cycle to the metabolism of glucose lies between 22 and 30% in isolated hepatocytes. 3. The distribution of 14C in the carbon atoms of glucose 6-phosphate following the metabolism of [4,5,6-14C]- and [2-14C]glucose indicate that gluconeogenesis from triose phosphate and non-oxidative formation of pentose 5-phosphate do not contribute significantly to randomization of 14C in isolated hepatocytes. The transaldolase exchange reaction between fructose 6-phosphate and glyceraldehyde 3-phosphate is very active in these cells.  相似文献   

4.
The pentose cycle and insulin release in mouse pancreatic islets   总被引:35,自引:17,他引:18  
1. Rates of insulin release, glucose utilization (measured as [(3)H]water formation from [5-(3)H]glucose) and glucose oxidation (measured as (14)CO(2) formation from [1-(14)C]- or [6-(14)C]-glucose) were determined in mouse pancreatic islets incubated in vitro, and were used to estimate the rate of oxidation of glucose by the pentose cycle pathway under various conditions. Rates of oxidation of [U-(14)C]ribose and [U-(14)C]xylitol were also measured. 2. Insulin secretion was stimulated fivefold when the medium glucose concentration was raised from 3.3 to 16.7mm in the absence of caffeine; in the presence of caffeine (5mm) a similar increase in glucose concentration evoked a much larger (30-fold) increase in insulin release. Glucose utilization was also increased severalfold as the intracellular glucose concentration was raised over this range, particularly between 5 and 11mm, but the rate of oxidation of glucose via the pentose cycle was not increased. 3. Glucosamine (20mm) inhibited glucose-stimulated insulin release and glucose utilization but not glucose metabolism via the pentose cycle. No evidence was obtained for any selective effect on the metabolism of glucose via the pentose cycle of tolbutamide, glibenclamide, dibutyryl 3':5'-cyclic AMP, glucagon, caffeine, theophylline, ouabain, adrenaline, colchicine, mannoheptulose or iodoacetamide. Phenazine methosulphate (5mum) increased pentose-cycle flux but inhibited glucose-stimulated insulin release. 4. No formation of (14)CO(2) from [U-(14)C]ribose could be detected: [U-(14)C]xylitol gave rise to small amounts of (14)CO(2). Ribose and xylitol had no effect on the rate of oxidation of glucose; ribitol and xylitol had no effect on the rate of glucose utilization. Ribose, ribitol and xylitol did not stimulate insulin release under conditions in which glucose produced a large stimulation. 5. It is concluded that in normal mouse islets glucose metabolism via the pentose cycle does not play a primary role in insulin-secretory responses.  相似文献   

5.
1. Expressions are derived for the steady-state measurement of the quantitative contribution of the liver-type pentose phosphate cycle to glucose metabolism by tissues. One method requires the metabolism of [5-14C]glucose followed by the isolation and degradation of glucose 6-phosphate. The second procedure involves the metabolism of [2-14C]glucose and the isolation and degradation of a triose phosphate derivative, usually lactate or glycerol. 2. Measurements of 14C in C-2 and C-5 of glucose 6-phosphate are required and the values of the C-2/C-5 ratios can be used to calculate the quantitative contribution of the L-type pentose cycle in all tissues. 3. The measurement of 14C in C-1, C-2 and C-3 of triose phosphate derivatives can be used to calculate the quantitative contribution of the L-type pentose cycle relative to glycolysis. 4. The effect of transaldolase and transketolase exchange reactions, reactions of gluconeogenesis and non-oxidative formation of pentose 5-phosphate, isotopic equilibration of triose phosphate pools and isotopic equilibration of fructose 6-phosphate and glucose 6-phosphate, which could interfere with a clear interpretation of the data using [2-14C]- and [5-14C]glucose are discussed.  相似文献   

6.
1. Phytohaemagglutinin induced early changes in the catabolism of glucose by normal human lymphocytes suspended in a bicarbonate buffer. During 4hr. incubation glucose utilization was almost doubled. 2. The rates of several reactions in the metabolism of glucose were estimated. Total pyruvate formation, lactate production and fatty acid synthesis were stimulated to the same degree as was glucose utilization. The pentose cycle and the glycogen synthesis were also stimulated but less than was glucose utilization. The pentose cycle was found to account for 1.4% and 0.9% of the total glucose utilization without and with phytohaemagglutinin respectively. In these cells rates of triose phosphate iso-merization were at least six to seven times the rate of glucose phosphorylation. On an average 55-60% of the total carbon dioxide evolved was derived from decarboxylation of pyruvate, 25-30% from the tricarboxylic acid cycle and about 15% from the pentose cycle. Observed ratios of (14)C specific yields in glycogen from [1-(14)C]- and [6-(14)C]-glucose could possibly be explained by assuming the existence of two separate glucose 6-phosphate pools. 3. During 4hr. incubation in bicarbonate buffer (14)C from [U-(14)C]serine was incorporated into perchloric acid-insoluble material. This incorporation was stimulated by phytohaemagglutinin but was almost completely inhibited by puromycin. Puromycin also abolished phytohaemagglutinin-induced stimulation of glycolysis.  相似文献   

7.
This study was carried out to examine the metabolism of [1-14C]-, [6-14C]-, and [5-3H]glucose by oocyte-cumulus cell complexes (OCC) and denuded oocytes (DO) and to test the hypothesis that metabolism of glucose through the pentose phosphate pathway is associated with meiotic induction. OCC or DO were cultured in hanging drops suspended from the cap of a microfuge tube, with NaOH serving as a trap to collect released 3H2O or 14CO2. Preliminary experiments established that this culture system supports both spontaneous and ligand-induced meiotic maturation. An initial time course experiment (1.5-6 h) showed that hypoxanthine-treated OCC from eCG-primed animals metabolized glucose principally via glycolysis, with an increase to 2.7-fold in response to FSH. Though more [1-14C]glucose was oxidized than [6-14C]glucose, its metabolism was about two orders of magnitude less than that of [5-3H]glucose. Also, FSH significantly increased oxidation of [1-14C]glucose but not [6-14C]glucose, indicating a preferential activation of the pentose phosphate pathway. Pyrroline carboxylate, an activator of the pentose phosphate pathway, increased the activity of this pathway to over 2-fold but failed to affect glucose oxidation through the tricarboxylic acid cycle. Glycolytic metabolism was increased by 25%. The addition of pyruvate to pyruvate-free medium resulted in significant reduction in the metabolism of all three glucose analogues. In OCC retrieved from hCG-injected, primed mice and cultured under hormone-free conditions, metabolic responses were similar to those in FSH-treated complexes cultured in hypoxanthine. DO metabolized glucose, but at a much reduced rate when compared to OCC. Pyruvate reduced the consumption of all three glucose analogues by DO. Pyrroline carboxylate reduced [5-3H]glucose metabolism by DO but had little effect on [1-14C]- and [6-14C]glucose oxidation. These data demonstrate metabolism of glucose by both DO and OCC, but reveal that cumulus cells are more active than the oocyte in this regard. In addition, induction of maturation by FSH, hCG, or pyrroline carboxylate was accompanied by a significant increase in the oxidation of [1-14C]glucose but not [6-14C]glucose by OCC, supporting a proposed role for the pentose phosphate pathway in meiotic induction.  相似文献   

8.
We have shown previously that norepinephrine (NE) microdialyzed into the preoptic area (POA) of conscious guinea pigs stimulates local PGE(2) release. To identify the cyclooxygenase (COX) isozyme that catalyzes the production of this PGE(2) and the adrenoceptor (AR) subtype that mediates this effect, we microdialyzed for 6 h NE, cirazoline (alpha(1)-AR agonist), and clonidine (alpha(2)-AR agonist) into the POA of conscious guinea pigs pretreated intrapreoptically (intra-POA) with SC-560 (COX-1 inhibitor) or nimesulide or MK-0663 (COX-2 inhibitors) and measured the animals' core temperature (T(c)) and intra-POA PGE(2) responses. Cirazoline induced T(c) rises promptly after the onset of its dialysis without altering PGE(2) levels. NE and clonidine caused early falls followed by late rises of T(c); intra-POA PGE(2) levels were closely correlated with this thermal course. COX-1 inhibition attenuated the clonidine-induced T(c) and PGE(2) falls but not the NE-elicited hyperthermia, but COX-2 inhibition suppressed both the clonidine- and NE-induced T(c) and PGE(2) rises. Coinfused cirazoline and clonidine reproduced the late T(c) rise of clonidine but not its early fall and also not the early rise produced by cirazoline; on the other hand, the PGE(2) responses were similar to those to NE. Prazosin (alpha(1)-AR antagonist) and yohimbine (alpha(2)-AR antagonist) blocked the effects of their respective agonists. These results indicate that alpha(1)- and alpha(2)-AR agonists microdialyzed into the POA of conscious guinea pigs evoke distinct T(c) responses: alpha(1)-AR activation produces quick, PGE(2)-independent T(c) rises, and alpha(2)-AR stimulation causes an early T(c) fall and a late, COX-2/PGE(2)-dependent T(c) rise.  相似文献   

9.
Glucose utilization was studied in isolated fat cells prepared from rat adipose tissue which had been cultured for 18 hr in TC 199 medium. When 1% bovine serum albumin (BSA) was in the culture medium, basal rates of (14)CO(2) and [(14)C]triglyceride production from [1-(14)C]glucose were markedly depressed and there was no effect of insulin. With 4% BSA, basal (14)CO(2) production was the same as in cells prepared from fresh tissue and basal triglyceride production was greatly increased. Insulin effect on these cells was minimal. One-minute uptake of [(14)C]2-deoxyglucose was stimulated by 800-1000% in fresh cells and 300-500% in cells cultured with either 1% or 4% BSA. Oxidation of [U-(14)C]glucose showed a much smaller impairment in cultured cells than for [1-(14)C]glucose, suggesting that the pentose phosphate shunt was more severely impaired than glycolysis. Glyceride-glycerol production was increased in cultured cells relative to preculture (fresh) cells. There was no effect of insulin in the culture medium in any of these systems. Rates of free fatty acid and glycerol release were markedly increased in cultured cells, especially when insulin was present in the culture medium. The acute antilipolytic effect of insulin was retained, so that insulin in the test incubation decreased lipolysis by 40-80%. Nevertheless, cell-associated fatty acids were increased in cultured cells and FFA/albumin ratios in the medium often reached potentially toxic levels. The reduction in pentose phosphate shunt activity, lipogenesis, and insulin effect resembles other models of insulin insensitivity. The impaired metabolism is probably due to an intracellular defect. A possible toxic role of either intracellular or extracellular fatty acids cannot be excluded. This system should be a useful model in which to study the cellular mechanisms of insulin insensitivity in adipocytes.-Bernstein, R. S. Insulin insensitivity and altered glucose utilization in cultured rat adipose tissue.  相似文献   

10.
The rate of glucose utilization in isolated pancreatic islets of the rat was inhibited by the alpha 2-adrenoceptor agonists clonidine and epinephrine. Yohimbine reversed the inhibition. alpha 1 or beta-adrenoceptor agonists had little or no effect on glucose utilization. Stimulation of muscarinic receptors by carbamylcholine reversed the effect of clonidine. Pertussis toxin blocked the effect of clonidine on glucose utilization, and potentiated the response to carbamylcholine. 8-Bromo-cAMP did not affect glucose utilization in the presence of clonidine. Thus, alpha 2-adrenoceptors negatively modulate glucose utilization, and the effect is mediated by an inhibitory guanine nucleotide regulatory protein, but not by cAMP.  相似文献   

11.
1. In human erythrocytes, alpha-D-[U-14C]glucose is more efficiently oxidized than beta-D-[U-14C]glucose at a low concentration of the hexose (0.1 mM), but not so at higher glucose concentrations. 2. This unexpected situation may be attributable in part to the lower Km of hexokinase for alpha- than beta-D-glucose, this difference in affinity compensating for the higher maximal velocity found with the beta- rather than alpha-anomer. 3. A contributive role for aldose reductase in the anomeric control of D-glucose 6-phosphate circulation in the pentose phosphate pathway should not be ruled out, since aldose reductase inhibitors decrease the production of 14CO2 by erythrocytes exposed to D-[U-14C]glucose. 4. Nevertheless, the essential role of hexokinase in such an anomeric control is supported by the finding that, in the presence of menadione, which augments considerably D-[U-14C]glucose oxidation but fails to affect D-[5-3H]glucose utilization, the anomeric alpha/beta ratio in 14CO2 production from D-[U-14C]glucose follows, at increasing concentrations of the hexose, the same pattern as that found for its phosphorylation.  相似文献   

12.
Drosophila melanogaster has become a prominent and convenient model for analysis of insulin action. However, to date very little is known regarding the effect of insulin on glucose uptake and metabolism in Drosophila. Here we show that, in contrast to effects seen in mammals, insulin did not alter [(3)H]2-deoxyglucose uptake and in fact decreased glycogen synthesis ( approximately 30%) in embryonic Drosophila Kc cells. Insulin significantly increased ( approximately 1.5-fold) the production of (14)CO(2) from D-[1-(14)C]glucose while the production of (14)CO(2) from D-[6-(14)C]glucose was not altered. Thus, insulin-stimulated glucose oxidation did not occur via increasing Krebs cycle activity but rather by stimulating the pentose phosphate pathway. Indeed, inhibition of the oxidative pentose phosphate pathway by 6-aminonicotinamide abolished the effect of insulin on (14)CO(2) from D-[U-(14)C]glucose. A corresponding increase in lactate production but no change in incorporation of D-[U-(14)C]glucose into total lipids was observed in response to insulin. Glucose metabolism via the pentose phosphate pathway may provide an important source of 5'-phosphate for DNA synthesis and cell replication. This novel observation correlates well with the fact that control of growth and development is the major role of insulin-like peptides in Drosophila. Thus, although intracellular signaling is well conserved, the metabolic effects of insulin are dramatically different between Drosophila and mammals.  相似文献   

13.
T Okumura  K Saito 《Prostaglandins》1990,39(5):525-540
16,16-Dimethylprostaglandin E2 (dimethylPGE2) increased the incorporation of glucose into glycogen in rat hepatocytes in primary culture and its stimulatory effect was blocked by pretreatment of the cells with pertussis toxin. In contrast, dimethylPGE2, prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2 alpha), but not prostaglandin D2 (PGD2), inhibited glucose incorporation in insulin-induced glycogenesis, and these inhibitory effects were not blocked by pretreatment with pertussis toxin. Prostaglandins and other stimuli (lipopolysaccharide, platelet-activating factor, phorbol ester and zymosan) did not increase the release of [14C]glucose from [14C]glycogen-labeled hepatocytes. On the other hand, under identical conditions except for the presence of glucagon, isoproterenol (beta-adrenergic response) or epinephrine (with propranolol, alpha 1-adrenergic response), dimethylPGE2 and PGE2 inhibited hormone-stimulated glycogenolysis but again PGD2 had no effect.  相似文献   

14.
The biosynthesis of PGE2 and PGF2alpha was measured in intact peritoneal exudate preparations obtained from C. parvum-treated and control C3H mice. Although both the control and stimulated preparations biosynthesized PGF2alpha and PGE2 from [1-14C] arachidonic acid, the stimulated preparations generated more of both prostaglandins than did nonstimulated preparations, probably as a result of increased synthesis within macrophages. Increased transformation of PGE2 into PGF2alpha by PGE2 9-ketoreductase was noted in stimulated preparations when compared to that in control cells. The data suggest that stimulated macrophages are capable of generating increased quantities of PGF2alpha and therefore might function as one source of this substance in resolving inflammatory reactions.  相似文献   

15.
The difference between the 14CO2 outputs from [1-14C]glucose and [6-14C]glucose has frequently been used as a measure of activity in the hexose monophosphate shunt without considering the exact significance of this difference. Assuming only 1) that all C-1 of glucose is released to CO2 on entry to the shunt and 2) that the shunt provides the only mechanism for increasing C-1 of glucose over C-6 of glucose in CO2, it is very simply shown that the flux from glucose to the shunt is not less than the difference between the 14CO2 outputs at any time after adding labeled glucose nor more than the steady-state output of 14CO2 from [1-14C]glucose. Moreover, absence of a 14CO2 difference does not prove that the shunt is absent or inactive. The value for the minimum flux rate can be maximized by following the time course of the C-1 - C-6 difference in 14CO2 during the transient phase before isotopic equilibration is complete, but useful values can be obtained when the time course is not available. The above relationships are applicable to gluconeogenic as well as non-gluconeogenic tissues. Applications of these relationships to peripheral ganglia from chicken embryos, in which the 14CO2 difference passes through a maximum during incubation, show that 27-37% of the glucose taken up enters the pentose cycle in sympathetic ganglia from 10-day-old embryos, while 17-36% enters the cycle in 15-day-old dorsal root ganglia.  相似文献   

16.
Radioimmunoassays of platelet prostaglandins E1 and F1 alpha in platelet rich plasma or platelet suspension, demonstrate that both PGE1 and PGF1 alpha are present at higher concentrations than prostaglandins E2 and F2 alpha. Gas chromatography--mass spectrometry determinations of prostaglandins E1 and E2 in resting washed platelets confirm this difference. Lastly, there is a greater incorporation of [1--14C] acetate into prostaglandins E1 and F1 alpha compared to that into prostaglandins E2 and F2 alpha.  相似文献   

17.
J. A. Pryke  T. ap Rees 《Planta》1976,131(3):279-284
Summary We did this work to see if there is a correlation between lignin synthesis and the activity of the pentose phosphate pathway. Excision of the third internode of the stem of Coleus blumei Benth. followed by incubation on sucrose and indoleacetic acid led to extensive formation of tracheids. During this lignification we determined the activities of glucose-6-phosphate dehydrogenase and fructose-1,6-diphosphate aldolase, and the extent to which [1-14C]-,[3,4-14C]-, and [6-14C]glucose labelled CO2 and the major cellular components. The results indicate that the pentose phosphate pathway was active during lignification, and that the activity of this pathway relative to glycolysis increased at the onset of lignification. Explants of storage tissue of Helianthus tuberosus L. were cultured under conditions which caused extensive lignification. 14CO2 production from [1-14C]-, [3,4-14C]-, and [6-14C]glucose indicated activity of the pentose phosphate pathway during tracheid formation. We suggest that lignification is accompanied by appreciable activity of the pentose phosphate pathway and that this could provide the reducing power for lignin synthesis.Abbreviations NADP nicotinamide-adenine dinucleotide phosphate - IAA indoleacetic acid  相似文献   

18.
The xylene ring of riboflavin originates by dismutation of the precursor, 6,7-dimethyl-8-ribityllumazine. The formation of the latter compound requires a 4-carbon unit as the precursor of carbon atoms 6 alpha, 6, 7, and 7 alpha of the pyrazine ring. The formation of riboflavin from GTP and ribose phosphate by cell extract from Candida guilliermondii has been observed by Logvinenko et al. (Logvinenko, E. M., Shavlovsky, G. M., Zakal'sky, A. E., and Zakhodylo, I. V. (1982) Biokhimiya 47, 931-936). We have studied this enzyme reaction in closer detail using carbohydrate phosphates as substrates and synthetic 5-amino-6-ribitylamino-2,4-(1H,3H)-pyrimidinedione or its 5'-phosphate as cosubstrates. Several pentose phosphates and pentulose phosphates can serve as substrate for the formation of riboflavin with similar efficiency. The reaction requires Mg2+. Various samples of ribulose phosphate labeled with 14C or 13C have been prepared and used as enzyme substrates. Radioactivity was efficiently incorporated into riboflavin from [1-14C]ribulose phosphate, [3,5-14C]ribulose phosphate, and [5-14C]ribulose phosphate, but not from [4-14C]ribulose phosphate. Label from [1-13C]ribose 5-phosphate was incorporated into C6 and C8 alpha of riboflavin. [2,3,5-13C]Ribose 5-phosphate yielded riboflavin containing two contiguously labeled segments of three carbon atoms, namely 5a, 9a, 9 and 8, 7, 7 alpha. 5-Amino-6-[1'-14C] ribitylamino-2,4 (1H,3H)-pyrimidinedione transferred radioactivity exclusively to the ribityl side chain of riboflavin in the enzymatic reaction. It follows that the 4-carbon unit used for the biosynthesis of 6,7-dimethyl-8-ribityllumazine consists of the pentose carbon atoms 1, 2, 3, and 5 in agreement with earlier in vivo studies.  相似文献   

19.
1. The reactions of the pentose phosphate cycle were investigated by the intraportal infusion of specifically labelled [(14)C]glucose or [(14)C]ribose into the liver of the anaesthetized rabbit. The sugars were confined in the liver by haemostasis and metabolism was allowed to proceed for periods up to 5min. Metabolism was assessed by measuring the rate of change of the specific radioactivity of CO(2), the carbon atoms of glucose 6-phosphate, fructose 6-phosphate and tissue glucose. 2. The quotient oxidation of [1-(14)C]glucose/oxidation of [6-(14)C]glucose as measured by the incorporation into respiratory CO(2) was greater than 1.0 during most of the time-course and increased to a maximum of 3.1 but was found to decrease markedly upon application of a glucose load. 3. The estimate of the pentose phosphate cycle from C-1/C-2 ratios generally increased during the time-course, whereas the estimate of the pentose phosphate cycle from C-3/C-2 ratios varied depending on whether the ratios were measured in glucose or hexose 6-phosphates. 4. The distribution of (14)C in hexose 6-phosphate after the metabolism of [1-(14)C]ribose showed that 65-95% of the label was in C-1 and was concluded to have been the result of a rapidly acting transketolase exchange reaction. 5. Transaldolase exchange reactions catalysed extensive transfer of (14)C from [2-(14)C]glucose into C-5 of the hexose 6-phosphates during the entire time-course. The high concentration of label in C-4, C-5 and C-6 of the hexose 6-phosphates was not seen in tissue glucose in spite of an unchanging rate of glucose production during the time-course. 6. It is concluded that the reaction sequences catalysed by the pentose phosphate pathway enzymes do not constitute a formal metabolic cycle in intact liver, neither do they allow the definition of a fixed stoicheiometry for the dissimilation of glucose.  相似文献   

20.
1. The effects of fasting and fasting followed by refeeding on the activities of the oxidative pentose pathway (OPP) and the tricarboxylic acid cycle (TCA) in isolated rat colonocytes were estimated by the rate of production of 14CO2 from [1-14C]glucose and [6-14C]glucose, respectively. 2. Refeeding after a fast induced a 2-3-fold increase in glucose flux through the OPP and TCA cycle and the degree of change was similar in colonocytes from the proximal and distal colon. 3. Butyrate at a concentration of 40 mM inhibited the OPP by 20-30% (P less than 0.05) but had no effect on the activity of the TCA cycle. Glutamine at a concentration of 2 mM decreased the glucose flux through both the OPP and the TCA cycle by 30-50% (P less than 0.05). 4. Production of 14CO2 from the oxidation of butyrate or glucose indicated that the former was 5-7 times more active in colonocytes from fasted rats. After refeeding, however, butyrate utilization was similar to fasting values in the proximal colon but significantly lower (P less than 0.05) in the distal colon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号