首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A V Reddy  R MacColl  F Maley 《Biochemistry》1990,29(10):2482-2487
External invertase exists in an oligomeric equilibrium of dimer, tetramer, hexamer, and octamer, the concentrations of which vary with pH, time, and concentration of enzyme [Chu, F.K., Watorek, W., & Maley, F. (1983) Arch. Biochem. Biophys. 223, 543-555; Tammi, M., Ballou, L., Taylor, A., & Ballou, C.E. (1987) J. Biol. Chem. 262, 4395-4401]. To assess the influence of carbohydrate on this equilibrium, we investigated the self-association of external invertase (10 oligosaccharides per subunit), deglycosylated external invertase (2 oligosaccharides per subunit), and internal invertase (no carbohydrate) under various conditions. In addition, the effect of carbohydrate on the interaction of the subunits of these various invertases to form heterooligomers was studied. Chloride ion was found to promote subunit association in the various invertases irrespective of their glycosylation status. However, external invertase was less responsive to chloride ion relative to the internal and deglycosylated invertases. The higher oligomers of deglycosylated invertase were stable at 47 degrees C whereas those of external invertase dissociated rapidly into dimers, suggesting that the additional oligosaccharides in external invertase destabilize subunit interaction. Hybridization experiments with the various invertases showed that the dimers of internal invertase formed heterooligomers with either external or deglycosylated invertase. By contrast, the monomers of external and internal invertases formed their respective homodimers, but not heterodimers. These results suggest that the oligosaccharide content of invertase not only influences the extent of self-association but also affects heterooligomer formation.  相似文献   

2.
External invertase is the product of the SUC2 gene of Saccharomyces cerevisiae. The deduced sequence of this enzyme (Taussig, R., and Carlson, M. (1983) Nucleic Acid Res. 11, 1943-1954) reveals it to contain 14 potential N-linked glycosylation sites, or sequons, although only 9-10 appear to be glycosylated (Trimble, R. B., and Maley, F. (1977) J. Biol. Chem. 252, 4409-4412). To determine the location of the glycosylated sequons, external invertase was deglycosylated with endo-beta-acetylglucosaminidase H and its component peptides analyzed by both fast atom bombardment mass spectrometry (FABMS) and classical peptide isolation procedures. By use of the former technique most of the glucosamine-containing sequons could be located and by the latter sufficient amounts of small glucosamine-containing peptides were isolated to enable their quantitation. From the combined FABMS and glucosamine analyses, it was established that eight of the sequons in a subunit of invertase are either completely or almost completely glycosylated, while five others are glycosylated to the extent of about 50% or less. In the case of two overlapping sequons (4 and 5), which include Asn92-Asn93-Thr-Ser, only the first Asn was glycosylated. Thus, all but one of the sequons of external invertase are glycosylated to some extent, giving an appearance of only 9-10 N-linked oligosaccharides/subunit. The sequence identity of both external and internal invertase was verified by FABMS and by peptide sequence analysis. In only one site was an amino acid found to differ from that deduced from the DNA sequence of the SUC2 gene. This occurred at position 390 where a proline was found in place of alanine, which could result from a single base change in the triplet specifying the latter amino acid.  相似文献   

3.
Effect of glycosylation on yeast invertase oligomer stability   总被引:5,自引:0,他引:5  
Yeast external invertase is a glycoprotein that exists as a dimer that can associate to form tetramers, hexamers, and octamers (Chu, F., Watorek, W., and Maley, F. (1983) Arch. Biochem. Biophys. 223, 543-555; Esmon, P. C., Esmon, B. E., Schauer, I. E., Taylor, A., and Schekman, R. (1987) J. Biol. Chem., 262, 4395-4401), a process that is facilitated by the attached oligosaccharide chains. We have studied this association by high performance liquid chromatography on a gel filtration matrix, by which procedure wild-type bakers' yeast invertase gives two peaks, and invertase from a core mutant (mnn1 mnn9) of Saccharomyces cerevisiae X2180 gives three peaks. Concentration of an invertase solution by freezing drives the dimers into higher aggregates that, at 30 degrees C, re-equilibrate to a mixture of smaller forms, the composition of which depends on pH, concentration, and time. The invertase from a mutant, mnn1 mnn9 dpg1, which underglycosylates its glycoproteins and produces invertase with 4-7 oligosaccharide chains, forms oligomers of much lower stability than the mnn1 mnn9 invertase, which has 8-11 carbohydrate chains. Both of these mutants release external invertase from the periplasm into the medium during growth, but we conclude that defects in the cell wall structure may be more important in this release than an altered tendency of the invertases to aggregate. Investigation of aggregate formation by electron microscopy revealed that all invertases, including the internal nonglycosylated enzyme, form octamers under appropriate conditions.  相似文献   

4.
Saccharomyces cerevisiae external and internal invertases have been amplified by introducing the normal and modified SUC2 genes into yeast multicopy plasmids, which were then used to transform a yeast strain resistant to repression by glucose. Amino acid compositional analysis of these enzymes, in addition to end group sequencing, confirmed the DNA sequence data of Taussig and Carlson (Taussig, R., and Carlson, M. (1983) Nucleic Acids Res. 11, 1943-1954), indicating that both enzymes were encoded in the same gene. Comparison of the properties of carbohydrate-containing external invertase and its nonglycosylated internal form revealed that although the carbohydrate did not appear to influence the conformation of the peptide backbone, as determined by circular dichroism analyses, its presence considerably enhanced the ability of guanidine HCl-denatured external invertase to be renatured relative to internal invertase. The Mr of the internal enzymes was found to be greatly dependent on pH with the enzyme being a monomer at pH 9.4, a dimer at pH 8.3, and an apparent octamer at pH 4.9.  相似文献   

5.
Three invertase forms (EC 3.2.1.26) were identified in soluble extracts from developing flower buds of Lilium longiflorum Thunb. cv. Nellie White. The enzymes were separable on a diethylaminoethyl (DEAE)-Sephacel column and designated invertase I. II or III according to the order of elution from Sephacel. To determine tissue specificity of these floral invertases, anthers were separated from tepal. pistil and filament tissue, and analyzed for invertase activity. Invertase I was localized primarily in anthers, with invertases II and III being present in much smaller amounts (less than 5% of the invertase I activity). Much higher levels of invertases II and III were found in the nonanther organs of the flower, where essentially no invertase 1 was detectable. Further purification of each form (using gel filtration. Con-A-Sepharose affinity chromatog-raphy and hydrophobic interaction chromatography on phenyl-agarose) resulted in 135- 189- and 202-fold purification of pooled fractions from DEAE-Sephacel. respectively, and established that each invertase form is a glycoprotein. Each was an acid invertase. with pH optima between 4.0 and 5.0 and an apparent molecular mass of 77 500 Da (as determined by Sephadex gel filtration). The invertases had sucrose Km values of 1.0. 6.4 and 6.6 m M . and temperature optima of 40. 50 and 45°C. respectively. A temperature stability study revealed that invertase III was the most thermostable, followed by II and I. Invertases II and III had lower affinity to raffinose and stachyose than invertase I. All three enzymes were completely inhibited by Hg2+ or Ag+ ions at 1.7 m M . At this concentration. Cu2- showed differential partial inhibition . Although fructan was shown to be present in both anther and nonanther tissues of Lilium flower buds, these invertases showed no sucrose:sucrose fructosyltransferase (EC 2.4.1.99) activity.  相似文献   

6.
Acid and neutral invertases were found in the mesocarp of developing muskmelon (Cucumis melo L. cv Prince) fruit and the activities of these enzymes declined with maturation of the fruit, concomitantly with the accumulation of sucrose. Neutral invertase was only present in the soluble fraction and acid invertase was present in both the soluble and cell-wall fractions. The cell-wall fraction contained three types of acid invertase: a NaCl-released invertase; an EDTA-released invertase, and a tightly bound invertase that still remained on the cell wall after treatment with NaCl and EDTA. The soluble acid and neutral invertases could be separated from one another by chromatography on DEAE-cellulose and they exhibited clear differences in their properties, namely, in their pH optima, substrate specificity, Km values for sucrose, and inhibition by metal ions. The EDTA-released invertase and the soluble acid invertase were similar with regard to their chromatographic behavior on DEAE-cellulose, but the NaCl-released invertase was different because it was adsorbed to a column of CM-cellulose. The soluble acid invertase and two cell-wall bound invertases had very similar characteristics with regard to optimal pH and temperature, Km value for sucrose, and substrate specificity.  相似文献   

7.
可溶性酸性蔗糖酶是决定甜菜块根贮藏质量的关键酶。贮藏期间其活力的提高是由于蛋白质重新合成所致。不良的贮藏条件使块根汁液pH降低,膜透性增加,这两种因素与可溶性酸性蔗糖酶活力成正相关,与贮藏质量成负相关。  相似文献   

8.
Although a lot of vacuolar invertase (EC 3.2.1.26) cDNAs are available from a diversity of plant species, up to now no sequence information is available on invertases from any dicot fructan-containing species. Therefore, we describe the cloning of vacuolar acid invertase cDNA from etiolated Belgian endive leaves ( Cichorium intybus L. var. foliosum cv. Flash), formed throughout the forcing process of the witloof chicory roots. Full-length cDNA was obtained by a combination of RT-PCR, PCR and 5'- and 3' RACE RT-PCR, starting with primers based on conserved amino acid sequences. The cloned chicory acid invertase groups together with vacuolar type invertases and fructan biosynthetic enzymes. A putative role for vacuolar type invertases in fructan synthesizing plants is discussed.  相似文献   

9.
Amino acid sequences were analyzed for two isoforms of myosin essential light chain, LC17a and LC17b [Hasegawa, Y., Ueno, H., Horie, K., & Morita, F. (1988) J. Biochem. 103, 15-18] from porcine aorta smooth muscle. Both LC17a and LC17b consisted of 150 amino acid residues and their N-terminal Cys residues were blocked by an acetyl group. The amino acid sequences of LC17a and LC17b were common from the N-terminal to Glu-141 and five amino acid substitutions were observed within the remaining C-terminal 9 residues. The amino acid sequences of LC17a and LC17b were identical to those deduced from the nucleotide sequences of bovine aortic cDNAs encoding the two isoforms [Lash, J. A., Helper, D.J., Klug, M., Nicolozakes, A.W., & Hathaway, D.R. (1990) Nucleic Acids Res. 18, 7176].  相似文献   

10.
Fructans are fructose polymers that are synthesized from sucrose by fructosyltransferases. Fructosyltransferases are present in unrelated plant families suggesting a polyphyletic origin for their transglycosylation activity. Based on sequence comparisons and enzymatic properties, fructosyltransferases are proposed to have evolved from vacuolar invertases. Between 1% and 5% of the total activity of vacuolar invertase is transglycosylating activity. We investigated the nature of the changes that can convert a hydrolysing invertase into a transglycosylating enzyme. Remarkably, replacing 33 amino acids (amino acids 143-175) corresponding to the N-terminus of the mature onion vacuolar invertase with the corresponding region of onion fructan:fructan 6G-fructosyltransferase (6G-FFT) led to a shift in activity from hydrolysis of sucrose towards transglycosylation between two sucrose molecules. The substituted N-terminal region contains the sucrose-binding box that harbours the nucleophile involved in sucrose hydrolysis (Asp164). Subsequent research into the individual amino acids responsible for the enhanced transglycosylation activity revealed that mutations in amino acids Trp161 and Asn166, can give rise to a shift towards polymerase activity. Changing the amino acid at either of these positions in the sucrose-binding box increases the transglycosylation capacity of invertases two- to threefold compared to wild type. Combining the two mutations had an additive effect on transglycosylation ability, resulting in an approximately fourfold enhancement. The mutations generated correspond with natural variation present in the sucrose-binding boxes of vacuolar invertases and fructosyltransferases. These relatively small changes that increase the transglycosylation capacity of invertases might explain the polyphyletic origin of the fructan accumulation trait.  相似文献   

11.
12.
The amino acid sequence of pig liver 4-aminobutyrate aminotransferase has been determined by gas-phase sequencing of proteolytically derived peptide fragments. The sequence differs substantially from that predicted for the same enzyme on the basis of the sequence of cDNA derived from pig brain in recently published work [Kwon, O., Park, J. & Churchich, J. E. (1992) J. Biol. Chem. 267, 7215-7216]. Apart from a few minor differences, the two sequences are completely different in the segment of protein comprising the 36 residues at positions 107-142. Insertion of a cytosine between bases 402 and 403 in the cDNA sequence, together with deletion of the guanine at position 510, results in a DNA sequence which predicts exactly the amino acid sequence determined by peptide analysis in the present work. The mammalian enzyme has approximately 44% sequence identity with the same enzyme from two unicellular eukaryotes (Saccharomyces cerevisiae, Aspergillus nidulans) and 22% identity with that from Escherichia coli.  相似文献   

13.
14.
D M Obenland  U Simmen  T Boller    A Wiemken 《Plant physiology》1993,101(4):1331-1339
Three soluble isoforms of invertase (beta-fructofuranosidase; EC 3.2.1.26) were purified from 7-d-old primary leaves of barley (Hordeum vulgare L.). Invertase I, a monomeric protein of 64 kD, was purified to apparent homogeneity as shown by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Invertases IIA and IIB, multimeric proteins with molecular masses of the 116 and 155 kD, were purified 780- and 1370-fold, respectively, but were not yet homogeneous. Extracts of epidermal strips of leaves contained only invertase IIB. The specific activity of invertase was more than 100-fold higher in the epidermis than in the mesophyll. All three isoforms were acidic invertases, with pH optima of around 5.0 and little activity in the alkaline range. Invertase I had a Km for sucrose of 8.1 mM, and invertases IIA and IIB had much lower values of 1.0 and 1.7 mM, respectively. Invertase I was more than 2-fold more resistant than the other two invertases to the inhibitors HgCl2 and pyridoxal. All three constitutive invertases were found to act also as sucrose-sucrose fructosyltransferases when supplied with high concentrations of sucrose, forming 1-kestose as principal product. However, the fructosyltransferase activity of all three enzymes was inhibited by pyridoxal in the same way as their invertase activity. This characteristic clearly differentiates them from the inducible sucrose-sucrose fructosyltransferase of barley leaves, the activity responsible for the initial steps of fructan biosynthesis, which has previously been shown to be insensitive to pyridoxal.  相似文献   

15.
Alkaline invertase was induced during the initiation of suspension cultures of single cells from leaf explants of sugar beets in Murashige-Skoog liquid medium which contained benzyladenine. This activity was barely detectable in the leaves themselves. In suspension cultures, the presence of both acid and alkaline invertases was detected; alkaline invertase was only present in the cytoplasm of the cultured cells, whereas acid invertase was present in the cytoplasm and cell walls, and was also detected in the culture medium. The cell wall contained at least three types of acid invertase; two of these activities were solubilized by saline (saline-released) and EDTA (EDTA-released), respectively, and the third remained tightly associated with the cell wall. Saline-released and EDTA-released invertases from the cell wall showed the significant differences in their properties: the saline-released enzyme had the highest affinity for sucrose among the invertases tested, and was easily bound to cell walls, to DNA, and to a cation exchanger, unlike the EDTA-released enzyme. Sucrose is the source of carbon for plant cells in suspension culture and is probably degraded in the cell wall by the saline-released invertase, which had the highest activity and the highest affinity for sucrose. Hexose products of this degradation would be transported to cytoplasm. Soluble invertase, EDTA-released invertase from the cell wall, and one of two extracellular invertases behaved similarly upon chromatography on DEAE-cellulose. They had similar activity profiles with changing pH, and similar Km values for sucrose. Thus it appears that they are identical. Two extracellular invertases found in the growth medium of the suspension cultures were probably identical with those in the soluble fraction of callus and seedlings of sugar beets, because they showed similar behaviors during chromatography on DEAE-cellulose, and had similar activity profiles with changing pH and Km values for sucrose.  相似文献   

16.
It has been shown that protein stability can be modulated from site-directed mutations that affect the entropy of protein unfolding [Matthews, B. W., Nicholson, H., & Becktel, W. J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 6663-6667]. However, the effect of a specific amino acid replacement on stability highly depends on the location of the mutation site and its environment in the protein structure [Yutani, K., Hayashi, S., Sugisaki, Y., & Ogasahara, K. (1991) Proteins Struct., Funct., Genet. 9, 90-98). To clarify the role of specific proline residues in the thermostability of human lysozyme (h-lysozyme), a series of proline mutants were investigated by means of scanning calorimetry and high-resolution X-ray crystallography. The thermodynamic properties of the mutant and wild-type h-lysozymes are compared and discussed on the basis of their three-dimensional structure. h-Lysozyme contains two proline residues at positions 71 and 103. The Pro71----Gly substitution was found to destabilize h-lysozyme by decreasing the entropic contribution of unfolding by about 2 kcal/mol at 68.8 degrees C. This is consistent with the theoretical expectations for such a substitution. However, the same substitution at position 103 (Pro103----Gly) does not affect h-lysozyme stability, and the thermodynamic properties of the P71G/P103G and P71G mutants are essentially the same. Pro71 which is conserved among lysozymes from other species, appears to be important for stability, whereas Pro103, which is not conserved, does not. These differences are explained in terms of residue accessibility to the solvent and crystallographic B-factor, which reflects the amino acid mobility.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Recently it was shown that porcine pancreatic phospholipase A2 aggregates in the presence of submicellar concentrations of anionic substrates [van Oort, M.G., Dijkman, R., Hille, J.D.R., & de Haas, G.H. (1985) Biochemistry 24, 7993-7999]. In the resulting complexes the enzyme displays very high catalytic activity. In this study the interaction process was further investigated by using pancreatic phospholipases A2 of different origins and several semisynthetic mutants in which one particular amino acid residue was substituted. By use of directing binding studies with a nondegradable anionic substrate analogue and monomolecular surface film kinetics on 1,2-didecanoyl-sn-glycerol 3-sulfate, it is shown that the aggregation process is controlled by the ionization state of the side chains of the amino acid residues at positions 6 and 17.  相似文献   

19.
The complete amino acid sequence of the 50 kDa fragment of subfragment-1 from adult chicken pectoralis muscle myosin was determined. It contained 431 residues including an epsilon-N-trimethyllysine at position 346. The 431-residue sequence corresponds to the sequence of residues 206 to 639 of chicken embryonic breast muscle myosin heavy chain which was predicted from the nucleotide sequence of the cDNA by Molina et al. [Molina, M. I., Kropp, K.E., Gulick, J., & Robbins, J. (1987) J. Biol. Chem. 262, 6478-6488]. Comparing the two sequences, 23 amino acid substitutions and three deletions/insertions are recognized.  相似文献   

20.
It has been shown previously that the inhibition of autophagic proteolysis in liver by a physiological mixture of amino acids can be mimicked completely by addition of leucine in combination with alanine [Leverve, X. M., Caro, L. H. P., Plomp, P. J. A. M. and Meijer, A. J. (1987) FEBS Lett. 219, 455-458]. We have now further defined conditions which lead to this inhibition. Isolated rat hepatocytes were incubated in the perifusion system in which the cells can be maintained at a steady state in the presence of low amino acid concentrations. Combinations of leucine (0.5 mM) with either alanine, glutamine, asparagine or proline (2 mM) inhibited proteolysis by 40-50%. Under these conditions, both in the absence and presence of the transaminase inhibitor, aminooxyacetate, a correlation was found between the extent of inhibition of proteolysis and the sum of the total intracellular amounts of aspartate and glutamate. Inhibition of proteolysis by leucine and leucine analogues did not correlate with their ability to activate glutamate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号