首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular response in neurons and glial cells of an isolated cortical slab to direct electrical stimulation of the slab following surface application of strychnine was investigated during experiments on immobilized unanesthetized cats. Strychnine induced single epileptiform discharges and after-discharges in the slab and in the neurons it contained in the form of large-scale paroxysmal depolarization shifts (PDS) in membrane potential (MP). Spontaneous summated epileptiform discharges and neuronal activity in the units examined were not very synchronized. Electrical stimulation induced generalized paroxysmal activity in the isolated slab. Neuronal PDS were accompanied by refractory periods, onset of which did not depend on MP level. Strychnine increased the number of neurons manifesting background activity in which action potentials were generated by rhythmic depolarizing MP waves of extrasynaptic origin. Epileptiform response in strychninized cortical isolated slabs to presentation of single stimuli is accompanied by major depolarization shifts in the MP of glial cells. Paroxysmal excitation is thought to be triggered in strychninized isolated cortical slabs by extrasynaptic factors and closely linked to altered concentration of extracellular potassium.I. I. Mechnikov University, Odessa. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 23–29, January–February, 1990.  相似文献   

2.
Intracellular correlates of complex sets of rhythmic cortical "spike and wave" potentials evoked in sensorimotor cortex and of self-sustained rhythmic "spike and wave" activity were examined during acute experiments on cats immobilized by myorelaxants. Rhythmic spike-wave activity was produced by stimulating the thalamic relay (ventroposterolateral) nucleus (VPLN) at the rate of 3 Hz; self-sustained afterdischarges were recorded following 8–14 Hz stimulation of the same nucleus. Components of the spike and wave afterdischarge mainly correspond to the paroxysmal depolarizing shifts of the membrane potential of cortical neurons in length. After cessation of self-sustained spike and wave activity, prolonged hyperpolarization accompanied by inhibition of spike discharges and subsequent reinstatement of background activity was observed in cortical neurons. It is postulated that the negative slow wave of induced spike and wave activity as well as slow negative potentials of direct cortical and primary response reflect IPSP in more deep-lying areas of the cell bodies, while the wave of self-sustained rhythmic activity is due to paroxysmal depolarizing shifts in the membrane potential of cortical neurons.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 298–306, May–June, 1986.  相似文献   

3.
Neuronal response in a cortical slab isolated from the cat during surface application of strychnine was investigated in experiments on immobilized unanesthetized animals by means of intracellular recording techniques. Protracted depolarizing potentials (PDP) were found to occur spontaneously and in response to a single intracortical electrical stimulus in a proportion of the neurons. These potentials could be triggered by transformation of response along the lines of "paroxysmal depolarizing shift" (PDS) — hyperpolarization, with hyperpolarization replaced by depolarizing potentials. A further increase in depolarizing after-potentials resulted in the generation of PDP. These changes were normally accompanied by enhanced summated epileptiform activity in the isolated cortical slab. It is postulated that PDP were triggered by increased calcium conductance at the neuronal membrane during intensification of paroxysmal response in the isolated cortical slab.I. I. Mechnikov University, Odessa. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 19–23, January–February, 1990.  相似文献   

4.
Responses of 155 neurons 3 weeks after neuronal isolation of a slab of auditory cortex (area AI) to single intracortical stimulating pulses at the level of layer IV were studied in unanesthetized, curarized cats during paroxysmal electrical activity evoked by series of high-frequency (10–20 Hz) electrical stimulation by a current 2–5 times above threshold for the direct cortical response. In response to such stimulation a discharge of paroxysmal electrical activity, lasting from a few seconds to tens of seconds, appeared in the slab. As a rule it consisted of two phases — tonic and clonic. This indicates that cortical neurons can form both phases of paroxysmal cortical activity. Depending on behavior of the neurons during paroxysmal electrical activity and preservation of their ability to respond to intracortical stimulation at this time, all cells tested in the isolated slab were divided into four groups. Their distribution layer by layer and by duration of latent periods was studied. Two-thirds of the neurons tested were shown to generate spike activity during paroxysmal discharges whereas the rest exhibited no such activity. A special role of neurons in layer II in generation of paroxysmal activity in the isolated slab was noted. The view is expressed that at each moment functional neuronal circuits, independent of each other, exist in the slab and also, evidently in the intact cortex, which can interact with one another when conditions change.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 3–11, January–February, 1984.  相似文献   

5.
This investigation was made on a preparation of stretch receptors of molting crayfish. We made intracellular recordings of potentials from the soma of a slowly-adapting neuron, and extracellular recordings from the nerve trunk. After strychnine had been added to the physiological solution surrounding the preparation, additional rhythmic activity was recorded from the nerve trunk, with corresponding depolarizational oscillations in the membrane potential of the soma of the slowly-adapting neuron. The additional rhythmic activity had a competitive relationship to the action potentials lying along the axon of the slowly-adapting neuron, the rhythm frequency increasing as the prolonged action potentials arose in the soma of that neuron. The depolarizational oscillations in the soma did not change sign as its membrane potential decreased. Analysis of the above phenomenon led to the conclusion that within the axon membrane of a slowly-adapting neuron there appears a section that spontaneously generates rhythmic action potentials. The results of the investigation indicate that there may be wide variations in the adaptational properties of the neuron membrane.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 309–314, November–December, 1969.  相似文献   

6.
Neuronal response to single stimuli was investigated in a cortical slab isolated from immobilized cats before, during, and after onset of induced epileptic states. Neurons of the isolated cortical slab were found to generate EPSP and paroxysmal depolarizing shifts (PDS) in membrane potential (MP) during the development of generalized epileptoid activity; these occurred together with refractory periods. Duration of the latter corresponds with the PDS plateau and repolarizing shifts in MP. Single electrical stimuli induced gradual alteration in PDS as these shifts developed. Neurons still maintain their ability to generate PDS arising in response to presentation of single stimuli once ictal activity has ceased. Postsynaptic response is not thought to play a decisive role in the genesis of epileptoid activity. Nonspecific factors and especially alterations in the concentration of electrogenic ions apparently contribute to this phenomenon.I. I. Mechnikov State University, Odessa. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 198–204, March–April, 1989.  相似文献   

7.
The action of ionotophoretic application of acetylcholine and serotonin (5-hydroxytryptamine) on neurons of the isolated rabbit superior cervical ganglion was investigated by intracellular recording. The soma of neurons in the ganglion was shown to have no muscarinic receptors and to have only nicotinic receptors scattered irregularly over the whole surface of the neuron soma membrane. Acetylcholine has an excitatory action on presynaptic endings. In about half of the neurons of the ganglion the soma was shown to possess serotonin receptors.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 519–524, September–October, 1978.  相似文献   

8.
The effect of pentylenetetrazol on the metacerebral neuron of Helix pomatia   总被引:1,自引:0,他引:1  
The effects of Pentylenetetrazol (PTZ) on the metacerebral giant cell (MCC) of the snail, Helix pomatia were studied. Actions on membrane resistance, time constant, resting and action potentials, outward and inward ionic currents were examined. Superfusion with PTZ in concentrations of 25 to 50 mmol/l, induced a gradually evolving convulsive state, which could be studied by intracellular recording from the MCCs. In the pre-convulsive state an acceleration of the spontaneous activity developed and was followed by paroxysmal depolarization shifts (PDSs), in the convulsive phase. PTZ prolonged the membrane time constant by about 10 percent, but this could not be traced back to alterations in membrane resistance or capacity. The resting membrane potential was not significantly altered; the action potentials were prolonged by slowing down of both the rising and decaying phases. The outward potassium currents were repressed by PTZ in a voltage dependent manner. The decrease of the IA current became more pronounced at increasingly positive command pulses, while IK was relieved from depression especially at longer pulse durations. Inward currents were isolated with the aid of suppression of outward currents by 50 mmol/l TEA. Under these conditions sodium currents, measured in calcium deficient Ringer solution were moderately depressed, while the calcium currents, examined during sodium-free superfusion, were mildly enhanced by PTZ. It is concluded that PTZ effects on ionic conductances, on membrane parameters, on the resting potential and ionic currents explain only modifications of spike potentials occurring in the convulsive state and do not account for the PDS, the central phenomenon of the convulsive electrographic activity, at least in this thoroughly examined type of neuron.  相似文献   

9.
Spontaneous and evoked activity of caudate nucleus neurons was recorded extracellularly in acute experiments on cats. Different forms of potentials were found by analysis of the results. The potentials recorded belong to three types: ordinary action potentials; prepotentials or incomplete spikes differing from ordinary action potentials in their lower amplitude and slower decline, and complex discharges in which a spike of somewhat reduced amplitude is followed by a slow positive-negative wave. In the spontaneous activity prepotentials were observed both in complete action potentials and in isolation. The frequency of the complex discharges was 0.5–1 per second. The slow wave of these discharges blocked prepotential and action potential formation. The origin of these forms of potentials in neurons of the caudate nucleus is discussed and they are compared with analogous forms of potentials described for the Purkinje cells of the cerebellum.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukranian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 149–156, March–April, 1977.  相似文献   

10.
Action potentials of neurons of the turtle general cortex and the pattern of their generation were studied by an intracellular recording method. Besides the complete action potential, the cells also generate partial spikes of varied amplitude which compose the complete action potential. The threshold of generation and the discrete amplitude of each partial spike are not strictly constant but they fluctuate gradually and spontaneously within certain limits without any change in membrane potential of the cell. Somatic and dendritic spikes are distinguished. The trigger zones of the latter are located at various distances from the soma. During orthodromic activation of cortical neurons dendritic spikes are generated consecutively and spread to the some electrotonically with a decrement. They are the immediate cause of generation of the somatic spike.M. V. Lomonovsov Moscow State University. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 237–242, May–June, 1976.  相似文献   

11.
The effect of diazepam on paroxysmal global electrical activity of a neuronally isolated slab of auditory cortex and on inhibitory responses of its neurons due to intracortical electrical stimulation was investigated in cats. Diazepam (2 mg/kg, intravenously) caused inhibition of paroxysmal electrical activity and increased the number of inhibited neurons in both the acutely isolated slab and three weeks after isolation, compared with the intact cortex. However, the number of disynaptic responses was reduced under these circumstances, especially in the long-isolated slab. It is postulated that diazepam exerts its action through activation of GABA-ergic inhibitory neurons, by synchronizing inhibition and increasing the duration of the IPSPs. The action of diazepam is manifested first, probably, in the initial links of cortical neuron chains.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 3–10, January–February, 1985.  相似文献   

12.
It was shown by intracellular recording of the activity of olfactory bulb neurons of the carp that their dendrites are excited both by synaptic activation and by direct stimulation with an electric current. The dendrites generate an action potential and probably conduct it for some distance toward the soma. The neurons can be divided into two groups: one responds to ortho- and antidromic stimuli with one, rarely with two peaks, the other responds with a rhythmical discharge. The presence of early and late IPSP is characteristic of neurons of both groups. Rhythmical variations in potential with a frequency of 26–33/sec, so-called oscillations, are recorded; they may be excitatory (in secondary neurons they correspond to EPSP) or inhibitory (they correspond to IPSP). Possible mechanisms of the excitatory oscillations and the rhythmical discharge in olfactory bulb neurons of the carp are discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol.3, No.5, pp. 505–511, September–October, 1971.  相似文献   

13.
The intracellular activity of pyramidal tract neurons was studied during electrical stimulation of ventrolateral and ventroposterolateral thalamic nuclei in acute experiments on cats immobilized by myorelaxants. Somatic action potentials were observed and spontaneous spikes were also produced by single and rhythmic stimulation of the thalamic nuclei at the rate of 8–14 Hz, by iontophoretic application of strychnine, and by intracellular depolarizing current pulses. These potentials had a relatively low and variable amplitude of 5–60 mV and are presumed to be dendritic action potentials. It is postulated that these variable potentials arise in the dendrites of pyramidal neurons with multiple zones generating such activity. No interaction was observed where somatic and dendritic action potentials occur simultaneously. The possible functional role of dendritic action potentials is discussed.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 435–443, July–August, 1986.  相似文献   

14.
The site of action potential generation in unipolar snail neurons was identified by stimulating neurons isolated together with the initial portion of the process from the neuropile. Stimulation consisted of a sinusoidal from electrical current passed along the soma-axonal axis in saline solution. No low threshold sites of action potential generation were found in 80% of test neurons using this technique. Spontaneous activity was determined by the operation of one dominant site on the neuronal process. Antidromic activation of the soma by axonal action potentials (even with simultaneous hyperpolarization of the soma) induced somatic potentials more successfully than direct somatic depolarization by the current flowing through the solution.Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow. Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 90–98, January–February, 1988.  相似文献   

15.
A modified system of Hodgkin-Huxley equations was used to describe transmembrane ionic currents during fixed changes of membrane potential and generation of action potentials in the soma of mollusk giant neurons. The effect of the axon was disregarded. The results of theoretical calculations are in satisfactory agreement with experimental results.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 3, pp. 315–322, May–June, 1973.  相似文献   

16.
In the Squilla heart ganglion, the pacemaker is located in the rostral group of cells. After spontaneous firing ceased, the electrophysiological properties of these cells were examined with intracellular electrodes. Cells respond to electrical stimuli with all-or-none action potentials. Direct stimulation by strong currents decreases the size of action potentials. Comparison with action potentials caused by axonal stimulation and analysis of time relations indicate that with stronger currents the soma membrane is directly stimulated whereas with weaker currents the impulse first arises in the axon and then invades the soma. Spikes evoked in a neuron spread into all other neurons. Adjacent cells are interconnected by electrotonic connections. Histologically axons are tied with the side-junction. B spikes of adjacent cells are blocked simultaneously by hyperpolarization or by repetitive stimulation. Experiments show that under such circumstances the B spike is not directly elicited from the A spike but is evoked by invasion of an impulse or electrotonic potential from adjacent cells. On rostral stimulation a small prepotential precedes the main spike. It is interpreted as an action potential from dendrites.  相似文献   

17.
Single unit activity was recorded intracellularly in the zone of an epileptic focus produced by injection of tetanus toxin into the cerebral cortex of cats. Epileptic activity of all neurons tested correlated with cortical discharges between fits. A group of neurons with continuous spontaneous activity, in which a steady fall of membrane potential and cyclic changes in the frequency of the spike discharges were observed was distinguished. In these neurons paroxysmal depolarization changes of membrane potential were found in the discharges between fits, without subsequent hyperpolarization of the membrane. Hyperpolarization potentials after paroxysmal depolarization shifts could be observed in neurons of other groups. The role of neurons of the different groups in the formation of an "epileptic aggregate," the main generator of pathologically enhanced excitation, is discussed.Institute of Normal and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Institute of Clinical and Experimental Neurology, Ministry of Health of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 582–589, November–December, 1978.  相似文献   

18.
Electrical responses of some nerves of the ciliary ganglion to stimulation of its other nerves were recorded, and intracellular recordings were also made from neurons of the ganglion (in situ). The overwhelming majority of preganglionic fibers terminate synaptically on neurons of the ganglion. Postganglionic fibers leave in the lateral and medial ciliary nerves, in which the velocity of conduction of excitation ranges from 1.9 to 9.0 m/sec. A few preganglionic fibers pass through the ciliary ganglion into the lateral ciliary nerve, giving off collaterals to neurons of the ganglion, so that stimulation of the lateral ciliary nerve evokes a response in the medial ciliary nerve (preganglionic axon reflex). The resting potential of neurons of the ciliary ganglion is 57±2.8 mV, and their action potential 68±3.6 mV. Single orthodromic stimulation usually evokes a single action potential in a neuron. The amplitude of the EPSP is increased during hyperpolarization of the postsynaptic membrane, confirming the chemical nature of synaptic transmission in the ganglion. The antidromic response consists of an IS-component and spike. The spike is followed by after-hyperpolarization, with a mean amplitude equal to 31% of the spike amplitude, and the time taken for it to fall to one–third of its initial amplitude is 75–135 msec.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 101–108, July–August, 1969.  相似文献   

19.
Intracellular microelectrode recordings from neurons ofHelix pomatia revealed several local zones of action potential generation both on the soma and on some of the branches of the neurons. Under certain conditions the activity of individual loci of the neuron membrane was synchronized to produce a normal action potential. It is suggested that the somatic membrane of neurons is heterogeneous in structure and consists of separate loci of an electrically excitable membrane, incorporating active and latent pacemaker zones. Neurons ofH. pomatia are characterized by two types of action potential with different triggering mechanisms: one (synaptic) type is generated under the influence of the EPSP, the other (pacemaker) arises through activation of endogenous factors for the neuron (pacemaker potentials). The interaction between synaptic and pacemaker potentials during integrative activity of the neuron is discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 88–94, January–February, 1973.  相似文献   

20.
The effects of strychnine on Aplysia R2 neurons were evaluated using simultaneous intracellular recordings of the soma and axon potentials. 1 mM strychnine produced a slight enlargement of the somatic spike and a large increase of the axon spike duration. Following direct stimulation, the soma displayed depolarizing afterpotentials ( DAPs ) which might trigger extra-spikes, both produced electronically by long-lasting axon spikes. Cobalt suppressed both the axon spike lengthening and the somatic extra-spikes or DAPs , and induced large depolarizing shifts in the soma. The region of largest spike lengthening (proximal axon) had a large density of Ca channels. The different effects of strychnine on the soma and on the axon were assumed to result from a selective blockage of the V-dependent K channels which would predominate in the axon whereas Ca-activated K channels would predominate in the soma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号