首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. Tokophrya infusionum reproduces by endogenous budding, forming a ciliated embryo within a brood pouch. The embryo is released to the outside medium, where it swims for some time, then undergoes metamorphosis by the formation of a disk, stalk, and tentacles. In one of the clones (E22), 1–2% of the adults display abnormalities during reproduction. In some of the abnormal adults, the embryo is retained inside a greatly enlarged brood pouch and undergoes metamorphosis within the parent; in others, the embryo is not formed, and only a large empty brood pouch appears. Attempts to establish a separate clone composed only of abnormal organisms were unsuccessful, and led to the conclusion that all members of clone E22 are potentially abnormal. Experiments were performed to increase the percentage of abnormal organisms; it was found that overfeeding is one of the factors favoring abnormal reproduction. Physiological and genetic explanations of the abnormality are proposed and discussed.  相似文献   

2.
3.
A combined cytochemical and electronmicroscopic study of feeding Tokophrya revealed that it has 2 sources of acid phosphatase. One is from the prey, Tetrahymena, supplying newly formed food vacuoles with large amounts of enzyme. The other source is in Tokophrya itself, the enzyme being found in small vesicles, small dense elongate bodies surrounded by a membrane, or in residue vacuoles. It seems that the 2 former small structures contain insignificantly small amounts of phosphatase; however, large deposits of lead phosphate are present in residue vacuoles, former food vacuoles. Since Tokophrya has no cytopyge these vacuoles are not excreted. On the contrary, when feeding is resumed, they merge with food vacuoles, presumably supplying them with acid phosphatase. Whether this enzyme ultimately is derived from the prey Tetrahymena and persists undegraded in the residue vacuoles, or whether it is synthesized by Tokophrya cannot be determined from present work.  相似文献   

4.
The fine structure and function of the tentacle in Tokophrya infusionum   总被引:18,自引:16,他引:2  
The feeding apparatus of Suctoria consists of long, thin, stiff tubes called tentacles. When a swimming prey attaches to the tip of the tentacle a number of events follow in rapid succession. The tentacle broadens, a stream of tiny granules starts to move upward at its periphery to the tip, the prey becomes immobilized and shortly thereafter the cytoplasm of the still living prey begins to flow through the center of the tentacle to the body of the predator. An electron microscope study of the tentacle in Tokophrya infusionum, a protozoan of the subclass Suctoria, has disclosed a number of structural details which help to clarify some of the mechanisms involved in this unusual way of feeding. Each tentacle is composed of two concentric tubes. The lumen of the inner tube is surrounded by 49 tubular fibrils most probably of contractile nature. In the inner tube the cytoplasm of the prey is present during feeding, and in the outer tube are small dense bodies. It was found that the dense bodies originate in the cytoplasm of Tokophrya. They have an elongate, missile-like appearance, pointed at one end, rounded at the other, and are composed of several distinct segments. At the tip of the tentacle they penetrate the plasma membrane, with their pointed ends sticking out. It is assumed that the missile-like bodies play a major role in the feeding process. Their composite structure suggests that they might contain a number of enzymes which most probably are responsible for the various events preceding the actual food intake.  相似文献   

5.
SYNOPSIS. In Tokophrya infusionum metamorphosis from a ciliated swimming embryo to a sessile organism with a stalk, disc, and tentacles lasts only 3 minutes. The remarkable speed of meta-morphosis was clarified by an electron-microscope study of embryos before and during metamorphosis. Ultrathin sections have revealed that the embryo has at the anterior end of the body a number of specialized structures, such as dense bodies containing the precursor material for the disc and stalk, and microtubules which align the dense bodies into rows leading to pit-kite invaginations of the pellicle at the tip of the anterior end. At meta-morphosis the embryo settles down on this end and the precursor material is released thru the pits to the outside. At the same time the body of the embryo invaginates at this end, forming a cavity which becomes deeper and narrower until it acquires the shape of a channel. The 1st drops released from the dense bodies spread out on the substrate, forming the disc. The rest of the material, secreted into the channel, solidifies there to form the stalk. It seems obvious that the channel serves as a mold for the stalk, since after completion of the stalk the channel disappears. The stalk is structureless with no limiting membrane; it is outside the boundaries of the cell. Both the stalk and disc are extra-cellular organelles.
Of the new organelles appearing at metamorphosis, only the stalk and disc are formed de novo. The electron-microscope study disclosed that the embryo has internal parts of tentacles composed of a tube formed of microtubules. At the distal end of the microtubules is a ring of dense material. During metamorphosis the microtubules, together with the dense ring, grow out of the body, and along with them the pellicle and plasma membrane to form the external part of the tentacle.  相似文献   

6.
7.
Summary Ultrastructural changes in the micro- and macronucleus throughout division were followed in synchronized cultures of the suctorian, Tokophrya infusionum. After an initial swelling, the micronucleus elongates enormously; microtubules within the micronucleus proliferate and lengthen as the micronucleus elongates. Changes in the macronucleus become visible only after micronuclear division is well underway. The chromatin bodies fuse into long chromatin strands, and the large bundles of microtubules present in the resting macronucleus break up into small groups which parallel the chromatin strands. Colchicine, which prevents reproduction in Tokophrya, seems to block division at a very early stage. The macronucleus appears the same as the resting nucleus of untreated organisms, with numerous microtubules and distinct chromatin bodies. The chromatin in the micronucleus aggregates into large clumps, however, and proliferation of microtubules does not occur.Supported by a Graduate Fellowship at The Rockefeller University.Supported by Grant A1-01407-12 USPHS and Grant A1-08989-01 USPHS.  相似文献   

8.
An abnormality in the life cycle of Tokophrya infusionum   总被引:1,自引:0,他引:1  
  相似文献   

9.
SYNOPSIS. The adult Tokophrya infusionum does not possess cilia, but has 20–30 barren basal bodies arranged in 6 short rows adjacent to the contractile vacuole pore. During reproduction, which is by internal budding, the contractile vacuole sinks into the parent along with the invaginating membranes that form the embryo and the wall of the brood pouch. The 6 rows of basal bodies radiate away from the pore and elongate to form 5 long ciliary rows, that encircle the anterior half of the embryo, and 1 short row at the posterior end. The contractile vacuole pore, along with several barren basal bodies, remains in the parent when the embryo is completed. The pore rises to the surface when the embryo is born. New basal bodies are then formed in the parent to replace those which were incorporated into the embryo, and formation of another embryo may begin. The cilia of the embryo are partially resorbed 10 min after the start of metamorphosis, with depolymerization of the ciliary microtubules. Later, the cilia and most of the basal bodies disappear completely, except for a group of barren basal bodies near the embryo's contractile vacuole pore, which form 6 rows and serve as an anlage for the basal bodies and cilia that arise during embryogenesis. There is, therefore, an organized infraciliature in Suctoria throughout their life cycle, and a distinct continuity of basal bodies across the generations.  相似文献   

10.
SYNOPSIS. Young organisms of Tokophrya infusionum starved for several hr, are best suited for a study of the fine structure of this organism including the distribution of its organelles. Acid phosphatase was localized by a combined electron microscopy and cytochemical approach using modified Gomori methods. The enzyme was found in small dense bodies, spheroid vesicles, missile-like bodies, rough-surfaced endoplasmic reticulum, residue and autophagic vacuoles. The small dense bodies are thought to be primary lysosomes since electron micrographs show a) a continuity between the membrane of the rough-surfaced endoplasmic reticulum and that of the dense bodies and b) a connection between the contents of both structures when the dense bodies form from the endoplasmic reticulum.  相似文献   

11.
Tokophrya infusionum, a sessile suctorian with an external stalk and adhesive disc, has in its life cycle a ciliated, swimming embryo which metamorphoses into the adult form. The addition of NiCl2 to the medium induced metamorphosis immediately; however, other salts had no effect. Incomplete metamorphosis, without stalk formation, occurred if the organism began metamorphosis before its anterior (stalk-forming) end touched a substrate. The stalk was studied by histochemical and biochemical technics to determine its composition. The stalk stained with mercury-bromphenol blue, and Alcian blue under a variety of conditions, but not with PAS. These results suggest that the stalk contains protein and sulfate groups, possibly in the form of a sulfated protein-polysaccharide. The stalk was insoluble in several common laboratory reagents, but did dissolve in hot 6 N HCl, 2 N NaOH, and papain. It was evident from amino acid analysis of the stalk and of the whole organism that 15% of the total protein is located in the stalk.  相似文献   

12.
Contractile vacuoles are organelles that collect fluid from the cytoplasm and expel it to the outside. After each discharge (systole), they appear again and expand (diastole). They are widely distributed among Protozoa, and have been found also in some fresh water algae, sponges, and recently in some blood cells of the frog, guinea pig, and man. In spite of the extensive work on the contractile vacuole, very little is known concerning its mode of operation. An electron microscope study of a suctorian Tokophrya infusionum provided an opportunity to study thin sections of contractile vacuoles, and in these some structures were found which could be part of a mechanism for the systolic and diastolic motions the organelle displays. In Tokophrya, as in Suctoria and Ciliata in general, the contractile vacuole has a permanent canal connecting it with the outside. The canal appears to have a very elaborate structure and is composed of three parts: (1) a pore; (2) a channel; and (3) a narrow tubule located in a papilla protruding into the cavity of the contractile vacuole. Whereas the pore and channel have fixed dimensions and are permanently widely open, the tubule has a changeable diameter. At diastole it is so narrow (about 25 to 30 mµ in diameter) that it could be regarded as closed, while at systole it is widely open. It is assumed that the change in diameter is due to the contraction of numerous fine fibrils (about 180 A thick) which are radially disposed around the canal in form of a truncated cone, with its tip at the channel, and its base at the vacuolar membrane. It seems most probable that the broadening of the tubule results in discharge of the content of the contractile vacuole. In the vicinity of the very thin limiting vacuolar membrane, small vesicles and canaliculi of the endoplasmic reticulum, very small dense particles, and mitochondria may be found. In addition, rows of closely packed vesicles are present in this region, and in other parts of the cytoplasm. It is suggested that they might represent dictyosome-like bodies, responsible for withdrawing fluids from the cytoplasm and then conveying them to the contractile vacuole, contributing to its expansion at diastole.  相似文献   

13.
14.
SYNOPSIS Food intake in Tokophrya infusionum is preceded by penetration of the knob of the tentacle into the cytoplasm of the prey, Tetrahymena. Immediately thereafter, the membrane of the knob starts to invaginate into the lumen of the inner tube of the tentacle carrying with it the cytoplasm of the prey. At the proximal end of the tentacle, the invaginating membrane inflates, pinches off and forms a food vacuole. The mechanism is similar to that in amoebae during pinocytosis. The first few food vacuoles contain broken-up membranes, an indication that predigestion of prey cytoplasm takes place. This process is limited, however, to the part of cytoplasm around the knob since all food vacuoles formed later are composed of intact cytoplasmic organelles of Tetrahymena. Among them the most abundant and at the same time the most resistant to digestion are mitochondria and mucocysts. The ultrastructure of mitochondria is preserved very well during processing for electron microscopy and changes in their fine structure therefore serve conveniently as markers of the stage of digestion and of the age of food vacuoles. Digestion of mitochondria progresses over a period of several hours. They finally seem to degrade into glycogen-like particles. All components of the food vacuole reach this stage much earlier. Digestion proceeds further until the food vacuole is filled with a watery content of very low density. Digestion in such food vacuoles is completed. The complete digestion of the content of food vacuoles is of primary importance for Tokophrya, since this organism does not have a cytopyge thru which waste products could be eliminated.  相似文献   

15.
16.
巢寄生现象一直是鸟类学专家探讨的热点问题,对于协同进化的问题又有许多不同理论。从宿主的2种对待寄生卵的行为出发,对于巢寄生协同进化的各种理论做了简单的归纳。其中宿主的拒卵行为被认为是一种适应性的表现,这导致和寄生鸟的进化竞争。而对宿主接受卵的行为却有2种不同的观点,即进化滞后说和进化平衡说,这2种学说从不同的方面都能解释宿主接受卵的行为。关于巢寄生的协同进化问题还需要进一步的研究和更多的实例证明.  相似文献   

17.
18.
Formation and Ultrastructure of Extra Membranes in Escherichia coli   总被引:2,自引:6,他引:2       下载免费PDF全文
A temperature-sensitive strain of Escherichia coli (strain 0111a(1)) was shown to accumulate membranous structures at 40 C. These "extra membranes" appeared as vesicles or whorls (or both), depending on the time of growth at 40 C. After 2 hr of growth at 40 C, only vesicles were observed in E. coli 0111a(1) cells; both vesicles and whorls were apparent after 6 hr. The number of cells which contained both types of extra membrane reached a maximum value (75%) after 10 hr of growth at 40 C. Extra membrane production was also studied by using temperature shifts. In shift-up experiments, cells grown at 30 C into early stationary phase accumulated extra membrane after a shift to 40 C. The percentage of E. coli 0111a(1) cells containing extra membrane decreased significantly after a shift from 40 to 30 C. Phase- and electron-microscopic observations indicated that E. coli 0111a(1) cells grown at 40 C were larger than E. coli 0111: B(4) cells grown at either temperature. The ratio of optical density per cell and cell measurements obtained from quantitative electron microscopy confirmed that E. coli 0111a(1) cells grown at 40 C were about twice as large. Microdensitometer traces indicated that the dimension of a single membrane of either whorls or vesicles was 5.4 nm in peak-to-peak distance (8.8 nm total thickness).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号