首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemostat study of xylitol production by Candida guilliermondii   总被引:1,自引:0,他引:1  
The mechanism of production of xylitol from xylose by Candida guilliermondii was studied using chemostat cultures and enzymatic assays. The maximum dilution rate in aerobic conditions was 0.34 1/h. No xylitol was produced. Under oxygen-limited conditions xylose uptake was impaired and glycerol accumulated but no xylitol was detected. Under transient oxygen limitation, caused by a gradual decrease in the agitation rate, onset of xylitol, acetate and residual xylose accumulation occurred simultaneously when q O2 dropped below 25 mmol/C-mmol cell dry weight (CDW) per hour. Ethanol and glycerol started to accumulate when q O2 dropped below 20 mmol/C-mmol CDW per hour. The highest in vitro enzyme activities were found at the lowest dilution rate studied (0.091/h) under aerobic conditions. The amount of active enzymes or cofactor availability did not limit the rate of xylose consumption. Our results confirm that a surplus of NADH during transient oxygen limitation inhibited the activity of xylitol dehydrogenase which resulted in xylitol accumulation. Phosphoglucoisomerase (E.C. 5.3.1.9.) and glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) activities suggest re-shuttling of the metabolites into the pentose phosphate pathway. Received: 7 March 2000 / Received revision: 9 June 2000 / Accepted: 18 June 2000  相似文献   

2.
In this study, whole cells and a crude enzyme of Candida peltata were applied to an electrochemical bioreactor, in order to induce an increment of the reduction of xylose to xylitol. Neutral red was utilized as an electron mediator in the whole cell reactor, and a graphite-Mn(IV) electrode was used as a catalyst in the enzyme reactor in order to induce the electrochemical reduction of NAD(+) to NADH. The efficiency with which xylose was converted to xylitol in the electrochemical bioreactor was five times higher than that in the conventional bioreactor, when whole cells were employed as a biocatalyst. Meanwhile, the xylose to xylitol reduction efficiency in the enzyme reactor using the graphite-Mn (IV) electrode and NAD(+) was twice as high as that observed in the conventional bioreactor which utilized NADH as a reducing power. In order to use the graphite-Mn(IV) electrode as a catalyst for the reduction of NAD(+) to NADH, a bioelectrocatalyst was engineered, namely, oxidoreductase (e.g. xylose reductase). NAD(+) can function in this biotransformation procedure without any electron mediator or a second oxidoreductase for NAD(+)/NADH recycling.  相似文献   

3.
The intracellular enzymes xylose reductase (XR, EC 1.1.1.21) and xylitol dehydrogenase (XD, EC 1.1.1.9) from Candida guilliermondii, grown in sugar cane bagasse hydrolysate, were separated by reversed micelles of cetyl trimethyl ammonium bromide (CTAB) cationic surfactant. An experimental design was employed to optimize the extraction conditions of both enzymes. Under these conditions (temperature = 5 degree C, hexanol: isooctane proportion = 5% (v/v), 22 %, surfactant concentration = 0.15M, pH = 7.0 and electrical conductivity = 14 mScm(-1)) recovery values of about 100 and 80% were achieved for the enzymes XR and XD, respectively. The purity of XR and XD increased 5.6- and 1.8-fold, respectively. The extraction process caused some structural modifications in the enzymes molecules, as evidenced by the alteration of K(M) values determined before and after extraction, either in regard to the substrate (up 35% for XR and down 48% for XD) or cofactor (down 29% for XR and up 11% for XD). However, the average variation of V(max) values for both enzymes was not higher than 7%, indicating that the modified affinity of enzymes for their respective substrates and cofactors, as consequence of structural modifications suffered by them during the extraction, are compensated in some extension. This study demonstrated that liquid-liquid extraction by CTAB reversed micelles is an efficient process to separate the enzymes XR and XD present in the cell extract, and simultaneously increase the enzymatic activity and the purity of both enzymes produced by C. guilliermondii.  相似文献   

4.
The yeast strain Candida guilliermondii 2581 was chosen for its ability to produce xylitol in media with high concentrations of xylose. The rate of xylitol production at a xylose concentration of 150 g/l is 1.25 g/l per h; the concentration of xylitol after three days of cultivation is 90 g/l; and the relative xylitol yield is 0.6 g per g substrate consumed. The growth conditions were found that resulted in the maximum relative xylitol yield with complete consumption of the sugar: xylose concentration, 150 g/l; pH 6.0; and shaking at 60 rpm. It was shown that the growth under conditions of limited aeration favors the reduction of xylose.  相似文献   

5.
A detoxification method using activated charcoal with concentrated rice straw hemicellulosic hydrolysate improved the conversion of xylose to xylitol by the yeast Candida guilliermondii by 22%. This was achieved when the hydrolysate:charcoal ratio was 40 g g–1, resulting in removal of 27% of phenolic compounds. Under this condition, the xylitol yield factor (0.72 g g–1) and volumetric productivity (0.61 g l–1 h–1) were close to those attained in a semi-defined medium simulating hydrolysate sugars.  相似文献   

6.
The intracellular enzyme xylitol dehydrogenase (XD, EC 1.1.1.9) from Candida guilliermondii, grown in sugarcane bagasse hydrolysate, was separated by reversed micelles of BDBAC [N-benzyl-N-dodecyl-N-bis (2-hydroxyethyl) ammonium chloride] cationic surfactant. An experimental design was employed to evaluate the influence of the following factors on the enzyme separation: temperature, co-solvent concentration and surfactant concentration. The results showed that just the temperature did not show significant effect on XD recovery. A model was used to represent the activity recovery and fit the experimental data. Under optimized conditions, the recovery of total activity was about 121%, and the purity increased 2.3-fold.  相似文献   

7.
The effect of redox potential on xylitol production by Candida parapsilosis was investigated. The redox potential was found to be useful for monitoring the dissolved oxygen (DO) level in culture media, especially when the DO level was low. An increase in the agitation speed in a 5 L fermentor resulted in an increased culture redox potential as well as enhanced cell growth. Production of xylitol was maximized at a redox potential of 100 mV. As the initial cell concentration increased from 8 g/L to 30 g/L, the volumetric productivity of xylitol increased from 1.38 g/L. h to 4.62 g/L. h. A two-stage xylitol production strategy was devised, with stage 1 involving rapid production of cells under well-aerated conditions, and stage 2 involving cultivation with reduced aeration such that the culture redox potential was 100 mV. Using this technique, a final xylitol concentration of 180 g/L was obtained from a culture medium totally containing 254.5 g/L xylose in a 3,000 L pilot scale fermentor after 77 h fermentation. The volumetric productivity of xylitol during the fermentation was 2.34 g/L. h.  相似文献   

8.
Candida parapsilosis was grown for 59 h in a medium containing corn cob hydrolysate consisting of 50 g xylose l–1, 3.0 g glucose l–1, 2.0 g arabinose l–1, and 0.9 g acetic acid l–1. A biomass of 9.1 g l–1 was produced with 36 g xylitol l–1 and 2.5 g ethanol l–1. In a medium containing 50 g xylose l–1 instead of corn cob hydrolysate, the concentrations of cells, xylitol, and ethanol were 8.6 g l–1, 33 g l–1, and 0.2 g l–1, respectively. The differences between two cultures were due to the glucose and arabinose in the corn cob hydrolysate stimulating growth and the low concentration of acetic acid stimulating xylitol production.  相似文献   

9.
Candida tropicalis, a strain isolated from the sludge of a factory manufacturing xylose, produced a high xylitol concentration of 131 g/l from 150 g/l xylose at 45 h in a flask. Above 150 g/l xylose, however, volumetric xylitol production rates decreased because of a lag period in cell growth. In fed-batch culture, the volumetric production rate and xylitol yield from xylose varied substantially with the controlled xylose concentration and were maximum at a controlled xylose concentration of 60 g/l. To increase the xylitol yield from xylose, feeding experiments using different ratios of xylose and glucose were carried out in a fermentor. The maximum xylitol yield from 300 g/l xylose was 91% at a glucose/xylose feeding ratio of 15%, while the maximum volumetric production rate of xylitol was 3.98 g l−1 h−1 at a glucose/xylose feeding ratio of 20%. Xylitol production was found to decrease markedly as its concentration rose above 250 g/l. In order to accumulate xylitol to 250 g/l, 270 g/l xylose was added in total, at a glucose/xylose feeding ratio of 15%. Under these conditions, a final xylitol production of 251 g/l, which corresponded to a yield of 93%, was obtained from 270 g/l xylose in 55 h. Received: 20 April 1998 / Received revision: 29 May 1998 / Accepted: 19 June 1998  相似文献   

10.
Abstract

The effect of NADP+ and glucose-6-phosphate (G6P) on the biotransformation of D-xylose to xylitol by cells of Candida guilliermondii permeabilized with surfactant Triton X-100 was evaluated. The experimental runs were performed with 12 g L?1 of permeabilized cells and a reaction medium composed of Tris–HCl buffer (0.1 M pH 7), D-xylose (57 g L?1), and MgCl2.6H2O (5 mM). The levels of NADP+ (from 0.0 to 1.7 mM) and G6P (from 0.00 to 0.17 M) were varied according a 22-full factorial composed design. Under optimized conditions (NADP+ 0.5 mM and 0.05 M G6P), the xylitol volumetric productivity (QP) and yield factor (YP/S) predicted were 1.86 ± 0.03 g L?1 h? 1 and 0.64 ± 0.03 g g?1, respectively. These values were 94% and 19% higher than those obtained with unpermeabilized cells under fermentation conditions (0.97 g L?1 h?1 and 0.53 g g?1, respectively). On the basis of the results, it can be concluded that xylitol production by biotransformation with cells of C. guilliermondii permeabilized with Triton X-100 is a promising alternative to the fermentative process.  相似文献   

11.
AIMS: To evaluate the effect of phosphate buffer concentration on growth and xylitol production by Candida guilliermondii FTI 20037. METHODS AND RESULTS: Fermentations runs were carried out in batch mode employing semisynthetic medium supplemented with phosphate buffer at different concentrations (from 200 to 600 mmol l(-1)). The xylitol yield (Y(P/S)) and volumetric productivity (Q(P)) were improved when the fermentation medium was supplemented with phosphate buffer at concentration of 600 mmol l(-1). Under this condition (Y(P/S)) and (Q(P)) values were 0.75 g g(-1) and 0.66 g l(-1) h(-1), respectively, whereas in the absence of the phosphate buffer these values decreased to 0.52 g g(-1) and 0.44 g l(-1)h(-1) respectively. CONCLUSIONS: The use of phosphate buffer at 600 mmol l(-1) promoted an easier pH control during shake flasks fermentation of C. guilliermondii. In addition the xylitol yield and productivity were significantly improved in response to the supplementation of potassium phosphate in the medium. The increase in these parameters could be related to both osmotic effect and pH control. SIGNIFICANCE AND IMPACT OF THE STUDY: This approach provided a method for improving the xylitol production from semisynthetic medium by C. guilliermondii, being possible their use as a simple strategy to achieve efficient fermentation processes employing complex medium such as lignocellulosic hydrolysates.  相似文献   

12.
Xylose production by Candida guilliermondii FTI 20037 was carried out in a synthetic medium in the presence of 0–100 g methanol l–1, 0–0.7 g furfural l–1 or 0–1.3 g acetic acid l–1. Kinetic results show a mixed inhibition mechanism in all three cases. Maximum specific productivity and saturation constant for product formation were, in the absence of inhibition, 3.6 gP gX –1 h–1 and 232 gS l–1, respectively, while the inhibition constants, K i and K i, were 17 and 50 g methanol l–1, 0.62 and 7.0 g furfural l–1, 0.69 and 3.5 g acetic acid l–1, which suggests the following order of inhibition: furfural > acetic acid > methanol.  相似文献   

13.
AIMS: To evaluate a simple and economical technique to improve xylitol production using concentrated xylose solutions prepared from rice straw hemicellulosic hydrolysate. METHODS AND RESULTS: Experiments were carried out with rice straw hemicellulosic hydrolysate containing 90 g l-1 xylose, with and without the addition of nutrients, using the yeast Candida guilliermondii previously grown on the hydrolysate (adapted cells) or on semi-defined medium (unadapted cells). By this method, the yield of xylitol increased from 17 g l-1 to 50 g l-1, and xylose consumption increased from 52% to 83%, after 120 h of fermentation. The xylitol production rates were very close to that (0.42 g l-1 h-1) attained in a medium simulating hydrolysate sugars. CONCLUSION: Yeast strain adaptation to the hydrolysate showed to be a suitable method to alleviate the inhibitory effects of the toxic compounds. Adapted cells of Candida guilliermondii can efficiently produce xylitol from hydrolysate with high xylose concentrations. SIGNIFICANCE AND IMPACT OF THE STUDY: Yeast adaptation helps the bioconversion process in hydrolysate made from lignocellulosic materials. This low-cost technique provides an alternative to the detoxification methods used for removal of inhibitory compounds. In addition, the use of adapted inocula makes it possible to schedule a series of batch cultures so that the whole plant can be operated almost continuously with a concomitant reduction in the overall operation time.  相似文献   

14.
The industrial yeast Candida utilis can grow on media containing xylose as sole carbon source, but cannot ferment it to ethanol. The deficiency might be due to the low activity of NADPH-preferring xylose reductase (XR) and NAD(+)-dependent xylitol dehydogenase (XDH), which convert xylose to xylulose, because C. utilis can ferment xylulose. We introduced multiple site-directed mutations in the coenzyme binding sites of XR and XDH derived from the xylose-fermenting yeast Candida shehatae to alter their coenzyme specificities. Several combinations of recombinant and native XRs and XDHs were tested. Highest productivity was observed in a strain expressing CsheXR K275R/N277D (NADH-preferring) and native CsheXDH (NAD(+)-dependent), which produced 17.4 g/L of ethanol from 50 g/L of xylose in 20 h. Analysis of the genes responsible for ethanol production from the xylose capacity of C. utilis indicated that the introduction of CsheXDH was essential, while overexpression of CsheXR K275R/N277D improved efficiency of ethanol production.  相似文献   

15.
The behaviour of Pichia stipitis, Pachysolen tannophilus, Candida shehatae and Candida parapsilosis was investigated to select the most suitable yeast to convert xylose either to ethanol or to xylitol, with little or no formation of by-products. The aeration rate was used as a variable parameter. P. stipitis and C. parapsilosis were the most effective producers or ethanol and xylitol, respectively, both reaching productivities at very low levels of oxygenation. With P. stipitis, better ethanol productivity was attained under microaerobic conditions (KLa = 4·8 h−1) while with C. parapsilosis high yields and rates of xylitol production were detected at KLa values of about 16·3 h−1. P. tannophilus and C. shehatae showed lower performances under all conditions used while changes in oxygenation modified the ratio of ethanol to xylitol produced by these yeasts, suggesting that they are more dependent on the oxygen power input than P. stipitis and C. parapsilosis. The influence of oxygen transfer rates on ethanol and xylitol formation with the best producers is discussed.  相似文献   

16.
The production of xylitol from concentrated synthetic xylose solutions (S(o) = 130-135 g/L) by Debaryomyces hansenii was investigated at different pH and temperature values. At optimum starting pH (pH(o) = 5.5), T = 24 degrees C, and relatively low starting biomass levels (0.5-0.6 g(x)/L), 88% of xylose was utilized for xylitol production, the rest being preferentially fermented to ethanol (10%). Under these conditions, nearly 70% of initial carbon was recovered as xylitol, corresponding to final xylitol concentration of 91.9 g(P)/L, product yield on substrate of 0.81 g(P)/g(S), and maximum volumetric and specific productivities of 1.86 g(P)/L x h and 1.43 g(P)/g(x) x h, respectively. At higher and lower pH(o) values, respiration also became important, consuming up to 32% of xylose, while negligible amounts were utilized for cell growth (0.8-1.8%). The same approach extended to the effect of temperature on the metabolism of this yeast at pH(o) = 5.5 and higher biomass levels (1.4-3.0 g(x)/L) revealed that, at temperatures ranging from 32-37 degrees C, xylose was nearly completely consumed to produce xylitol, reaching a maximum volumetric productivity of 4.67 g(P)/L x h at 35 degrees C. Similarly, both respiration and ethanol fermentation became significant either at higher or at lower temperatures. Finally, to elucidate the kinetic mechanisms of both xylitol production and thermal inactivation of the system, the related thermodynamic parameters were estimated from the experimental data with the Arrhenius model: activation enthalpy and entropy were 57.7 kJ/mol and -0.152 kJ/mol x K for xylitol production and 187.3 kJ/mol and 0.054 kJ/mol x K for thermal inactivation, respectively.  相似文献   

17.
The bioconversion of xylose to xylitol by Candida guilliermondii FTI 20037 cultivated in sugar cane bagasse hemicellulosic hydrolyzate was influenced by cell inoculum level, age of inoculum and hydrolyzate concentration. The maximum xylitol productivity (0.75 g L−1 h−1) occurred in tests carried out with hydrolyzate containing 54.5 g L−1 of xylose, using 3.0 g L−1 of a 24-h-old inoculum. Xylitol productivity and cell concentration decreased with hydrolyzate containing 74.2 g L−1 of xylose. Received 02 February 1996/ Accepted in revised form 15 November 1996  相似文献   

18.
The biocatalytic reduction of d-xylose to xylitol requires separation of the substrate from l-arabinose, another major component of hemicellulosic hydrolysate. This step is necessitated by the innate promiscuity of xylose reductases, which can efficiently reduce l-arabinose to l-arabinitol, an unwanted byproduct. Unfortunately, due to the epimeric nature of d-xylose and l-arabinose, separation can be difficult, leading to high production costs. To overcome this issue, we engineered an E. coli strain to efficiently produce xylitol from d-xylose with minimal production of l-arabinitol byproduct. By combining this strain with a previously engineered xylose reductase mutant, we were able to eliminate l-arabinitol formation and produce xylitol to near 100% purity from an equiweight mixture of d-xylose, l-arabinose, and d-glucose.  相似文献   

19.
Study of xylitol formation from xylose under oxygen limiting conditions   总被引:1,自引:0,他引:1  
The fermentation of D-xylose byCandida parapsilosis was studied in continuous cultures. From the results obtained, xylitol formation seems to be directly coupled to growth of biomass, and strongly influenced by oxygen consumption.  相似文献   

20.
Semidefined media fermentation simulating the sugar composition of hemicellulosic hydrolysates (around 85 g l-1 xylose, 17 g l-1 glucose, and 9 g l-1 arabinose) was investigated to evaluate the glucose and arabinose influence on xylose-to-xylitol bioconversion by Candida guilliermondii. The results revealed that glucose reduced the xylose consumption rate by 30%. Arabinose did not affect the xylose consumption but its utilization by the yeast was fully repressed by both glucose and xylose sugars. Arabinose was only consumed when it was used as a single carbon source. Xylitol production was best when glucose was not present in the fermentation medium. On the other hand, the arabinose favored the xylitol yield (which attained 0.74 g g-1 xylose consumed) and it did not interfere with xylitol volumetric productivity (Q P=0.85 g g-1), the value of which was similar to that obtained with xylose alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号