首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using immunoelectronmicroscopy we analyzed qualitative and quantitatively the intracellular distribution of bothropasin, hemorrhagic factor 2 (HF2) and hemorrhagic factor 3 (HF3) in the venom secretory cells from adult snakes in the active (7 days after venom extraction) and in the resting (without venom extraction for 40 days) stages of protein synthesis. Glands from the newborn Bothrops jararaca were also studied. The results lead to the conclusion that all the secretory cells and the secretory pathway in the cells are qualitatively alike in regard to their content of the three metalloproteases. Secretory cells from the resting glands, unlike the active ones and the newborn glands, did not present immunolabeling in the narrow intracisternal spaces of the rough endoplasmic reticulum (RER). The label intensity for bothropasin was greater than that for the other proteins in the adults. HF3 and HF2 labeling densities in the newborn were higher than in the adults and HF3 labeling was not different from that of bothropasin. Co-localization of the three metalloproteases was detected in the RER cisternae of the active gland secretory cells, implying that mixing of the proteases before co-packaging into secretory vesicles occurs at the beginning of protein synthesis in the RER cisternae.  相似文献   

2.
Summary Sections of juxtaglomerular cells from sodium-deficient rats were subjected to radioautography after a single intravenous injection of L-tyrosine3,5 3H or of L-fucose 3H to identify the sites of synthesis and to follow the migration of newly-formed proteins and glycoproteins. As early as 2 min after injection of L-tyrosine 3H, the label was highest in the rough endoplasmic reticulum (RER), suggesting that cisternal ribosomes are sites of protein synthesis. By 60 min, much of the label had migrated from the RER to the Golgi complex. Some radioactivity was already present over specific granules by 2 min but a peak was reached at 4h. The label over myofilaments was evident at all time intervals, indicating a certain incorporation of tyrosine into their contractile and/or structural proteins. The label over the cell surface peaked at 4h. After injection of L-fucose 3H, there was an early and important relative specific radioactivity in the Golgi complex at 5 min with a peak at 20 min and a decrease thereafter. The label increased slightly but steadily in secretory granules and cell surface to reach maxima at 4 h. A low level of radioactivity was recorded in mitochondria at all time intervals. After injection of both fucose 3H and tyrosine 3H, the label was detected at relatively low levels in the cytosol. These results suggest that renin, as the major secretory glycoprotein of juxtaglomerular cells, is synthetized in the RER, packaged in the Golgi complex and found relatively rapidly in newly-formed secretory granules. Part of the fucose and tyrosine labels is also associated with the thick cell coat of these cells.Recipient of a summer fellowship from the Kidney Foundation of Canada  相似文献   

3.
Frog exocrine pancreatic tissue was studied in vitro under conditions which maintain the differences between tissues from fasted and fed animals. Sodium dodecyl sulfate (SDS) gel electrophoresis after labeling with [14C]amino acids showed that feeding stimulated the synthesis of secretory proteins to the same relative degree as the overall protein synthesis. The intracellular transport of secretory proteins was studied by electronmicroscopy autoradiography after pulse-labeling with [3H]leucine. It was found that the transport route is similar under both feeding conditions. After their synthesis in the rough endoplasmic reticulum (RER), the proteins move through the peripheral elements and cisternae of the Golgi system into the condensing vacuoles. The velocity of the transport increases considerably after feeding. When frogs are fasted, the release of labeled proteins from the RER takes greater than 90 min, whereas after feeding, this happens within 30 min. Comparable differences were observed for transport through the Golgi system. The apparent differences between the frog and mammalian pancreas in the regulation of synthesis, intracellular transport, and secretion of proteins are discussed.  相似文献   

4.
The pancreatic acinar carcinoma established in rat by Reddy and Rao (1977, Science 198:78-80) demonstrates heterogeneity of cytodifferentiation ranging from cells containing abundant well- developed secretory granules to those with virtually none. We examined the synthesis intracellular transport and storage of secretory proteins in secretory granule-enriched (GEF) and secretory granule-deficient (GDF) subpopulations of neoplastic acinar cells separable by Percoll gradient centrifugation, to determine the secretory process in cells with distinctly different cytodifferentiation. The cells pulse-labeled with [3H]leucine for 3 min and chase incubated for up to 4 h were analyzed by quantitative electron microscope autoradiography. In GEF neoplastic cells, the results of grain counts and relative grain density estimates establish that the label moves successively from rough endoplasmic reticulum (RER) leads to the Golgi apparatus leads to post-Golgi vesicles (vacuoles or immature granules) leads to mature secretory granules, in a manner reminiscent of the secretory process in normal pancreatic acinar cells. The presence of approximately 40% of the label in association with secretory granules at 4 h postpulse indicates that GEF neoplastic cells retain (acquire) the essential regulatory controls of the secretory process. In GDF neoplastic acinar cells the drainage of label from RER is slower, but the peak label of approximately 20% in the Golgi apparatus is reached relatively rapidly (10 min postpulse). The movement of label from the Golgi to the post- Golgi vesicles is evident; further delineation of the secretory process in GDF neoplastic cells, however, was not possible due to lack of secretory granule differentiation. The movement of label from RER leads to the Golgi apparatus leads to the post-Golgi vesicles suggests that GDF neoplastic cells also synthesize secretory proteins, but to a lesser extent than the GEF cells. The reason(s) for the inability of GDF cells to concentrate and store exportable proteins remain to be elucidated.  相似文献   

5.
Summary The synthetic pathways of proteins and catecholamines in the rat adrenal medullary cells were compared systematically at the ultrastructural level, within a 24 h period, with 2 tracers, L-tyrosine 3,5-3H and L-3,4-dihydroxy [ring 2,5,6-3H] phenylalanine (L-dopa3H). Young rats were injected with either of these tracers and sacrificed in pairs at close time intervals. With L-tyrosine 3H, the label was about equal over rough endoplasmic reticulum (RER) and secretory granules at 2 min after injection and remained almost constant in intensity over the secretory granules throughout the period of observation. A peak of radioactivity was also observed in the Golgi complex between 5 and 20 min after injection. This indicates that L-tyrosine 3H participates in the synthesis of both granule proteins and catecholamines as confirmed by the results obtained after injection of L-dopa 3H. With this tracer, radioactivity over RER, Golgi complex, cytosol and cell surface remained very low at all times and was undetectable at several time intervals. In contrast, radioactivity over secretory granules was very high at all time intervals. The present results thus confirm that in both adrenaline- and noradrenaline-storing cells, the protein moiety of chromaffin granules is synthetized in the RER, packaged in the Golgi complex and rapidly found in newly formed secretory granules. Following either L-tyrosine 3H or L-dopa 3H injection, catecholamine synthesis occurs only in or in close vicinity to chromaffin granules in both cell types at all time intervals. Acknowledgements. This work was supported by a grant from the Medical Research Council of Canada to the Multidisciplinary Research Group of Hypertension of the Clinical Research Institute of Montreal and by the Canadian Heart Foundation  相似文献   

6.
Summary Sections of atrial cardiocytes from young rats were subjected to radioautography after a single intravenous injection of L-leucine-4,5 3H to identify the sites of synthesis and to follow the migration of newly-formed proteins. As early as 2 min after injection of L-leucine 3H, the label was highest in the rough endoplasmic reticulum (RER), suggesting that cisternal ribosomes are sites of protein synthesis. By 5 min, most of the label had migrated from the RER to the Golgi complex. Some label was already present over specific granules by 2 min but the peak was reached at 1 h. By 4 h, the label over the specific granules had diminished, possibly indicating a release of newly-synthetized secretory material outside the cell. The label over myofilaments and Z-bands was relatively high at most time intervals, suggesting an early and important incorporation of leucine into the contractile and structural proteins of these organelles. The label over the cytosol was initially high and increased even further at 5 and 20 min but decreased to a very low level at 4 h. In contrast, the label over the cell surface rose continuously and peaked at 4 h. The pattern of increment of the label over the cell surface suggests that the newly-formed proteins of these sites are also synthetized in the RER, pass through the Golgi complex and are transported in the cytosol before reaching their destination.  相似文献   

7.
The intracellular transport of glycoproteins pulse-labeled in vitro with tritiated leucine and galactose in the surface mucous lining cells (SMC) of the fundus of the rat stomach was studied by electron microscope autoradiography. The SMC survive for several hours in pieces of the fundus incubated in a bicarbonate-buffered medium. The SMC have a normal ultrastructure for at least 4 h of incubation. Kinetic activity is normal for at least 5 h, as demonstrated by the normal nuclear incorporation of tritiated thymidine; The SMC incorporate labeled leucine and galactose at normal rates up to 4 h and 6 h, respectively. In contrast to the SMC, the cells of the gastric glands show signs of degeneration within 1 h after the start of incubation. In the SMC the secretory protein forms a smaller part of the total protein synthesized than in other secretory cells studied. The intracellular tranpsort of the leucine-labeled moiety of the glycoproteins follows the normal pathway. The RER loses 35% of its transportable labeled protein within 30 min. The Golgi complex is maximally labeled at 40 min and the mucous granules after 120 min. Galactose is attached to the glycoproteins mainly in the Golgi complex. Glycoproteins are not secreted within 2 h after synthesis of their protein moiety.  相似文献   

8.
Intracellular transport of secretory proteins has been studied in the parotid to examine this process in an exocrine gland other than the pancreas and to explore a possible source of less degraded membranes than obtainable from the latter gland. Rabbit parotids were chosen on the basis of size (2–2.5 g per animal), ease of surgical removal, and amylase concentration. Sites of synthesis, rates of intracellular transport, and sites of packaging and storage of newly synthesized secretory proteins were determined radioautographically by using an in vitro system of dissected lobules capable of linear amino acid incorporation for 10 hr with satisfactory preservation of cellular fine structure. Adequate fixation of the tissue with minimal binding of unincorporated labeled amino acids was obtained by using 10% formaldehyde-0.175 M phosphate buffer (pH 7.2) as primary fixative. Pulse labeling with leucine-3H, followed by a chase incubation, showed that the label is initially located (chase: 1–6 min) over the rough endoplasmic reticulum (RER) and subsequently moves as a wave through the Golgi complex (chase: 16–36 min), condensing vacuoles (chase: 36–56 min), immature granules (chase: 56–116 min), and finally mature storage granules (chase: 116–356 min). Distinguishing features of the parotid transport apparatus are: low frequency of RER-Golgi transitional elements, close association of condensing vacuoles with the exit side of Golgi stacks, and recognizable immature secretory granules. Intracelular processing of secretory proteins is similar to that already found in the pancreas, except that the rate is slower and the storage is more prolonged.  相似文献   

9.
Vitellogenesis in the frog hepatocyte was investigated by applying the protein A-gold immunocytochemical and RNase-gold cytochemical techniques in conjunction with morphometric and biochemical analyses. The morphometric studies demonstrated that the surface density of rough endoplasmic reticulum (RER) and nucleolar size increased more than fourfold and 1.25-fold, respectively, while the nuclear size and the mitochondrial compartment size remained constant following estrogen treatment. Concurrently, liver RNA concentration increased 2.5-fold while protein and DNA concentrations did not change. In addition, total plasma protein more than doubled, with vitellogenin accounting for 40% of the final volume. The secretory proteins vitellogenin and protein-RcX (a nonvitellogenin, estrogen-induced plasma protein of unknown function, found in the plasma of Rana catesbeiana) were detected immunocytochemically in the RER, Golgi apparatus, and secretory granules in hepatocytes only of estrogen-treated frogs. Lysosomes also were labeled. These observations established that protein-RcX was synthesized and secreted by the hepatocyte in parallel with vitellogenin and that both of these export proteins were confined to the secretory pathway and lysosomes. Quantitation of labeling density indicated that the concentration of vitellogenin increased as it progressed along the secretory vector. Albumin was detected immunocytochemically also within these same hepatocyte entities from both untreated and treated animals. In the untreated animals, albumin concentration also increased progressively along the secretory vector. A marked alteration of albumin processing was observed following estrogen treatment. While albumin concentration in the RER was unchanged, its concentrations within the Golgi apparatus and secretory granules were lower than those observed in the RER or in counterpart compartments under control conditions. RNase-gold cytochemistry for total RNA demonstrated a 1.5-fold increase in labeling density over the nucleolus but no change in RER labeling following estrogen treatment. These labeling data, in combination with the morphometric data, suggest an increase of approximately 80% in the total amount of RNA in the nucleolus and 430% in the RER in response to estrogen. This review thus illustrates the significant contributions which can be made by gold-probe techniques, alone or in combination with morphometric and biochemical techniques, to investigations of the intracellular processing of secretory proteins.  相似文献   

10.
Our previous observations on the synthesis and transport of secretory proteins in the pancreatic exocrine cell were made on pancreatic slices from starved guinea pigs and accordingly apply to the resting, unstimulated cell. Normally, however, the gland functions in cycles during which zymogen granules accumulate in the cell and are subsequently discharged from it in response to secretogogues. The present experiments were undertaken to determine if secretory stimuli applied in vitro result in adjustments in the rates of protein synthesis and/or of intracellular transport. To this intent pancreatic slices from starved animals were stimulated in vitro for 3 hr with 0.01 mM carbamylcholine. During the first hour of treatment the acinar lumen profile is markedly enlarged due to insertion of zymogen granule membranes into the apical plasmalemma accompanying exocytosis of the granule content. Between 2 and 3 hr of stimulation the luminal profile reverts to unstimulated dimensions while depletion of the granule population nears completion. The acinar cells in 3-hr stimulated slices are characterized by the virtual complete absence of typical condensing vacuoles and zymogen granules, contain a markedly enlarged Golgi complex consisting of numerous stacked cisternae and electron-opaque vesicles, and possess many small pleomorphic storage granules. Slices in this condition were pulse labeled with leucine-3H and the route and timetable of intracellular transport assessed during chase incubation by cell fractionation, electron microscope radioautography, and a discharge assay covering the entire secretory pathway. The results showed that the rate of protein synthesis, the rate of drainage of the rough-surfaced endoplasmic reticulum (RER) compartment, and the over-all transit time of secretory proteins through the cells was not accelerated by the secretogogue. Secretory stimulation did not lead to a rerouting of secretory proteins through the cell sap. In the resting cell, the secretory product is concentrated in condensing vacuoles and stored as a relatively homogeneous population of spherical zymogen granules. By contrast, in the stimulated cell, secretory proteins are initially concentrated in the flattened saccules of the enlarged Golgi complex and subsequently stored in numerous small storage granules before release. The results suggest that secretory stimuli applied in vitro primarily affect the discharge of secretory proteins and do not, directly or indirectly, influence their rates of synthesis and intracellular transport.  相似文献   

11.
Amylase (Am) and chymotrypsinogen (Chtg) were demonstrated in rat and guinea pig exocrine pancreatic cells by immunofluorescence and immunoferritin cytochemistry on thin and ultrathin frozen sections. We describe two observations indicating that Am and Chtg may behave differently in the pre-Golgi phase of their intracellular transport. Firstly, aggregates of material within the RER cisternae of the guinea pig (so-called intracisternal granules) reacted strongly with anti-Chtg, but showed no affinity for anti-Am. Secondly, in both rat and guinea pig, the increase in labeling intensity from cytoplasm (RER) to secretory granules was larger for Chtg than for Am. We hypothesize that the two proteins do not travel in-parallel towards the Golgi complex. Compared with Chtg, Am would lag behind in the RER cisternae.  相似文献   

12.
Polyclonal antibodies to types I and II regulatory (R) subunits of cyclic AMP-dependent protein kinase (cA-PK) were utilized in a post-embedding immunogold-labeling procedure to localize these proteins in rat parotid acinar cells. Both RI and RII were present in the nuclei, cytoplasm, rough endoplasmic reticulum (RER), Golgi apparatus, and secretory granules. In the nuclei, gold particles were mainly associated with the heterochromatin. In the cytoplasm, the label was principally found in areas of RER. Most gold particles were located between adjacent RER cisternae or over their membranes and attached ribosomes; occasional particles were also present over the cisternal spaces. Labeling of the Golgi apparatus was significantly greater than background, although it was slightly lower than that over the RER cisternae. In secretory granules, gold particles were present over the granule content; no preferential localization to the granule membrane was observed. Morphometric analysis revealed equivalent labeling intensities for RI and RII in the cytoplasm-RER compartment. Labeling intensities for RII in the nuclei and secretory granules were about 50% greater than in the cytoplasm-RER, and 3 to 4-fold greater than values for RI in these two compartments. Electrophoresis and autoradiography of the postnuclear parotid-tissue fraction, the contents of purified secretory granules and saliva collected from the main excretory duct, after photoaffinity labeling with [32P]-8-azido-cyclic AMP, revealed the presence of R subunits. Predominantly RII was present in the granule contents and saliva, while both RII and RI were present in the cell extracts. Additionally, R subunits were purified from saliva by affinity chromatography on agarose-hexane-cyclic AMP. These findings confirm the localization of cA-PK in parotid cell nuclei and establish the acinar secretory granules as the source of the cyclic AMP-binding proteins in saliva.  相似文献   

13.
To study the in vivo processing and secretion of Apolipoprotein A-I (Apo A-I), young chickens were administered individual L-[3H]amino acids intravenously and the time of intracellular transport of nascent Apo A-I from rough endoplasmic reticulum (RER) to the Golgi apparatus was measured. Within 3 to 9 min there was maximal incorporation of radioactivity into Apo A-I in both the RER and the Golgi cell fractions. By contrast, the majority of radioactive albumin was also present in the RER by 3 to 9 min, but did not reach peak amounts in the Golgi fraction until 9 to 25 min. Both radioactive Apo A-I and albumin appeared in the blood at about the same time (between 20 and 30 min). NH2-terminal amino acid sequence analysis of nascent intracellular Apo A-I showed that it contains a pro-hexapeptide extension identical to that of human Apo A-I. After 30 min of administration of radioactive amino acids radioactive Apo A-I was isolated by immunoprecipitation from the liver and serum. NH2-terminal sequence analysis of 20 amino acids indicated that chicken liver contained an equal mixture of nascent pro-Apo A-I and fully processed Apo A-I, whereas the serum only contained processed Apo A-I. Further studies showed that the RER only contained pro-Apo A-I, whereas a mixture of pro-Apo A-I and processed Apo A-I was found in the Golgi complex. These results indicate that, in chicken hepatocytes, there is a more rapid transport of Apo A-I than of albumin from the RER to the Golgi cell fractions, and that Apo A-I remains in the Golgi apparatus for a longer period of time before it is secreted into the blood. In addition these studies show that the in vivo proteolytic processing of chicken pro-Apo A-I to Apo A-I occurs in the Golgi cell fractions.  相似文献   

14.
The elaboration of dentin collagen precursors by the odontoblasts in the incisor teeth of 30–40-g rats was investigated by electron microscopy, histochemistry, and radioautography after intravenous injection of tritium-labeled proline. At 2 min after injection, when the labeling of blood proline was high, radioactivity was restricted to the rough endoplasmic reticulum, indicating that it is the site of synthesis of the polypeptide precursors of collagen, the pro-alpha chains. At 10 min, when the labeling of blood proline had already declined, radioactivity was observed in spherical portions of Golgi saccules containing entangled threads, and, at 20 min, radioactivity appeared in cylindrical portions containing aggregates of parallel threads. The parallel threads measured 280–350 nm in length and stained with the low pH-phosphotungstic acid technique for carbohydrate and with the silver methenamine technique for aldehydes (as did extracellular collagen fibrils). The passage of label from spherical to cylindrical Golgi portions is associated with the reorganization of entangled into parallel threads, which is interpreted as the packing of procollagen molecules. Between 20 and 30 min, prosecretory and secretory granules respectively became labeled. These results indicate that the cylindrical portions of Golgi saccules transform into prosecretory and subsequently into secretory granules. Within these granules, the parallel threads, believed to be procollagen molecules, are transported to the odontoblast process. At 90 min and 4 h after injection, label was present in predentin, indicating that the labeled content of secretory granules had been released into predentin. This occurred by exocytosis as evidenced by the presence of secretory granules in fusion with the plasmalemma of the odontoblast process. It is proposed that pro-alpha chains give rise to procollagen molecules which assemble into parallel aggregates in the Golgi apparatus. Procollagen molecules are then transported within secretory granules to the odontoblast process and released by exocytosis. In predentin procollagen molecules would give rise to tropocollagen molecules, which would then polymerize into collagen fibrils.  相似文献   

15.
It is known that colonic goblet cells utilize glucose to synthesize the carbohydrate portion of mucus glycoprotein. To determine the intracellular site of this synthesis, glucose-H3 was injected into 10-g rats. At 5, 20, 40 min, 1, 1½, and 4 hr after injection, segments of colon were fixed and prepared for electron microscope radioautography. By 5 min after injection, label had been incorporated into substances present in the flattened saccules of the Golgi complex. At 20 min, both Golgi saccules and nearby mucigen granules were labeled. By 40 min, mucigen granules carried almost all detectable radioactivity. Between 1 and 4 hr, these labeled granules migrated from the supranuclear region to the apical membrane; here, they were extruded singly, retaining their limiting membrane. The evidence indicates that the Golgi saccule is the site where complex carbohydrate is synthesized and is added to immigrant protein to form the complete glycoprotein of mucus. The Golgi saccule, distended by this material, becomes mucigen granules. It is roughly estimated that one saccule is released by each Golgi stack every 2 to 4 min: a conclusion implying continuous renewal of Golgi stacks. It appears that the Golgi synthesis, intracellular migration, and release of mucus glycoprotein occur continually throughout the life of the goblet cell.  相似文献   

16.
Summary Sections of tissues from the adrenal medullae of young rats were subjected to radioautography after a single intravenous injection of L-leucine 4,5 3H to identify the sites of synthesis and follow the migration of newly-formed proteins in both adrenaline-storing (A) and noradrenaline-storing (N) cells. As early as 2 min after injection of leucine 3H, the label was highest in the rough endoplasmic reticulum (RER) of A and N cells, suggesting that cisternal ribosomes are sites of protein synthesis. By 5 and 10 min, much of the label had migrated from the RER into the Golgi complex of both cell types. Some label was already present over the secretory granule matrix (chromogranins) by 2 min but the peak was reached at 1 h in both A and N cells. By 4 h, the label over the secretory granules had diminished, indicating a release of newly-synthetized chromogranins outside the cells. The label over the hyaloplasm was relatively high at 2 min but it decreased rapidly to low levels. In contrast, the label over the cell surface continually increased to reach the highest levels among all organelles at 4 h in both cell types. The pattern of increment of the label over the cell surface suggests that the newly-formed proteins of these sites are also synthetized in the RER, pass through the Golgi complex and are transported in the hyaloplasm, before reaching the surface of A and N cells.Supported in part by the Quebec Heart Foundation, the Medical Research Council of Canada (Grant MT-1973), the J.-L. Levesque Foundation, the Ministry of Education of Quebec (Formation de Chercheurs et Action Concertée) and the Fond de l'Université de Montréal (Cafir)  相似文献   

17.
Summary The sequence of the synthesis and transport of the organic matrix of spicules has been elucidated in the gorgonian Leptogorgia virgulata by use of 3H-aspartic acid as the tracer in electron-microscopic autoradiography. The entire process of matrix synthesis and transport takes approximately 2 h. It seems that the protein moiety of the organic matrix is synthesized in the RER prior to 5 min following the initial 10 min incubation in the tracer. At the 5 min chase the label is moving from the RER to the Golgi complexes where the carbohydrate moiety of the matrix is presumed to be synthesized. At the 5 to 15 min chases the label is transported out of the Golgi complexes via Golgi vesicles. This phase continues for 30 min. From 60 to 120 min the 3H-aspartic acid moves to the spicules. After 120 min the majority of the label has moved into the spicules. Silver grain counts over both multivesicular and electron-dense bodies remain at relatively low and constant levels over 4 h indicating that neither organelle is involved in the synthesis and transport of the organic matrix.Contribution No 512; Belle W. Baruch Institute for Marine Biology and Coastal Research, University of South Carolina, Columbia, South Carolina 29208, USA  相似文献   

18.
The synthesis, intracellular transport, storing, and excretion of proteins by duck hypophyseal cells in organ culture were studied with tritiated DL-leucine and high resolution radioautography (pulse-labeling experiments). Quantitative study of the radioautographs allowed a determination of the relative proportions of cytoplasmic radioactivity located in each cellular compartment (ergastoplasm, Golgi apparatus, and protein granules) as well as the variations in these proportions as a function of time. The number of labeled protein granules as opposed to the total number of granules in the cell was also determined (RSg). These data were separately analyzed for the two types of cells present in the explants: prolactin cells and "MSH" cells. The synthetic process follows a course common to both cell types, each of which is distinguished by its particular modalities. The labeled proteins, synthesized within several minutes in the ergastoplasm, are concentrated in the Golgi zone within 30 min. They then migrate out of this area, the emptying of which is accomplished in about 4 hr. These proteins become equally distributed between the protein granules, on the one hand, and the cytoplasm ("sedentary" proteins), on the other. The RSg reaches its maximum when the Golgi zone is emptied, but this figure remains very low (3%). The RSg then decreases slowly (1% in 40 hr). It is concluded that hypophyseal cells are able to store protein in their granules and that their processes of synthesis and excretion are not continuous. The prolactin cells differ from the "MSH" cells in that they have a slower migration of newly synthesized proteins, and these proteins pass via the dilated ergastoplasmic cisterns in which they may possibly be stored.  相似文献   

19.
The secretory process in pituitary mammotrophs was analyzed by quantitative electron microscope autoradiography. Dispersed pituitary cells from estrogen-treated female rats were subjected to pulse- labeling with [3H]leucine (5 min) followed by a chase incubation of up to 4 h. Autoradiograms were prepared using fine-grained emulsion (Kodak 129-01), and analyzed using a three-step "mask analysis' procedure: (a) the distribution of autoradiographic grains is determined as in a simple grain density analysis; (b) masks (transparent overlays) are used to generate expected grains from assumed sources; and (c) a computer program compares these two distributions and varies the expected distribution to match the observed distribution, thereby identifying the radioactive sources in the tissue. The overall route of intracellular transport of prolactin from rough endoplasmic reticulum (ER) leads to Golgi complex leads to immature secretory granules leads to mature secretory granules was as established in previous studies. However, by use of the high resolution emulsion and method of analysis, the precision with which label could be localized within individual source compartments was much greater and the time resolution was much sharper than achieved previously using Ilford L4 emulsion and simple grain density analysis. The main new findings were as follows: (a) the ER was essentially drained of radioactivity by 30 min, the Golgi complex by 1 h, and the immature secretory granules by 2h postpulse. This indicates that the secretory product (prolactin) is rapidly and efficiently transported out of these compartments. (b) approximately 30% of the total radioactivity remains located in the ground cytoplasm over the entire postpulse period examined (up to 4 h), and by 30 min postpulse the grain density in the ground cytoplasm exceeded that of the ER. This indicates the ability to resolve ER-associated label (presumably associated mainly with secretory products) from the cytoplasmic label (presumably associated with nonsecretory proteins). (c) the specific activity of immature secretory granules was much greater than previously appreciated; at 1 h postpulse it was greater than 200 times that of the adjacent Golgi complex cisternae. This large dynamic range in observed grain density demonstrates the ability to effectively correct for radiation spread and thus to detect with great accuracy high concentration of label even from very small structures (20-100 nm) which constitute a small percentage (less than 1%) of the total cell area.  相似文献   

20.
Summary Antagglutinin, a specific protein synthesized by the boar epididymis, was localized by an ultrastructural immunogold-labeling procedure in the principal cells of the three regions of the caput epididymidis, most notably at the sites of synthesis and secretion. The intensity of the reaction was variable in the three epididymal zones. Labeling was of low intensity in the proximal and middle caput, except in the granules of the latter. These granular storage sites did not correspond to typical secretory granules but appeared to be intracellular sites of degradation of this protein. In the distal caput, which was devoid of these granules, intense secretory activity for antagglutinin was detected. Few gold particles were localized in the RER profiles but labeling was detected in the Golgi zone, in numerous dense vesicles, in structures distributed between the Golgi zone and the apex of the cell, and in the epididymal lumen. This study has enabled us to visualize immunocytochemically antagglutinin along its intracellular secretory pathway, i.e. at the site of its synthesis, during its passage via the Golgi zone, and its intracellular transport to the lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号