首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Aims: To test degradation of malic acid content in wine by immobilized Issatchenkia orientalis KMBL 5774 cells recently isolated from Korean wine pomace as a malic acid‐degrading yeast. Methods and Results: I. orientalis KMBL 5774 cells were immobilized using a mixture of oriental oak (Quercus variabilis) charcoal with sodium alginate. When the immobilized yeast cells were observed on a scanning electron microscope, cells were efficiently immobilized on the surface area of the charcoal. A Korean wine containing a high level of malic acid was treated with the immobilized yeast cells. The HPLC analysis of the malic acid content in the treated wine showed the malic acid content was reduced to 0·75 mg ml?1 after treatment from the original content of 8·96 mg ml?1, representing 91·6% of the malic acid was degraded during the treatment. Conclusions: The immobilization of the malic acid‐degrading yeasts with oriental oak charcoal and sodium alginate is useful for degradation of malic acid in wines containing a high level of malic acid with no significant increase in other acids. Significance and Impact of the study: Malic acid is sometimes detrimental to the quality of wines when present at high concentrations in some varieties. The immobilized I. orientalis KMBL5774 cells appear to be a promising candidate in view of developing biotechnological methods for reduction of malic acid contents in wine.  相似文献   

2.
The role of functionalized alginate gels as immobilized matrices in production of l (+) lactic acid by Lactobacillus delbrueckii was studied. L. delbrueckii cells immobilized in functionalized alginate beads showed enhanced bead stability and selectivity towards production of optically pure l (+) lactic acid in higher yields (1.74Yp/s) compared to natural alginate. Palmitoylated alginate beads revealed 99% enantiomeric selectivity (ee) in production of l (+) lactic acid. Metabolite analysis during fermentation indicated low by-product (acetic acid, propionic acid and ethanol) formation on repeated batch fermentation with functionalized immobilized microbial cells. The scanning electron microscopic studies showed dense entrapped microbial cell biomass in modified immobilized beads compared to native alginate. Thus the methodology has great importance in large-scale production of optically pure lactic acid.  相似文献   

3.
Summary The formation of citric acid, oxalic acid, erythritol and glycerol by three strains of Aspergillus niger immobilized in calcium alginate was investigated and compared with that of free cells when cultivated in shake flasks under phosphate limitation. Morphological changes were followed using an electron microscope. The production of acids and polyols, the consumption of glucose and fructose, and also the morphological changes were strain-dependent. The results also reflected the influence of long storage of a strain on productivity, morphological behaviour and phosphate consumption. Offprint requests to: H.-J. Rehm  相似文献   

4.
Summary Pseudomonas sp. US1 ex entrapped in calcium alginate could dehalogenate a mixture of isomeric monochlorobenzoates and 2,4-dichlorophenoxyacetic acid. Rates of dehalogenation by the immobilized cells were found to be comparable to those of free cells. Conditions for optimum dehalogenation of chloroaromatics by immobilized cells and their reusability were investigated. Preliminary attempts were made to set up a continuous system for dehalogenation of chloroaromatics using a fluidized bed column reactor. Offprint requests to: V. Modi  相似文献   

5.
Oleic acid is incorporated into an insoluble fraction left over after lipid extraction in Scenedesmus acutus. This incorporation is extremely sensitive to the chloroacetamide herbicide, metazachlor (I50= ca 20 nM). Therefore, factors influencing the incorporation of radioactivity from oleic acid into this non-lipid fraction were investigated. S. acutus cells were cultivated under various conditions with or without inhibitors and [14C]-oleic acid was supplied to the algae; the lipids were extracted and the radioactivity incorporated in the remaining fraction monitored. The inhibition seemed specific for chloroacetamides and related classes since it was also observed with alachlor, dimethenamid and mefenacet (an oxyacetamide). In contrast, it could not be found with diuron, oryzalin, nor could it be observed with a non-herbicidal metazachlor derivative or iodoacetamide. Incorporation of oleic acid into that fraction required meta-bolically active cells and was stimulated by light. Other fatty acids (16:0, 18:2, and 18:3) were also incorporated into the non-lipid fraction but their incorporation was not inhibited by metazachlor. Among other components, the fraction contains proteins. However, a possible specific effect of chloroacetamides on the binding of oleic acid to proteins or on the in vitro activity of lipid transfer proteins could not be detected. Not much is known yet about mechanism and chemistry of oleic acid incorporation but this finding opens a new path for investigations towards the primary target of these herbicides.  相似文献   

6.
The physiological significance of trans unsaturated fatty acids, which are constituents of membrane lipids of the phenol-degrading bacterium Pseudomonas putita P8, was studied. The addition of phenol or phenol derivatives to the cells induced the formation of trans unsaturated fatty acids, yielding an overall maximal amount of 41.3% of total fatty acids. The inhibition of de-novo lipid synthesis by cerulenin prevented the change in the degree of saturation in the lipids. However, the cells could still respond to phenols with an amplified conversion of cis into trans unsaturated fatty acids, which is apparently a post-synthesis mechanism of isomerization of the double bond. The cis/trans conversion correlated with growth inhibition induced by toxic concentrations of 4-chlorophenol, whereas only growing cells were able to change the degree of saturation. In cells that were protected against phenol by immobilization in calcium alginate, the conversion of cis into trans fatty acids occurred at higher toxin concentrations compared with free cells. Cells entering the stationary growth phase increased the prodortion of saturated to unsaturated fatty acids but maintained a constant trans/cis ratio.P. putida P8 reacted to an increase or decrease in the growth temperature with an appropriate change in the ratio of saturated to unsaturated fatty acids and in cells inhibited by cerulenin with a change in the trans/cis ratio. This study shows that the physiological role of the cis/trans conversion is probably the regulation of membrane fluidity when the most important mechanism for this, the modification of the degree of saturation, cannot by used by the cells due to inhibition of growth and lipid biosynthesis. Correspondence to: H. Keweloh  相似文献   

7.
Summary Lipases were investigated with respect to their ability to catalyse the incorporation of fatty acids into phosphatidylcholine (PC) by interesterification reactions. The enzymes were dried onto solid support materials and the conversions were carried out in water-saturated toluene. Three lipases (two fungal and one plant enzyme) had the desired activity; immobilized lipase from Mucor miehei (Lipozyme) was the most active enzyme. The Lipozyme-catalysed interesterification was selective for the sn-1 position of PC and during 48 h of reaction around 50% of the fatty acids in this position were replaced with heptadecanoic acid, a fatty acid which was practically absent in the original phospholipid. Due to adsorption on the support material and the competing hydrolysis reaction the total amount of PC in the reaction solution decreased to about 40% of the original amount. Higher interesterification rates were obtained with free fatty acids as acyl donors than with fatty acid esters. Offprint requests to: I. Svensson  相似文献   

8.
Microalgae biomass can be a feasible source of ω‐3 fatty acids due to its stable and reliable composition. In the present study, the Crypthecodinium cohnii growth and docosahexaenoic acid (DHA, 22:6ω3) production in a 100 L glucose‐fed batch fermentation was evaluated. The lipid compounds were extracted by supercritical carbon dioxide (SC‐CO2) from C. cohnii CCMP 316 biomas, was and their fatty acid composition was analysed. Supercritical fluid extraction runs were performed at temperatures of 313 and 323 K and pressures of 20.0, 25.0 and 30.0 MPa. The optimum extraction conditions were found to be 30.0 MPa and 323 K. Under those conditions, almost 50% of the total oil contained in the raw material was extracted after 3 h and the DHA composition attained 72% w/w of total fatty acids. The high DHA percentage of total fatty acids obtained by SC‐CO2 suggested that this extraction method may be suitable for the production of C. cohnii value added products directed towards pharmaceutical purposes. Furthermore, the fatty acid composition of the remaining lipid fraction from the residual biomass with lower content in polyunsaturated fatty acids could be adequate for further uses as feedstock for biodiesel, contributing to the economy of the overall process suggesting an integrated biorefinery approach.  相似文献   

9.
l-Lactic acid was produced from raw cassava starch, by simultaneous enzyme production, starch saccharification and fermentation in a circulating loop bioreactor with Aspergillus awamori and Lactococcus lactis spp. lactis immobilized in loofa sponge. A. awamori was immobilized directly in cylindrical loofa sponge while the L. lactis was immobilized in a loofa sponge alginate gel cube. In the loofa sponge alginate gel cube, the sponge serves as skeletal support for the gel with the cells. The alginate gel formed a hard outer layer covering the soft porous gel inside. By controlling the rate and frequency of broth circulation between the riser and downcomer columns, the riser could be maintained under aerobic condition while the downcomer was under anaerobic condition. Repeated fed-batch l-lactic acid production was performed for more than 400 h and the average lactic acid yield and productivity from raw cassava starch were 0.76 g lactic acid g–1 starch and 1.6 g lactic acid l–1 h–1, respectively.  相似文献   

10.
Summary Di-n-butylphthalate (DBP) is one of the phthalate esters (PAEs) used in the manufacture of plasticizers, insect repellents and synthetic fibres and contributes to environmental pollution. We report a novel bacterium belonging to the genus, Bacillus (NCIM 5220), which has the ability to utilize DBP as the sole source of carbon and energy. This bacterium was immobilized in alginate. The degradation of DBP by immobilized cells was compared with free cells. The effects on the degradation of DBP of different factors like gel (alginate) concentration, gel bead size, temperature, and pH were investigated. Oxygen uptake in the presence of DBP by free and immobilized cells was also studied. The results showed that the degradation of DBP by immobilized cells was more efficient than by free cells. Further, the effect of various factors tested on the degradation of DBP by alginate-immobilized cells showed that the degradation of DBP was remarkably affected by alginate concentration between 2 and 5% and drastically decreased between bead size 2 and 5 mm. A change of 10 °C of reaction temperature from 30 to 40 °C did not alter the degradation of DBP, and maximum degradation was appeared to be favoured over a broad pH range of 6.5–7.5 for immobilized cells as compared to free cells, which showed an optimum temperature of about 35 °C and pH of 7.0. The immobilized cells showed higher oxidation of DBP than free cells. Thus more efficient degradation of DBP could be achieved by immobilizing Bacillus sp. in alginate beads.  相似文献   

11.
The endogenous respiration of resting, submerged grown Boletus variegatus mycelium has been determined. In young cultures the intensity of the endogenous oxygen uptake was subject to great variations during the first few hours of starvation. However, by using six to eight days old mycelium the Qo2 values could be kept at a relatively low and constant level for at least nine hours. Inhibition of the endogenous respiration was found after addition of n-saturated C-2 to C-12 fatty acids (2 × 10-3M, pH 4.85). The inhibitory effect of the compound was dependent on the length of the carbon chain. Maximum effects were obtained for acids with eight to twelve carbon atoms per molecule. The inhibition was also dependent on the amount of undissociated acid present. By raising the pH so that the fatty acid dissociated the established inhibition was partly reversed. The effect of the neutral compound methyl octanoate was in essence identical to that obtained with octanoic acid. After fatty acid addition a close correspondence was found between the degree of inhibition of the oxygen uptake and the amount of UV absorbing substances leaking out from the cells. This extracellular material had an absorption maximum at 260 nm and a minimum around 240 nm. The leaking was ascribed to interaction between fatty acids or methyl octanoate and lipophilic substances of the cytoplasmic membrane. It is suggested that the inhibitory action on the endogenous respiration is due to similar effects on intracellular membrane systems.  相似文献   

12.
The renewal of fatty acids in the visual cells and pigment epithelium of the frog retina was studied by autoradiographic analysis of animals injected with tritiated palmitic, stearic, or arachidonic acids. Most of the radioactive material could be extracted from the retina with chloroform-methanol, indicating that the fatty acids had been esterified in lipids. Analysis of the extracts, after injection of [3H]palmitic acid, revealed that the radioactivity was predominantly in phospholipid. Palmitic acid was initially concentrated in the pigment epithelium, particularly in oil droplets which are storage sites for vitamin A esterified with fatty acid. The cytoplasm, but not the nucleus of these cells, was also heavily labeled. Radioactive fatty acid was bound immediately to the visual cell outer segment membranes, including detached rod membranes which had been phagocytized by the pigment epithelium. This is believed to be due to fatty acid exchange in phospholipid molecules already situated in the membranes. Gradually, the concentration of radioactive material in the visual cell outer segment membranes increased, apparently as a result of the addition of new phospholipid molecules, possibly augmented by the transfer from the pigment epithelium of esterified vitamin A. Injected fatty acid became particularly concentrated in new membranes which are continually assembled at the base of rod outer segments. This localized concentration was short-lived, apparently due to the rapid renewal of fatty acid. The results support the conclusion that rods renew the lipids of their outer segments by membrane replacement, whereas both rods and cones renew the membrane lipids by molecular replacement, including fatty acid exchange and replacement of phospholipid molecules in existing membranes.  相似文献   

13.
Whole cells ofPropionibacterium freudenreichii subsp.shermanii (two strains) were immobilized in a living state in 2 and 4% alginate gel and 2, 4 and 6% carrageenan gel. Production of propionic acid, acetic acid, and vitamin B12 were examined. The best results were obtained in the fermentation with strains immobilized in 4% alginate gel when applied for the third time.  相似文献   

14.
Fatty acid contents were estimated in the cell wall of Saccharomyces. The fatty acids responsible for cell wall hydrophobicity were classified by ease of extraction to ‘readily extractable’ and ‘bound’ acids. The readily extractable fatty acids were easily extracted with pentane and chloroform-methanol. The fatty acids extracted with chloroform-methanol were quite effective for cell wall hydrophobicity, but the fatty acids extracted with pentane were not. The bound fatty acids comprised in the phospholipids phosphatidylethanolamine and phosphatidylserine, which were rigidly associated with the cell wall. These phospholipids were not extractable until they were released from the cell wall by pronase. Chloroform-methanol extraction caused a reduction in cell wall phospholipid content, particularly after treatment with pronase. The fatty acid content of the resultant cell wall was lowered to below 7% of initial content. Phospholipids contained more saturated fatty acid than readily extractable lipids. Phospholipids greatly contributed to cell wall hydrophobicity of various film strains of Saccharomyces.  相似文献   

15.
Summary Alcaligenes denitrificans was isolated from sewage sludge and showed a strong degradative ability towards volatile fatty acids. The organism was tested both as free cells and immobilised in calcium alginate, for the ability to degrade the sodium salt of a typical volatile fatty acid, valeric acid.In shake flask culture the immobilised cells could be used to fully degrade 18 mM valerate over ten 48 h runs before bead break up occurred. The use of beads in conventional stirred tank fermenters, and a bubble column reactor was also investigated, with a 50 ml bubble column containing 5 ml of beads giving the highest overall degradation rate of 1.8 mmol/h, for 40 h in a fed batch mode of operation.  相似文献   

16.
The ability of fatty acids to sensitize gram-negative and gram-positive bacterial cells to the action of bacteriolytic enzymes was studied. By synergetic effects between bacteriolytic enzymes and fatty acids isolated from Myxococcus such bacteria, which were otherwise resistant to the enzymes, could be lysed. Isobranched and unbranched acids with 11–15 carbon atoms were active and could sensitize Bacillus megaterium and Aerobacter aerogenes to the action of bacteriolytic enzymes from myxobacteria and to lysozyme. The sensitizing activity of tetradecanoic acid was enhanced with increasing concentration even after the solution was saturated. Neither ethylene diaminetetraacetate (0.1 and 1 mM) nor Triton X-100 (1 0/00) could sensitize resistant bacteria to the action of bacteriolytic enzymes. However, they were active in combination and they could also increase the effect of tetradecanoic acid.  相似文献   

17.
Summary Removal of cooking oil from the domestic wastewater was carried out by immobilized photosynthetic bacteria, Rhodobacter shaeroide S (S) and R. shaeroides NR-3 (NR-3). The microorganisms were immobilized in sodium alginate (2%) or agar (2%). We treated 50 g of cooking oil suspended in artificial sewage wastewater under anaerobic dark conditions in a 15 l acrylic vessel. Results show that after 6 days of batch treatment, 74.2, 58.2 and 15.8% of oil was removed with the alginate-immobilized S, NR-3, and control, respectively. Relatively larger accumulations of volatile fatty acids such as propionic and acetic acids were observed in the control experiment compared with that in the immobilized cell (alginate and agar) experiment. In addition, continuous treatment of oil-containing wastewater was carried out with agar-immobilized S at a fixed dilution rate of 0.4/day. These results indicate that 96% of the oil was removed from the wastewater, and the maximum removal rate of oil reached approximately 3.83 kg oil/m3/d.  相似文献   

18.
The naphthalenesulfonate-oxidizing bacterium Sphingomonas sp. BN6 was immobilized in calcium alginate. These beads were incubated under aerobic conditions in a medium with the sulfonated azo dye, Mordant Yellow 3 (MY3), and glucose. The immobilized cells converted MY3, but only a marginal turnover of the dye was found under these conditions with freely suspended cells of Sphingomonas sp. BN6. Under anaerobic conditions, suspended cells of Sphingomonas sp. BN6 reductively cleaved the azo bond of MY3 to 6-aminonaphthalene-2-sulfonate (6A2NS) and 5-aminosalicylate. The turnover of MY3 by the immobilized cells under aerobic conditions resulted in the formation of more than equimolar amounts of 5-aminosalicylate, but almost no (6A2NS) was detected. Cells of Sphingomonas sp. BN6 aerobically oxidize 6A2NS to 5-aminosalicylate. It was therefore concluded that the cells in the anaerobic center of the alginate beads reduced MY3 to 6A2NS and 5-aminosalicylate and that 6A2NS was oxidized to 5-aminosalicylate by those cells that were immobilized in the outer aerobic zones of the alginate beads. The presence of oxygen gradients within the alginate beads was verified by using oxygen micro-electrodes. A coimmobilisate of Sphingomonas sp. BN6 with a 5-aminosalicylate degrading bacterium completely degraded MY3. The immobilized cells also converted the sulfonated azo dyes Amaranth and Acid Red␣1. Received: 6 May 1996 / Received revision: 6 August 1996 / Accepted: 12 August 1996  相似文献   

19.
Fatty acids from total lipids and polar lipids in cultured rainbow trout (Oncorhynchus mykiss) raised in seawater (SW) and freshwater (FW) were identified and quantified from the muscle samples in January, April, and July. The highest total lipid and polar lipid amounts were found in April. July contents of total lipids were low, but percent of the polyunsaturated fatty acids (PUFAs) was high in SW and FW environment (particularly n‐3 PUFAs). Variety of 17 fatty acids was identified by GC‐FID after transmethylation. The predominant fatty acids in rainbow trout from SW and FW were: docosahexaenoic acid among n‐3 PUFAs, palmitic acid among saturated fatty acids (SFAs), and oleic acid among monounsaturated fatty acids (MUFAs). Appreciably higher n‐3/n‐6 ratio was found in total lipids in April (6.40, FW fish) and in polar lipids in July (18.76; SW fish). High n‐3/n‐6 ratio in total lipids and polar lipids of rainbow trout from SW and FW, besides beneficial n‐3/n‐6 ratio in the commercial fish food, could be characteristic for the local environmental conditions (Croatia).  相似文献   

20.
The Bacillus sp. strain PHN 1 capable of degrading p-cresol was immobilized in various matrices namely, polyurethane foam (PUF), polyacrylamide, alginate and agar. The degradation rates of 20 and 40 mM p-cresol by the freely suspended cells and immobilized cells in batches and semi-continuous with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation of 20 and 40 mM p-cresol than freely suspended cells and the cells immobilized in polyacrylamide, alginate and agar. The PUF- immobilized cells could be reused for more than 35 cycles, without losing any degradation capacity and showed more tolerance to pH and temperature changes than free cells. These results revealed that the immobilized cell systems are more efficient than freely suspended cells for degradation of p-cresol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号