首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
Sex differences in the mean trait expression are well documented, not only for traits that are directly associated with reproduction. Less is known about how the variability of traits differs between males and females. In species with sex chromosomes and dosage compensation, the heterogametic sex is expected to show larger trait variability (“sex‐chromosome hypothesis”), yet this central prediction, based on fundamental genetic principles, has never been evaluated in detail. Here we show that in species with heterogametic males, male variability in body size is significantly larger than in females, whereas the opposite can be shown for species with heterogametic females. These results support the prediction of the sex‐chromosome hypothesis that individuals of the heterogametic sex should be more variable. We argue that the pattern demonstrated here for sex‐specific body size variability is likely to apply to any trait and needs to be considered when testing predictions about sex‐specific variability and sexual selection.  相似文献   

3.
The expression of secondary sexual traits in females has often been attributed to a correlated response to selection on male traits. In rare cases, females have secondary sexual traits that are not homologous structures to secondary sexual traits in males and are thus less likely to have evolved in females because of correlated selection. In this study, we used the dung beetle Onthophagus sagittarius, a species with sex‐specific horns, to examine the environmental and quantitative genetic control of horn expression in males and females. Offspring subjected to different brood mass manipulations (dung addition/removal) were found to differ significantly in body size. Brood mass manipulation also had a significant effect on the length of male horns; however, female horn length was found to be relatively impervious to the treatment, showing stronger patterns of additive genetic variance than males. We found no correlations between horn expression in males and females. We therefore conclude that the horns of O. sagittarius females are unlikely to result from genetic correlations between males and females. Rather, our data suggest that they may be under independent genetic control.  相似文献   

4.
Male house finches (Carpodacus mexicanus) have carotenoid-based ornamentalplumage coloration. In previous research it was shown that fora single population of house finches in a single year, malesthat paired were on average redder in plumage coloration thanmales that did not pair, and males with redder plumage tendedto nest earlier than males with less red plumage. Here we showthat these patterns continued over 6 years and at two widely separatedlocations. We also tested whether the symmetry of carotenoid-based crownpigmentation differed between paired and unpaired males andfound that paired males have, on average, more perfect symmetryof crown pigmentation than males not paired. These observationssupport the idea that expression of carotenoid-based plumagecoloration by males is a persistent and widespread criterionin female mate choice in the house finch.  相似文献   

5.
The house finch (Carpodacus mexicanus) is a sexually dichromatic passerine in which males display colorful plumage and females are generally drab brown. Some females, however, have a subdued version of the same pattern of ornamental coloration seen in males. In previous research, I found that female house finches use male coloration as an important criterion when choosing mates and that the plumage brightness of males is a reliable indicator of male nest attentiveness. Male house finches invest substantially in the care of young and, like females, stand to gain by choosing high-quality mates. I therefore hypothesized that a female's plumage brightness might be correlated with her quality and be the basis for male mate choice. In laboratory mate choice experiments, male house finches showed a significant preference for the most brightly plumaged females presented. Observations of a wild population of house finches, however, suggest that female age is the primary criterion in male choice and that female plumage coloration is a secondary criterion. In addition, yearling females tended to have more brightly colored plumage than older females, and there was no relationship between female plumage coloration and overwinter survival, reproductive success, or condition. These observations fail to support the idea that female plumage coloration is an indicator of individual quality. Male mate choice for brightly plumaged females may have evolved as a correlated response to selection on females to choose brightly colored males.  相似文献   

6.
    
Abstract.— We examined the genetic architecture of plasticity of thorax and wing length in response to temperature in Drosophila melanogaster . Reaction norms as a function of growth temperature were analyzed in 20 isofemale lines in a natural population collected from Grande Ferrade near Bordeaux (southern France) in two different years. We found evidence for a complex genetic architecture underlying the reaction norms and differences between males and females. Reaction norms were negative quadratics. Genetic correlations were moderately high between traits within environments. Among characteristic values, the magnitudes of genetic correlations varied among traits and sexes. We hypothesized that genetic correlations among environments would decrease as temperatures became more different. This expectation was upheld for only one trait, female thorax length. For males for both traits, the correlations were large for both very similar and very different temperatures. These correlations may constrain the evolution of the shape of the reaction norms. Whether the extent of independence implies specific regulatory genes or only a specific allelic regulation of trait genes can not be decided from our results.  相似文献   

7.
Barr CM  Fishman L 《Heredity》2011,106(5):886-893
The mechanisms underlying genetic associations have important consequences for evolutionary outcomes, but distinguishing linkage from pleiotropy is often difficult. Here, we use a fine mapping approach to determine the genetic basis of association between cytonuclear male sterility and other floral traits in Mimulus hybrids. Previous work has shown that male sterility in hybrids between Mimulus guttatus and Mimulus nasutus is due to interactions between a mitochondrial gene from M. guttatus and two tightly linked nuclear restorer alleles on Linkage Group 7, and that male sterility is associated with reduced corolla size. In the present study, we generated a set of nearly isogenic lines segregating for the restorer region and male sterility, but with unique flanking introgressions. Male-sterile flowers had significantly smaller corollas, longer styles and greater stigmatic exsertion than fertile flowers. Because these effects were significant regardless of the genotypic composition of introgressions flanking the restorer region, they suggest that these floral differences are a direct byproduct of the genetic incompatibility causing anther abortion. In addition, we found a non-significant but intriguing trend for male-sterile plants to produce more seeds per flower than fertile siblings after supplemental pollination. Such pleiotropic effects may underlie the corolla dimorphism frequently observed in gynodioecious taxa and may affect selection on cytoplasmic male sterility genes when they initially arise.  相似文献   

8.
    
The G‐matrix occupies an important position in evolutionary biology both as a summary of the inheritance of quantitative traits and as an ingredient in predicting how those traits will respond to selection and drift. Consequently, the stability of G has an important bearing on the accuracy of predicted evolutionary trajectories. Furthermore, G should evolve in response to stable features of the adaptive landscape and their trajectories through time. Although the stability and evolution of G might be predicted from knowledge of selection in natural populations, most empirical comparisons of G‐matrices have been made in the absence of such a priori predictions. We present a theoretical argument that within‐sex G‐matrices should be more stable than between‐sex B‐matrices because they are more powerfully exposed to multivariate stabilizing selection. We tested this conjecture by comparing estimates of B‐ and within‐sex G‐matrices among three populations of the garter snake Thamnophis elegans. Matrix comparisons using Flury's hierarchical approach revealed that within‐sex G‐matrices had four principal components in common (full CPC), whereas B‐matrices had only a single principal component in common and eigenvalues that were more variable among populations. These results suggest that within‐sex G is more stable than B , as predicted by our theoretical argument.  相似文献   

9.
    
Evidence for phenotypic plasticity in brain size and the size of different brain parts is widespread, but experimental investigations into this effect remain scarce and are usually conducted using individuals from a single population. As the costs and benefits of plasticity may differ among populations, the extent of brain plasticity may also differ from one population to another. In a common garden experiment conducted with three‐spined sticklebacks (Gasterosteus aculeatus) originating from four different populations, we investigated whether environmental enrichment (aquaria provided with structural complexity) caused an increase in the brain size or size of different brain parts compared to controls (bare aquaria). We found no evidence for a positive effect of environmental enrichment on brain size or size of different brain parts in either of the sexes in any of the populations. However, in all populations, males had larger brains than females, and the degree of sexual size dimorphism (SSD) in relative brain size ranged from 5.1 to 11.6% across the populations. Evidence was also found for genetically based differences in relative brain size among populations, as well as for plasticity in the size of different brain parts, as evidenced by consistent size differences among replicate blocks that differed in their temperature.  相似文献   

10.
Sex-specific plasticity in body size has been recently proposed to cause intraspecific patterns of variation in sexual size dimorphism (SSD). We reared juvenile male and female Mediterranean tarantulas (Lycosa tarantula) under two feeding regimes and monitored their growth until maturation. Selection gradients calculated across studies show how maturation size is under net stabilizing selection in females and under directional selection in males. This pattern was used to predict that body size should be more canalized in females than in males. As expected, feeding affected male but not female maturation size. The sex-specific response of maturation size was related to a dramatic divergence between subadult male and female growth pathways. These results demonstrate the existence of sex-specific canalization and resource allocation to maturation size in this species, which causes variation in SSD depending on developmental conditions consistent with the differential-plasticity hypothesis explaining Rensch's Rule.  相似文献   

11.
    
The magnitude and direction of sexual size dimorphism (SSD) varies greatly across the animal kingdom, reflecting differential selection pressures on the reproductive and/or ecological roles of males and females. If the selection pressures and constraints imposed on body size change along environmental gradients, then SSD will vary geographically in a predictable way. Here, we uncover a biogeographical reversal in SSD of lizards from Central and North America: in warm, low latitude environments, males are larger than females, but at colder, high latitudes, females are larger than males. Comparisons to expectations under a Brownian motion model of SSD evolution indicate that this pattern reflects differences in the evolutionary rates and/or trajectories of sex‐specific body sizes. The SSD gradient we found is strongly related to mean annual temperature, but is independent of species richness and body size differences among species within grid cells, suggesting that the biogeography of SSD reflects gradients in sexual and/or fecundity selection, rather than intersexual niche divergence to minimize intraspecific competition. We demonstrate that the SSD gradient is driven by stronger variation in male size than in female size and is independent of clutch mass. This suggests that gradients in sexual selection and male–male competition, rather than fecundity selection to maximize reproductive output by females in seasonal environments, are predominantly responsible for the gradient.  相似文献   

12.
    
In order to be elaborated by sexual selection, sexual ornaments must vary perceptibly and genetically among individuals in natural populations. Rather little is known about ornament variation in monogamous species, in which sexual selection should act more weakly than in polygynous species. We report phenotypic variation in feather ornament size (elongated tails and pectoral tufts) and body size in the scarlet-tufted malachite sunbird Nectarinia johnstoni , a monogamous, sexually dimorphic nectarivore of East African alpine zones. Fully-expressed male ornaments are highly significantly more variable (CVs = 12–29%) than are skeletal and wing measures primarily affected by natural selection (CVs = 2 4%). Female sunbirds have pectoral tufts which are significantly (22–25%) smaller than those of adult males, but more variable (CVs= 21–22%, CVs= 12–15%), and more variable than body size. Among males with fully-grown ornaments, those with longer tails tend to have longer wings and wider tufts. The high variation in fully-grown ornaments in malachite sunbirds is consistent with the view that the ornaments are condition-dependent sexual signals. Finally, we review studies of feather ornament variation to date, and show that ornaments are much more variable in monogamous than non-monogamous species, apparently due to the relatively weak pressure of sexual selection.  相似文献   

13.
Male secondary sexual characters are often expressed in females, and the maintenance of the character in females can be due to either direct selection on females favoring the maintenance of the trait, or a correlated response to selection in males. Here I report on determinants of and phenotypic selection on tail length of female barn swallows Hirundo rustica. The homologous trait in males is under strong directional sexual selection. Female tail length was positively associated with several reproductive parameters including total seasonal reproductive success, even when controlling for year and age effects. A change in female tail length from one year to another was often associated with a change in the reproductive parameters correlated with absolute tail length. There was little evidence for an association between female tail length and the duration of the incubation period (only females incubate) and absolute and relative female provisioning rates of offspring, and subsequent size of offspring. Tail length of female barn swallows was positively correlated with that of their mates. Female tail length was a heritable trait as determined from regression of the tail trait of offspring on that of their mother and their father, and there was a positive genetic correlation between the tail trait in males and females. In conclusion, female tail length reliably reflects female reproductive potential, and the trait appears to be under directional selection, which may result in an evolutionary response to selection because of the heritability of the tail trait.  相似文献   

14.
    
I isolated the first set of polymorphic microsatellite markers from the house finch, Carpodacus mexicanus, a well‐studied North American bird species, as part of an effort to compare levels of genetic diversity in introduced and native populations. Here, I describe eight independently assorting microsatellite loci screened for polymorphism using 40 house finches. Polymorphism levels ranged from six to 14 alleles (mean = 10.6), making these markers a powerful tool for paternity and population level analyses of this widely distributed North American species.  相似文献   

15.
Populations often contain discrete classes or morphs (e.g., sexual dimorphisms, wing dimorphisms, trophic dimorphisms) characterized by distinct patterns of trait expression. In quantitative genetic analyses, the different morphs can be considered as different environments within which traits are expressed. Genetic variances and covariances can then be estimated independently for each morph or in a combined analysis. In the latter case, morphs can be considered as separate environments in a bivariate analysis or entered as fixed effects in a univariate analysis. Although a common approach, we demonstrate that the latter produces downwardly biased estimates of additive genetic variance and heritability unless the quantitative genetic architecture of the traits concerned is perfectly correlated between the morphs. This result is derived for four widely used quantitative genetic variance partitioning methods. Given that theory predicts the evolution of genotype‐by‐environment (morph) interactions as a consequence of selection favoring different trait combinations in each morph, we argue that perfect correlations between the genetic architectures of the different morphs are unlikely. A sampling of the recent literature indicates that the majority of researchers studying traits expressed in different morphs recognize this and do estimate morph‐specific quantitative genetic architecture. However, ca. 16% of the studies in our sample utilized only univariate, fixed‐effects models. We caution against this approach and recommend that it be used only if supported by evidence that the genetic architectures of the different morphs do not differ.  相似文献   

16.
  总被引:2,自引:0,他引:2  
Sexual dimorphism in size is common in birds. Males are usually larger than females, although in some taxa reversed size dimorphism (RSD) predominates. Whilst direct dimorphism is attributed to sexual selection in males giving greater reproductive access to females, the evolutionary causes of RSD are still unclear. Four different hypotheses could explain the evolution of RSD in monogamous birds: (1) The ‘energy storing’ hypothesis suggests that larger females could accumulate more reserves at wintering or refuelling areas to enable an earlier start to egg laying. (2) According to the ‘incubation ability’ hypothesis, RSD has evolved because large females can incubate more efficiently than small ones. (3) The ‘parental role division’ hypothesis suggests that RSD in monogamous waders has evolved in species with parental role division and uniparental male care of the chicks. It is based on the assumption that small male size facilitates food acquisition in terrestrial habitats where chick rearing takes place and that larger females can accumulate more reserves for egg laying in coastal sites. (3) The ‘display agility’ hypothesis suggests that small males perform better in acrobatic displays presumably involved in mate choice and so RSD may have evolved due to female preference for agile males. I tested these hypotheses in monogamous waders using several comparative methods. Given the current knowledge of the phylogeny of this group, the evolutionary history of waders seems only compatible with the hypothesis that RSD has evolved as an adaptation for increasing display performance in males. In addition, the analysis of wing shape showed that males of species with acrobatic flight displays had wings with higher aspect ratio (wing span/2wing area) than non-acrobatic species, which probably increases flight manoeuvrability during acrobatic displays. In species with acrobatic displays males also had a higher aspect ratio than females although no sexual difference was found in non-acrobatic species. These results suggest that acrobatic flight displays could have produced changes in the morphology of some species and suggest the existence of selection favouring higher manoeuvrability in species with acrobatic flight displays. This supports the validity of the mechanisms proposed by the ‘display agility’ hypothesis to explain the evolution of RSD in waders.  相似文献   

17.
Dimorphic sexual differences in shape and body size are called sexual dimorphism and sexual size dimorphism, respectively. The degrees of both dimorphisms are considered to increase with sexual selection, represented by male–male competition. However, the degrees of the two dimorphisms often differ within a species. In some dung beetles, typical sexual shape dimorphisms are seen in male horns and other exaggerated traits, although sexual size dimorphism looks rare. We hypothesized that the evolution of this sexual shape dimorphism without sexual size dimorphism is caused by male–male competition and their crucial and sex-indiscriminate provisioning behaviors, in which parents provide the equivalent size of brood ball with each of both sons and daughters indiscriminately. As a result of individual-based model simulations, we show that parents evolve to provide each of sons and daughters with the optimal amount of resource for a son when parents do not distinguish the sex of offspring and males compete for mates. This result explains why crucial and sex-indiscriminate parental provisioning does not prevent the evolution of sexual shape dimorphism. The model result was supported by empirical data of Scarabaeidae beetles. In some dung beetles, sexual size dimorphism is absent, compared with significant sexual size dimorphism in other horned beetles, although both groups exhibit similar degrees of sexual shape dimorphism in male horns and other exaggerated traits.  相似文献   

18.
    
Sexual size dimorphism (SSD) arises when the net effects of natural and sexual selection on body size differ between the sexes. Quantitative SSD variation between taxa is common, but directional intraspecific SSD reversals are rare. We combined micro‐ and macroevolutionary approaches to study geographic SSD variation in closely related black scavenger flies. Common garden experiments revealed stark intra‐ and interspecific variation: Sepsis biflexuosa is monomorphic across the Holarctic, while S. cynipsea (only in Europe) consistently exhibits female‐biased SSD. Interestingly, S. neocynipsea displays contrasting SSD in Europe (females larger) and North America (males larger), a pattern opposite to the geographic reversal in SSD of S. punctum documented in a previous study. In accordance with the differential equilibrium model for the evolution of SSD, the intensity of sexual selection on male size varied between continents (weaker in Europe), whereas fecundity selection on female body size did not. Subsequent comparative analyses of 49 taxa documented at least six independent origins of male‐biased SSD in Sepsidae, which is likely caused by sexual selection on male size and mediated by bimaturism. Therefore, reversals in SSD and the associated changes in larval development might be much more common and rapid and less constrained than currently assumed.  相似文献   

19.
There has been very little empirical study of quantitative genetic variation in flower size in sexually dimorphic plant species, despite the frequent occurrence of flower size differences between sexual phenotypes. In this study we quantify the nature of quantitative flower size variation in females and hermaphrodites of gynodioecious Thymus vulgaris. In a field study, females had significantly smaller flowers than hermaphrodites, and the degree of flower size dimorphism varied significantly among populations. To quantify the genetic basis of flower size variation we sampled maternal progeny from 10 F0 females in three populations (across the range of variation in flower size in the field), performed controlled crosses on F1 offspring in the glasshouse and grew F2 progeny to flowering in uniform field conditions. A significant population * sex interaction was again observed, hence the degree of sexual dimorphism shows genetic variation among populations. A significant family * sex interaction was also observed, indicating that the degree of sexual dimorphism shows genetic variation among families. Females showed significantly greater variation among populations and among families than hermaphrodites. Female flower size varied significantly depending on the degree of stamen abortion, with morphologically intermediate females having flowers more similar to hermaphrodites than to other females. The frequency of female types that differ in the degree of stamen abortion varied among populations and families and mean family female flower size increased as the proportion of intermediate female types increased across families. Variation in the degree of flower size dimorphism thus appears to be a result of variation in the degree of stamen abortion in females, the potential causes of which are discussed.  相似文献   

20.
When individuals in a population differ in physiological conditionand residual reproductive value, selection should favor phenotypicplasticity in reproductive investment such that individualsare able to adopt the reproductive tactic that results in thehighest fitness under given conditions. Here we examined reproductivetactics in relation to the elaboration of condition-dependentsexual ornamentation (carotenoid breast coloration) in a Montanapopulation of the house finches (Carpodacus mexicanus). Malesused distinct reproductive tactics depending on elaborationof their sexual ornamentation. Males with red pigmentation (maximum ornament elaboration) paired with females that nestedearlier, but these males did little provisioning of incubatingfemales and nestlings. In contrast, males with yellow colorationpaired with females that nested later, but these males fedfemale and nestlings more. Consequently, for red males offspringrecruitment was primarily affected by earlier nest initiation, whereas in yellow males it was affected most by male provisioning.In males with intermediate plumage coloration, all measuredcomponents, nest initiation, provisioning of incubating female,and nestling feeding, strongly contributed to offspring recruitment.The fitness consequences of alternative reproductive tacticsof males were influenced by breeding experience and fidelityof their mates. Among first-time breeders, red males achievedthe highest fecundity because of the advantage gained throughearly nesting and pairing with more experienced females andbecause of compensation by their mates for low male provisioningof nestlings. Among experienced breeders, males with intermediateplumage coloration achieved the highest fecundity because ofthe combined benefits of relatively early pairing and high parental care. High variation in sexual ornamentation in a Montana populationof house finches may favor distinct associations of sexualdisplays with a particular set of reproductive behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号