首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
J. R. Evans  R. B. Austin 《Planta》1986,167(3):344-350
The specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) in crude extracts of leaves from euploid, amphiploid and alloplasmic lines of wheat fell into high or low categories (3.75 or 2.70 mol·mg–1·min–1, 30°C). For the alloplasmic lines, where the same hexaploid nuclear genome was substituted into different cytoplasms, the specific activity of RuBPCase was consistent with the type of cytoplasm (high for the B and S cytoplasms and low for the A and D cytoplasms). There was no evidence from the euploid and amphiploid lines that small subunits encoded in different nuclear genomes influenced the specific activity. High specific activity was conferred by possession of the chloroplast genome of the B-type cytoplasm which encodes the large subunit of RuBPCase. All lines with a cytoplasm derived from the Sitopsis section of wheat, with the exception of Aegilops longissima and A. speltoides 18940, had RuBPCase with high specific activity. In contrast with the euploid lines of A. longissima, the alloplasmic line containing A. longissima cytoplasm from a different source had RuBPCase with high specific activity. The difference in specific activity found here in-vitro was not apparent in-vivo when leaf gas exchange was measured.Abbreviation RuBP(Case) ribulose-1,5-bisphosphate (carboxylase)  相似文献   

2.
Ribulose-1,5-bisphosphate carboxylase (RuBPCase) has been quantified by immunological methods in Thiobacillus neapolitanus cultivated under various growth conditions in the chemostat at a fixed dilution rate of 0.07 h-1. RuBPCase was a major protein in T. neapolitanus accounting for a maximum of 17% of the total protein during CO2 limitation and for a minimum of 4% during either ammonium- or thiosulfate limitation in the presence of 5% CO2 (v/v) in the gasphase. The soluble RuBPCase (i.e. in the cytosol) and the particulate RuBPCase (i.e. in the carboxysomes) were shown to be immunologically identical. The intracellular distribution of RuBPCase protein between carboxysomes and cytosol was quantified by rocket immunoelectrophoresis. The particulate RuBPCase content, which correlated with the volume density of carboxysomes, was minimal during ammonium limitation (1.3% of the total protein) and maximal during CO2 limitation (6.8% of the total protein). A protein storage function of carboxysomes is doubtful since nitrogen starvation did not result in degradation of particulate RuBPCase within 24 h. Proteolysis of RuBPCase was not detected. Carboxysomes, on the other hand, were degraded rapidly (50% within 1 h) after change-over from CO2 limitation to thiosulfate limitation with excess CO2. Particulate RuBPCase protein became soluble during this degradation of carboxysomes, but this did not result in an increase in soluble RuBPCase activity. Modification of RuBPCase resulting in a lower true specific activity was suggested to explain this phenomenon. The true specific activity was very similar for soluble and particulate RuBPCase during various steady state growth conditions (about 700 nmol/min·mg RuBPCase protein), with the exception of CO2-limited growth when the true specific activity of the soluble RuBPCase was extremely low (260 nmol/min ·mg protein). When chemostat cultures of T. neapolitanus were exposed to different oxygen tensions, neither the intracellular distribution of RuBPCase nor the content of RuBPCase were affected. Short-term labelling experiments showed that during CO2 limitation, when carboxysomes were most abundant, CO2 is fixed via the Calvin cycle. The data are assessed in terms of possible functions of carboxysomes.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase - PEP phosphoenolpyruvate - RIE rocket immunoelectrophoresis - CIE crossed immunoelectrophoresis  相似文献   

3.
An adaptation of the d-ribulose-1,5-bisphosphate carboxylase (RuBPCase) activity to changing CO2 concentrations in the growth medium in the chemostat was observed in the obligate chemolithotroph Thiobacillus neapolitanus. RuBPCase activity has been separated in a soluble and particulate fraction. The activity of the particulate fraction appeared to be associated with the carboxysomes.The total activity of RuBPCase of CO2 limited cultures was about 5-fold higher than the activity of thiosulphate limited cultures grown in the presence of 5% CO2 whilst the particulate activity and the soluble activity were about 8- and 1.5-fold higher, respectively. The fluctuation of the total and particulate RuBPCase activity correlated with the changes in volume density of carboxysomes in the cell.An inverse correlation between maximal CO2 fixing capacity by whole cells and the volume density of carboxysomes was observed. The change in ratio of soluble RuBPCase activity to particulate RuBPCase activity paralleled the change in maximal CO2 fixation by whole cells during the different growth conditions.  相似文献   

4.
The stromacentre (SC), a particular structure in the plastids of Avena, was isolated from etioplasts of Avena sativa by density gradient centrifugation and then analyzed and compared with ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBPCase) from A. sativa, with pyrenoids of Chlorella vulgaris and with the stromacentre of Opuntia. Purified SC-elements consisted of protein subunits with a relative molecular weight of 63 kDa, different from the isolated RuBPCase of A. sativa as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After peptide mapping, the proteolytic cleavage patterns of the 63-kDa protein were also found to be different from those of the RuBPCase. Antibodies against SC-elements, RuBPCase, and the large subunit of RuBPCase were produced. Ouchterlony double immunodiffusion tests did not give crossreactions between the SC-elements and RuBPCase or the large subunit of this enzyme. Immunogold labelling of ultrathin sections showed that antibodies against the SC-elements marked the stromacentre in Avena, but not the pyrenoids in Chlorella. Antibodies against the large subunit of RuBPCase, however, did not label the SC, but labelled the stroma of the plastids in Avena and the pyrenoids of Chlorella. In Opuntia, a comparable structure described as an SC was not labelled by any of the antisera. Immunoelectrophoretical investigations demonstrated a strong correlation between the presence of the 63-kDa protein and the occurrence of the SC in different Avena species with and without SC.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase - SC stromacentre - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Tris 2-amino-2-(hydroxymethy;)-1,3-propanediol Dedicated to Professor Ludwig Bergmann on the occasion of his 60th birthday  相似文献   

5.
In crude extracts from the primary leaf of wheat seedlings, Triticum aestivum L., cv. Olympic, maximum proteinase activity, as determined by measuring the rate of release of amino nitrogen from ribulose-bisphosphate carboxylase (RuBPCase), was found to be obtained only when EDTA and L-cysteine were included in the extraction buffer. Highest proteinase activity was obtained by grinding at pH 6.8, although the level of activity was similar in the pH range 5.6 to 8.0; this range also coincided with maximum extractability of protein. The lower amount of RuBPCase degrading proteinase extracted at low pH was not due to an effect of pH on enzyme stability. The optimum temperature of reaction was 50° C and reaction rates were linear for at least 120 min at this temperature. In the absence of substrate the proteinase was found to be very sensitive to temperatures above 30° C, with even short exposures causing rapid loss of activity. The relation between assay pH and RuBPCase degradation indicated that degradation was restricted to the acid proteinase group of enzymes, with a pH optimum of 4.8, and no detectable activity at a pH greater than 6.4. The levels of extractable RuBPCase proteinase exhibited a distinct diurnal variation, with activity increasing during the latter part of the light period and then declining once the lights were turned off. The effect of leaf age on the level of RuBPCase, RuBPCase proteinase and total soluble protein was investigated. Maximum RuBPCase activity occurred 9 days after sowing as did soluble protein. After the maximum level was obtained, the pattern of total soluble protein was shown to be characterised by three distinct periods of protein loss: I (day 9–13) 125 ng leaf-1 day-1; II (day 15–27) 11 ng leaf-1 day-1; III (day 29–49) 22 ng leaf-1 day-1. Comparison of the pattern of RuBPCase activity and total protein suggest that the loss of RuBPCase may be largely responsible for the high rate of protein loss during period I. Proteinase activity increased sharply during the period of most rapid loss of RuBPCase activity, and because the specific activity of RuBPCase also declined, we concluded that RuBPCase was being degraded more rapidly than the other proteins. Once the majority of the RuBPCase was lost, there did not appear to be a direct relation between RuBPCase proteinase activity and rate of total soluble protein loss, since the proteinase exhibited maximum activity during the slowest period of protein loss (II), and was declining in activity while the rate of protein loss remained stable during the third and final period of total protein loss.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - TCA trichloroacetic acid Supported by the Wheat Industry Research Council of Australia and the Australian Research Grants Committee D2 74/15052  相似文献   

6.
Ribulose-1,5-bisphosphate carboxylase/oxygelase (RuBPCase) was studied in melon leaves infected by Colletotrichum lagenarium, a fungal pathogen of melons. Electrophoretic analysis of melon leaf proteins indicated a strong effect of infection on RuBPCase, the subunits of which gradually disappeared during the different stages of infection. Enzyme activity also declined 4 d after inoculation and its content, measured by immunoelectrophoresis, decreased to a similar extent. Synthesis of the large and small subunits of RuBPCase was followed by in-vivo pulse-labeling experiments. A drastic decrease in the rate of RuBPCase-subunit synthesis occurred 3 d after inoculation and preceded the appearance of disease symptoms. There was an apparent coordination of the synthesis of the two subunits under these conditions.Abbreviations LS (SS) Large (small) subunit of RuBPCase - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

7.
H. J. Steinbiß  K. Zetsche 《Planta》1986,167(4):575-581
In the unicellular green alga Chlorogonium elongatum, the synthesis of the plastid enzyme ribulose bisphosphate carboxylase/oxygenase (RuBPCase) and its mRNAs is under the control of light and acetate. Acetate is the sole metabolizable organic carbon source for this organism. Light greatly promotes the synthesis of RuBPCase and the increase in the concentration of the mRNAs of both subunits of the enzyme while acetate has a strong inhibitory effect on this process. There is a good agreement between RuBPCase synthesis and the amount of translateable RuBPCase mRNA present in cells which are cultured under different conditions (autotrophic, heterotrophic, mixotrophic). During the transition period after transfer of the cells from heterotrophic to autotrophic growth conditions the amounts of the large and small subunits of the enzyme increase well coordinated. In contrast to the protein subunits the two subunit-mRNAs accumulate with different kinetics.Abbreviations LSU large subunit of RuBPCase - poly(A)- RNA - poly(A)+RNA non-, poly-adenylated RNA - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase EC 4.1.1.39 - SSU small subunit of RuBPCase  相似文献   

8.
The short-term, in-vivo response to elevated CO2 of ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39) activity, and the pool sizes of ribulose 1,5-bisphosphate, 3-phosphoglyceric acid, triose phosphates, fructose 1,6-bisphosphate, glucose 6-phosphate and fructose 6-phosphate in bean were studied. Increasing CO2 from an ambient partial pressure of 360–1600 bar induced a substantial deactivation of RuBPCase at both saturating and subsaturating photon flux densities. Activation of RuBPCase declined for 30 min following the CO2 increase. However, the rate of photosynthesis re-equilibrated within 6 min of the switch to high CO2, indicating that RuBPCase activity did not limit photosynthesis at high CO2. Following a return to low CO2, RuBPCase activation increased to control levels within 10 min. The photosynthetic rate fell immediately after the return to low CO2, and then increased in parallel with the increase in RuBPCase activation to the initial rate observed prior to the CO2 increase. This indicated that RuBPCase activity limited photosynthesis while RuBPCase activation increased. Metabolite pools were temporarily affected during the first 10 min after either a CO2 increase or decrease. However, they returned to their original level as the change in the activation state of RuBPCase neared completion. This result indicates that one role for changes in the activation state of RuBPCase is to regulate the pool sizes of photosynthetic intermediates.Abbreviations and symbols A net CO2 assimilation rate - Ca ambient CO2 partial pressure - Ci intercellular CO2 partial pressure - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat catalytic turnover rate per RuBPCase molecule - PFD photon flux density (400 to 700 nm on an area basis) - PGA 3-phosphoglyceric acid - Pi orthophosphate - RuBP ribulose 1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39)  相似文献   

9.
J. Brangeon  A. Nato  A. Forchioni 《Planta》1989,177(2):151-159
In-situ-localization techniques have been adapted to the ultrastructural detection of the holoenzyme ribulose-1,5-bisphosphate carboxylase (RuBPCase) and its composite large- and smallsubunit mRNAs in wild-type and mutant RuBPCase deficient plantlets of Nicotiana tabacum L. Immuno-gold techniques which show the distribution of target proteins have confirmed visually the presence of the holoenzyme in the wild-type plastids and its total absence in the enzyme-less mutant. Using in-situ hybridization coupled with electron microscopy and biotinylated probes for the two subunits, we have directly visualized specific small-subunit mRNAs located in the cytoplasm and large-subunit mRNAs confined to plastids in the enzyme-deficient mutant, and with apparent distributions comparable to those visualized in the wild-type counterpart. These results show that (i) gene products can be visualized in situ by electronmicroscopy techniques under conditions where the respective cellular compartments are readily recognizable and (ii) that an accumulation of mRNAs corresponding to the composite subunits can occur without translation and-or assembly of the protein.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase - SSU RuBPCase small subunit - LSU RubBPCase large subunit  相似文献   

10.
The fronds of Lemna minor L. respond to a number of stresses, and in particular to an osmotic stress, by producing an enzyme system which catalyzes the oxidation of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) to an acidic and catalytically inactive form. During the first 24 h of osmotic stress the induced oxidase system does not seem to exert a significant in-vivo effect on RuBPCase, presumably because of compartmentation. Subsequently, the oxidase system gains access to the enzyme and converts it to the acid and catalytically inactive form and eventually the oxidase system declines in activity.A number of partially acidified forms of RuBPCase are formed during oxidation, and this process appears to be correlated with the disappearance of varying numbers of SH residues. The number of-SH residues in RuBPCase from Lemna has been estimated at 89. However, RuBPCase isolated from 24-h osmotically stressed fronds showed a reduction in the number of-SH residues per molecule from 89 to 54. It seems likely that the oxidation of-SH groups is causally related to the acidification of RuBPCase which occurs during osmotic stress.Abbreviations DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - FPLC fast protein liquid chromatography - PMSF phenylmethylsulphonyl fluoride - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulfate  相似文献   

11.
Evidence is presented that although many proteins from the fronds of Lemna minor L. undergo enhanced degradation during osmotic stress, ribulose-1,5-bisphosphate carboxylase (RuBPCase) is not degraded. Instead RuBPCase is converted in a series of steps to a very high-molecular-weight form. The first step involves the induction of an oxidase system which after 24 h of stress converts RuBPCase to an acidic and catalytically inactive form. Subsequently, the oxidised RuBPCase protein is gradually polymerized to a number of very large aggregates (molecular weight of several million).The conversion of RuBPCase to a high-molecular-weight form appears to be correlated with (i) a reduction in the number of-SH residues and (ii) the susceptibility to in-vitro proteolysis. Indeed, the number of-SH groups per RuBPCase molecule decreases from 89 in the native enzyme to 54 and 22 in the oxidised and polymerized forms, respectively. On the other hand, the oxidised enzyme is more susceptible to in-vitro proteolysis than the native form. However, it is the polymerized form of RuBPCase which is particularly susceptible to in-vitro proteolysis.Western-blotting experiments and anti-ubiquitin antibodies were used to detect the presence of ubiquitin conjugates in extracts from osmotically stressed Lemna fronds. The possible involvement of ubiquitin in the formation of the aggregates is discussed.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - FPLC fast protein liquid chromatography - kDa kilodaltons - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulphonyl fluoride - RuBPCase ribulose bisphosphate carboxylase - SDS sodium dodecyl sulphate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

12.
J. R. Evans 《Planta》1986,167(3):351-358
Photosynthesis in two cultivars of Triticum aestivum was compared with photosynthesis in two lines having the same nuclear genomes but with cytoplasms derived from T. boeoticum. The in-vitro specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) isolated from lines with T. boeoticum cytoplasm was only 71% of that of normal T. aestivum. By contrast, the RuBPCase activities calculated from the CO2-assimilation rate at low partial pressures of CO2, p(CO2), were the same for all lines for a given RuBPCase content. This indicates that both types of RuBPCase have the same turnover numbers in-vivo of 27.5 mol CO2·(mol enzyme)–1·s–1 (23°). The rate of CO2 assimilation measured at normal p(CO2), p a =340 bar, and high irradiance could be quantitatively predicted from the amount of RuBPCase protein. The maximum rate of RuBP regeneration could also predict the rate of CO2 assimilation at normal ambient conditions. Therefore, the maximum capacities for RuBP carboxylation and RuBP regeneration appear to be well-balanced for normal ambient conditions. As photosynthetic capacity declined with increasing leaf age, the capacities for RuBP carboxylation and RuBP regeneration declined in parallel.Abbreviations PAR photosynthetically active radiation - RuBP(Case) ribulose-1,5-bisphosphate (carboxylase)  相似文献   

13.
The regulation of photosystem II (PSII) by light-, CO2-, and O2-dependent changes in the capacity for carbon metabolism was studied. Estimates of the rate of electron transport through PSII were made from gas-exchange data and from measurements of chlorophyll fluorescence. At subsaturating photon-flux density (PFD), the rate of electron transport was independent of O2 and CO2. Feedback on electron transport was observed under two conditions. At saturating PFD and low partial pressure of CO2, p(CO2), the rate of electron transport increased with p(CO2). However, at high p(CO2), switching from normal to low p(O2) did not affect the net rate of photosynthetic CO2 assimilation but the rate of electron-transport decreased by an amount related to the change in the rate of photorespiration. We interpret these effects as 1) regulation of ribulose-1,5-bisphosphatecarboxylase (RuBPCase, EC 4.1.1.39) activity to match the rate of electron transport at limiting PFD, 2) regulation of electron-transport rate to match the rate of RuBPCase at low p(CO2), and 3) regulation of the electron-transport rate to match the capacity for starch and sucrose synthesis at high p(CO2) and PFD. These studies provide evidence that PSII is regulated so that the capacity for electron transport is matched to the capacity for other processes required by photosynthesis, such as ribulose-bisphosphate carboxylation and starch and sucrose synthesis. We show that at least two mechanisms contribute to the regulation of PSII activity and that the relative engagement of these mechanisms varies with time following a step change in the capacity for ribulose-bisphosphate carboxylation and starch and sucrose synthesis. Finally, we take advantage of the relatively slow activation of deactivated RuBPCase in vivo to show that the activation level of this enzyme can limit the rate of electron transport as evidenced by increased feedback on PSII following a step change in p(CO2). As RuBPCase as activated, the feedback on PSII declined.Abbreviations and symbols JC electron-transport rate calculated from CO2-assimilation measurements - JF electron-transport rate calculated from fluorescence parameters - PFD photon-flux density - qE energy-dependent quenching - PSII photosystem II - qQ Q-dependent quenching - QY quantum yield - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) C.I.W. publication No. 1015  相似文献   

14.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 1.1.39) (RuBPCase) was quantified using polyacrylamide-gel electrophoresis in whole 9-d-old first leaves of 14 genotypes of Triticum, and cellular RuBPCase levels calculated. Diploids, tetraploids and hexaploids were analysed and it was confirmed that the RuBPCase level per cell is closely related to ploidy in wheat. Inter-genotypic variation in RuBPCase levels per cell and per leaf were surveyed. It was found that the interactions between leaf size, cell size and RuBPCase levels result in small variations in RuBPCase levels per unit leaf area between genotypes.Abbreviation RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

15.
B. Pineau 《Planta》1982,156(2):117-128
Light induction of chloroplast development in Euglena leads to quantitative changes in the protein composition of the soluble cell part. One major part of these is the observed accumulation of ribulose-1.5-bisphosphate carboxylase/oxygenase (RuBPCase) enzyme (EC 4.1.1.39). As measured by immunoelectrophoresis, a small amount of RuBPCase (about 10-6 pmol) is present in a dark-grown cell, whereas a greening cell (72h) contains 10–20 pmol enzyme. Both the cytoplasmic and chloroplastic translation inhibitors, cycloheximide and spectinomycin, have a strong inhibitory effect on the synthesis of the enzyme throughout the greening process of Euglena cells. Electrophoretic and immunological analyses of the soluble phase prepared from etiolated or greening cells do not show the presence of free subunits of the enzyme. For each antibiotic-treated greening cell, the syntheses of both subunits are blocked. Our data indicate that tight reciprocal control between the syntheses of the two classes of subunits occurs in Euglena. In particular, the RuBPCase small subunit synthesis in greening Euglena seems more dependent on the protein synthesis activity of the chloroplast than the syntheses of other stromal proteins from cytoplasmic origin.Abbreviations LSU large subunit of ribulose-1.5-bisphosphate carboxylase - RuBP ribulose-1.5-bisphosphate - RuBP-Case ribulose-1.5-bisphosphate carboxylase - SSU small subunit of ribulose-1.5-bisphosphate carboxylase  相似文献   

16.
S. Nemec  J. C. V. Vu 《Plant and Soil》1990,128(2):257-263
Sour orange (Citrus aurantium L.) grown in low-P (9–12 ppm) and high-P (420 ppm) soil inoculated with or without Glomus intraradices (G.i.), were evaluated for biomass, carbohydrates, ribulose bisphosphate carboxylase (RuBPCase), phosphoenolpyruvate carboxylase (PEPCase) activity, leaf 14CO2 incorporation, and other physiological parameters. Growth of plants in the low-P, noninoculated soil was lowest, with total dry biomass reduced up to half of the low-P, inoculum treatment. Total nonstructural carbohydrates were 40% lower in leaves of plants in the low-P, noninoculated soil, compared with the other treatments. Inoculation of the low-P soil enhanced leaf 14CO2 incorporation by 67%, total chlorophyll content by 28%, and RuBPCase activity by 42%, compared with low-P, noninoculated treatment. Improved P-use efficiency by G.i. in low-P soil was comparable to high-P nutrition in improving leaf 14CO2 incorporation and concentration of major leaf photosynthetic products that include starch and sucrose. Leaf PEPCase activity in the low-P, noninoculated treatment, however, was at least threefold higher than the other treatments, suggesting a possible alteration in organic acid metabolism in sour orange leaves as a result of P deficiency.  相似文献   

17.
E. Roscher  K. Zetsche 《Planta》1986,167(4):582-586
In the green alga Chlorogonium elongatum the promoting effect of light on the synthesis of ribulose bisphosphate carboxylase/oxygenase (RuBPCase) is mainly caused by blue light of wavelengths between 430 nm and 510 nm, with a maximum effect at about 460 nm. Blue light also causes an increase in the amounts of the mRNAs for the large and the small subunits of the enzyme. Furthermore, the concentration of RuBPCase is affected by the light energy fluence rate. The rate of synthesis as well as the maximal obtainable concentration of the enzyme are functions of the light energy fluence rate up to 26 W·m-2. No further increase occurs beyond that intensity. The quantity of irradiation also alters the concentrations of the subunit mRNAs. The results indicate that the changes in the mRNA levels are the major regulatory steps in the light-dependent synthesis of the RuBPCase enzyme.Abbreviations LSU large subunit - pSSU precursor of the small subunit - RuBPCase ribulose bisphosphate carboxylase/oxygenase EC 4.1.1.39 Dedicated to Prof. Dr. E. Bünning on the occasion of his 80 th birthday  相似文献   

18.
M. Weidner  E. Fehling 《Planta》1985,166(1):117-127
The effect of low-, ambient- and high-temperature pretreatments (48 h at 4° C, 20° C or 36° C) of wheat seedlings (spring wheat Triticum aestivum L., cv. Kolibri) on the solubility properties of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase; EC 4.1.1.39) was studied. The extractable protein moiety of heat-pretreated plants exhibited increased solubility in dilute buffer (50 mM k-phosphate, pH 6.8), compared with protein extracted from 4° C- or 20° C-plants. The salting-out characteristics for ammonium-sulfate precipitation confirmed this finding since a delayed precipitation of extractable protein from 36°C-plants was observed. Using polyacrylamide gel electrophoresis, the in-vivo temperature-induced differences in protein solubility could be traced back to a change in the solubility of RuBPCase. The RuBPCase was purified from wheat seedlings, and the purified enzyme also exhibited differential solubility. In order to evaluate this further, purified RuBPCase was subjected to probing for conformational properties. A decrease of fluorescence of the RuBPCase 1-anilino-8-naphtalene sulfonate complex revealed that the RuBPCase from 36° C-plants had a more hydrophilic protein surface. Titration of the sulfhydryl groups of native RuBP-Case with 5,5-dithiobis (2-nitrobenzoic acid) pointed to a reduced accessibility of the R-SH groups in the case of the 36° C-type of RuBPCase. The large subunit of RuBPCase from 4° C/20° C-plants tended to give rise to an artificial lower-molecular-weight polypeptide which could not be found in crude or purified RuBPCase from heat-pretreated wheat seedlings.Abbreviations ANS 1-anilino-8-naphtalene sulfonate - DTNB 5,5-dithiobis(2-nitrobenzoic acid) - PAGE polyacrylamide gel electrophoresis - RuBPCase ribulose-1,5-bis-phosphate carboxylase/oxygenase - RuBP ribulose-1,5-bis-phosphate  相似文献   

19.
M. Weidner  A. Franz  K. Napp-Zinn 《Planta》1985,163(2):164-174
The ultrastructural and biochemicalphysiological aspects of postfloral greening have been studied in hypsophylls of Heliconia aurantiaca Ghiesbr., Guzmania cf. x magnifica Richter and Spathiphyllum wallisii Regel. In all three species the greening of the hypsophylls is due to plastid transformation, chloroplast formation proceeding from the initially different types of plastids. The degradation process of the original plastid structures and the mode of thylakoid formation are distinct in each case. In none of the species do the transformed plastids look identical to the chloroplasts of the corresponding foliage leaves. On a chlorophyll basis, the rate of photosynthesis of the greened hypsophylls surpasses the rate of the leaves considerably in Spathiphyllum, but is much lower in Heliconia (no data for Guzmania). In all species, anatomy, plastid structure, pigments, 77° K-fluorescence emission, ribulose-1,5-bis-phosphate carboxylase activities and short-term photosynthesis 14CO2-assimilation patterns prove the greened hypsophylls to be capable of providing additional carbon to the developing fruits, thus supplementing the import of organic matter from the foliage leaves.Abbreviations MDH malate dehydrogenase (EC 1.1.1.37) - PEPCase phosphoenolpyruvate carboxylase (EC 4.1.1.31) - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39)  相似文献   

20.
Kouki Hikosaka 《Planta》1996,198(1):144-150
Effects of leaf age, nitrogen nutrition and photon flux density (PFD) on the organization of the photosynthetic apparatus in leaves were investigated in a vine, Ipomoea tricolor Cav., which was grown horizontally so as to avoid mutual shading of leaves. The plants were grown hydroponically at two nitrate levels under two growth light treatments. For one group of the plants, leaves were exposed to full sunlight. For another group, respective leaves were artificially shaded in a manner that simulated changes in the light gradient with the development of an erect herbaceous canopy: old leaves were placed under progressively shadier conditions with growth of the plants (canopy-type shading). In all the treatments, chlorophyll (Chl) content gradually decreased with leaf age. Photosystem I (PSI) per Chl was constant, independent of leaf age, nitrogen nutrition and/or PFD. Photosystem II (PSII) and cytochrome / per Chl, and Chl a/b ratio were independent of leaf age and/or nitrogen nutrition but decreased with the decrease in growth PFD. Ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39, RuBPCase) per Chl steeply decreased with decrease in PFD. When leaves grown at the same PFD were compared, RuBPCase/Chl was lower in the plants grown under lower nitrogen availability and also decreased with leaf age in the plants grown without shading. These decreases were attributed to the curvilinear relationship between RuBPCase and Chl in leaves grown at full sunlight, that was independent of nitrogen availability and leaf age. From these results, it is concluded that the composition of the photosynthetic apparatus is independent of leaf age but changes depending on the light environment and total amount of photosynthetic components of the leaf.Abbreviations Chl chlorophyll - cyt f cytochrome f - PFD photon flux density - RuBPCase ribulose-1,5-bisphosphate carboxylase The author thanks Drs. K. Sonoike, Y. Kashino, K. Okada, H. Hatanaka, Y. Suzuki and A. Aoyama for technical advise. The author also thanks Drs. I. Terashima, A. Makino (Tohoku University, Sendai, Japan), Dr. J.R. Evans (Research School of Biological Sciences, Australian National University, Canberra) and Prof. A. Watanabe for valuable suggestions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号