首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetics of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac   总被引:4,自引:0,他引:4  
Laboratory selection increased resistance of pink bollworm (Pectinophora gossypiella) to the Bacillus thuringiensis toxin Cry1Ac. Three selections with Cry1Ac in artificial diet increased resistance from a low level to >100-fold relative to a susceptible strain. We used artificial diet bioassays to test F1 hybrid progeny from reciprocal crosses between resistant and susceptible strains. The similarity between F1 progeny from the two reciprocal crosses indicates autosomal inheritance of resistance. The dominance of resistance to Cry1Ac depended on the concentration. Resistance was codominant at a low concentration of Cry1Ac, partially recessive at an intermediate concentration, and completely recessive at a high concentration. Comparison of the artificial diet results with previously reported results from greenhouse bioassays shows that the high concentration of Cry1Ac in bolls of transgenic cotton is essential for achieving functionally recessive inheritance of resistance.  相似文献   

2.
Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.  相似文献   

3.
After binding to specific receptors, Cry toxins form pores in the midgut apical membrane of susceptible insects. The receptors could form part of the pore structure or simply catalyze pore formation and consequently be recycled. To discriminate between these possibilities, the kinetics of pore formation in brush border membrane vesicles isolated from Manduca sexta was studied with an osmotic swelling assay. Pore formation, as deduced from changes in membrane permeability induced by Cry1Ac during a 60-min incubation period, was strongly dose-dependent, but rapidly reached a maximum as toxin concentration was increased. Following exposure of the vesicles to the toxin, the osmotic swelling rate reached a maximum shortly after a delay period. Under these conditions, at relatively high toxin concentrations, the maximal osmotic swelling rate increased linearly with toxin concentration. When vesicles were incubated for a short time with the toxin and then rapidly cooled to prevent the formation of new pores before and during the osmotic swelling experiment, a plateau in the rate of pore formation was observed as toxin concentration was increased. Taken together, these results suggest that the receptors do not act as simple catalysts of pore formation, but remain associated with the pores once they are formed.  相似文献   

4.
The evolution of resistance by pests can reduce the efficacy of transgenic crops that produce insecticidal toxins from Bacillus thuringiensis (Bt). However, fitness costs may act to delay pest resistance to Bt toxins. Meta-analysis of results from four previous studies revealed that the entomopathogenic nematode Steinernema riobrave (Rhabditida: Steinernematidae) imposed a 20% fitness cost for larvae of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), that were homozygous for resistance to Bt toxin Cry1Ac, but no significant fitness cost was detected for heterozygotes. We conducted greenhouse and laboratory selection experiments to determine whether S. riobrave would delay the evolution of pink bollworm resistance to Cry1Ac. We mimicked the high dose/refuge scenario in the greenhouse with Bt cotton (Gossypium hirsutum L.) plants and refuges of non-Bt cotton plants, and in the laboratory with diet containing Cry1Ac and refuges of untreated diet. In both experiments, half of the replicates were exposed to S. riobrave and half were not. In the greenhouse, S. riobrave did not delay resistance. In the laboratory, S. riobrave delayed resistance after two generations but not after four generations. Simulation modeling showed that an initial resistance allele frequency > 0.015 and population bottlenecks can diminish or eliminate the resistance-delaying effects of fitness costs. We hypothesize that these factors may have reduced the resistance-delaying effects of S. riobrave in the selection experiments. The experimental and modeling results suggest that entomopathogenic nematodes could slow the evolution of pest resistance to Bt crops, but only under some conditions.  相似文献   

5.
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.  相似文献   

6.
Genetic changes in insects that result in insecticide resistance can also affect their fitness. Here, we report measurements of development time and survival of the Indianmeal moth, Plodia interpunctella (Hübner), to compare the relative fitness of Bacillus thuringiensis (Bt)-susceptible and -resistant colonies. Measurements of larval development time and survival indicated that a fitness cost was associated with resistance to Bt in some Bt-resistant colonies but not others. Comparisons of geographically different populations revealed inherent differences in development time and survival. In most cases, Bt-resistant moths suffered no disadvantage when feeding on a Bt-treated diet. In many cases, the development of Bt-resistant moths on Bt-treated diet was slower than the unselected moths on untreated diet, but it is unclear whether these differences would affect the successful mating of susceptible and resistant moths.  相似文献   

7.
Aminopeptidase N has been reported to be a Bacillus thuringiensis (Bt) Cry1A toxin-binding protein in several lepidopteran insects. cDNAs of aminopeptidase-like proteins from both Bt-susceptible RC688s and Bt-resistant HD198r strains of the Indianmeal moth, Plodia interpunctella, were cloned and sequenced. They contain 3345 and 3358 nucleotides, respectively, and each has a 3048 bp open reading frame that encodes 1016 amino acids. Putative protein sequences include 10 potential glycosylation sites and a zinc metal binding site motif of HEXXH, which is typical of the active site of zinc-dependent metallopeptidases. Sequence analysis indicated that the deduced protein sequences are most similar to an aminopeptidase from Heliothis virescens with 62% sequence identity and highly similar to three other lepidopteran aminopeptidases from Plutella xylostella, Manduca sexta, Bombyx mori with sequence identities of 51-52%. Four nucleotide differences were observed in the open reading frames that translated into two amino acid differences in the putative protein sequences. Polymerase chain reaction (PCR) confirmed an aminopeptidase gene coding difference between RC688s and HD198r strains of P. interpunctella in the PCR amplification of a specific allele (PASA) using preferential primers designed from a single base substitution. The gene mutation for Asp185-->Glu185 was also confirmed in two additional Bt-resistant P. interpunctella strains. This mutation is located within a region homologous to the conserved Cry1Aa toxin binding regions from Bombyx mori and Plutella xylostella. The aminopeptidase-like mRNA expression levels in the Bt-resistant strain were slightly higher than those in the Bt-susceptible strain. The sequences reported in this paper have been deposited in the GenBank database (accession numbers AF034483 for susceptible strain RC688s and AF034484 for resistant strain HD198r).  相似文献   

8.
Alanine substitution mutations in the Cry1Ac domain III region, from amino acid residues 503 to 525, were constructed to study the functional role of domain III in the toxicity and receptor binding of the protein to Lymantria dispar, Manduca sexta, and Heliothis virescens. Five sets of alanine block mutants were generated at the residues (503)SS(504), (506)NNI(508), (509)QNR(511), (522)ST(523), and (524)ST(525). Single alanine substitutions were made at the residues (509)Q, (510)N, (511)R, and (513)Y. All mutant proteins produced stable toxic fragments as judged by trypsin digestion, midgut enzyme digestion, and circular dichroism spectrum analysis. The mutations, (503)SS(504)-AA, (506)NNI(508)-AAA, (522)ST(523)-AA, (524)ST(525)-AA, and (510)N-A affected neither the protein's toxicity nor its binding to brush border membrane vesicles (BBMV) prepared from these insects. Toward L. dispar and M. sexta, the (509)QNR(511)-AAA, (509)Q-A, (511)R-A, and (513)Y-A mutant toxins showed 4- to 10-fold reductions in binding affinities to BBMV, with 2- to 3-fold reductions in toxicity. Toward H. virescens, the (509)QNR(511)-AAA, (509)Q-A, (511)R-A, and (513)Y-mutant toxins showed 8- to 22-fold reductions in binding affinities, but only (509)QNR(511)-AAA and (511)R-A mutant toxins reduced toxicity by approximately three to four times. In the present study, greater loss in binding affinity relative to toxicity has been observed. These data suggest that the residues (509)Q, (511)R, and (513)Y in domain III might be only involved in initial binding to the receptor and that the initial binding step becomes rate limiting only when it is reduced more than fivefold.  相似文献   

9.
We investigated the role of domain III of Bacillus thuringiensis delta-endotoxin Cry1Ac in determining toxicity against Heliothis virescens. Hybrid toxins, containing domain III of Cry1Ac with domains I and II of Cry1Ba, Cry1Ca, Cry1Da, Cry1Ea, and Cry1Fb, respectively, were created. In this way Cry1Ca, Cry1Fb, and to a lesser extent Cry1Ba were made considerably more toxic.  相似文献   

10.
Bacillus thuringiensis Cry1Ac delta-endotoxin specifically binds a 115-kDa aminopeptidase-N purified from Manduca sexta midgut. Cry1Ac domain III mutations were constructed around a putative sugar-binding pocket and binding to purified aminopeptidase-N and brush border membrane vesicles (BBMV) was compared to toxicity. Q509A, R511A, Y513A, and 509-511 (QNR-AAA) eliminated aminopeptidase-N binding and reduced binding to BBMV. However, toxicity decreased no more than two-fold, indicating activity is not directly correlated with aminopeptidase-N binding. Analysis of toxin binding to aminopeptidase-N in M. sexta is therefore insufficient for predicting toxicity. Mutants retained binding, however, to another BBMV site, suggesting alternative receptors may compensate in vivo.  相似文献   

11.
苏云金芽孢杆菌Bacillus thuringiensis生产的晶体毒素被广泛用作农林害虫的杀虫剂。鳞翅目昆虫受体蛋白是阐明其与晶体毒素相互作用的重要模式。文中纯化了苏云金芽孢杆菌的晶体毒素蛋白,质谱鉴定为Cry1Ac毒素,然后重组表达家蚕氨肽酶N (BmAPN6) 和类钙粘蛋白 (CaLP) 结合结构域。利用免疫共沉淀、Far-Western印迹和酶联免疫吸附试验,证明Cry1Ac毒素蛋白和BmAPN6之间的相互作用。在Sf9细胞中,对Cry1Ac毒素的细胞毒活性分析,表明BmAPN6参与Cry1Ac毒素诱导的细胞形态异常和裂解死亡。文中也利用相同的方法,对钙粘蛋白的3个结合位点CR7、CR11和CR12进行相互作用分析,结果表明3个重复结构域是CaLP的Cry1Ac结合位点。上述结果表明,BmAPN6和CaLP可作为Cry1Ac毒素致病的功能性受体,为进一步揭示晶体毒素的致病机制和基因编辑增强家蚕抗病性提供了研究靶标。  相似文献   

12.
A field collected population of Plutella xylostella (SERD4) was selected in the laboratory with Bacillus thuringiensis endotoxins Cry1Ac (Cry1Ac-SEL) and Cry1Ab (Cry1Ab-SEL). Both subpopulations showed similar phenotypes: high resistance to the Cry1A toxins and little cross-resistance to Cry1Ca or Cry1D. A previous analysis of the Cry1Ac-SEL showed incompletely dominant resistance to Cry1Ac with more than one factor, at least one of which was sex influenced. In the present study reciprocal mass crosses between Cry1Ab-SEL and a laboratory susceptible population (ROTH) provided evidence that Cry1Ab resistance was also inherited as incompletely dominant trait with more than one factor, and at least one of the factors was sex influenced. Analysis of single pair mating indicated that Cry1Ab-SEL was still heterogeneous for Cry1Ab resistance genes, showing genes with different degrees of dominance. Binding studies showed a large reduction of specific binding of Cry1Ab and Cry1Ac to midgut membrane vesicles of the Cry1Ab-SEL subpopulation. Cry1Ab-SEL was found to be more susceptible to trypsin-activated Cry1Ab toxin than protoxin, although no defect in toxin activation was found. Present and previous results indicate a common basis of resistance to both Cry1Ab and Cry1Ac in selected subpopulations and suggest that a similar set of resistance genes are responsible for resistance to Cry1Ab and Cry1Ac and are selected whichever toxin was used. The possibility of an incompletely dominant trait of resistant to these toxins should be taken into account when considering refuge resistance management strategies.  相似文献   

13.
We determined that Bacillus thuringiensis Cry1Ac and Cry1Fa delta-endotoxins recognize the same 110, 120 and 170 kDa aminopeptidase N (APN) molecules in brush border membrane vesicles (BBMV) from Heliothis virescens. The 110 kDa protein, not previously identified as an APN, contained a variant APN consensus sequence identical to that found in Helicoverpa punctigera APN 2. PCR amplification of H. virescens cDNA based on this sequence and a conserved APN motif yielded a 0.9 kb product that has 89% sequence homology with H. punctigera APN 2. Western blots revealed that the 110 kDa molecule was not recognized by soybean agglutinin, indicating the absence of GalNAc. A 125I labeled-Cry1Ac domain III mutant (509QNR(511)-AAA) that has an altered GalNAc binding pocket (Lee et al., Appl. Environ. Microbiol. 65 (1999) 4513) showed abolished binding to the 120 APN, reduced binding to the 170 kDa APN, and enhanced binding to the 110 kDa APN. Periodate treated H. virescens BBMV blots were also probed with 125I labeled-Cry1Ac and 509QNR(511)-AAA toxins. Both toxins still recognized the 110 kDa APN and a >210 kDa molecule which may be a cadherin-like protein. Additionally, 125I-(509)QNR(511)-AAA recognized periodate treated 170 kDa APN. Results indicate that the 110 kDa APN is distinct from other Cry1 toxin binding APNs and may be the first described Cry1Ac-binding APN that does not contain GalNAc.  相似文献   

14.
The cotton bollworm Helicoverpa armigera is the major insect pest targeted by cotton genetically engineered to produce the Bacillus thuringiensis toxin (transgenic Bt cotton) in the Old World. The evolution of this pest's resistance to B. thuringiensis toxins is the main threat to the long-term effectiveness of transgenic Bt cotton. A deletion mutation allele (r(1)) of a cadherin gene (Ha_BtR) was previously identified as genetically linked with Cry1Ac resistance in a laboratory-selected strain of H. armigera. Using a biphasic screen strategy, we successfully trapped two new cadherin alleles (r(2) and r(3)) associated with Cry1Ac resistance from a field population of H. armigera collected from the Yellow River cotton area of China in 2005. The r(2) and r(3) alleles, respectively, were created by inserting the long terminal repeat of a retrotransposon (designated HaRT1) and the intact HaRT1 retrotransposon at the same position in exon 8 of Ha_BtR, which results in a truncated cadherin containing only two ectodomain repeats in the N terminus of Ha_BtR. This is the first time that the B. thuringiensis resistance alleles of a target insect of Bt crops have been successfully detected in the open field. This study also demonstrated that bollworm larvae carrying two resistance alleles can complete development on Bt cotton. The cadherin locus should be an important target for intensive DNA-based screening of field populations of H. armigera.  相似文献   

15.
Evolution of resistance by pests can reduce the efficacy oftransgenic crops that produce insecticidal toxins from the bacterium Bacillus thuringiensis Berliner (Bt). In conjunction with refuges of non-Bt host plants, fitness costs can delay the evolution of resistance. Furthermore, fitness costs often vary with ecological conditions, suggesting that agricultural landscapes can be manipulated to magnify fitness costs and thereby prolong the efficacy of Bt crops. In the current study, we tested the effects of four species of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) on the magnitude and dominance of fitness costs of resistance to Bt toxin CrylAc in pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae). For more than a decade, field populations of pink bollworm in the United States have remained susceptible to Bt cotton Gossypium hirsutum L. producing CrylAc; however, we used laboratory strains that had a mixture of susceptible and resistant individuals. In laboratory experiments, dominant fitness costs were imposed by the nematode Steinernema riobrave Cabanillas, Poinar, and Raulston but no fitness costs were imposed by Steinernema carpocapsae Weiser, Steinernema sp. (ML18 strain), or Heterorhabditis sonorensis Stock, Rivera-Ordu?o, and Flores-Lara. In computer simulations, evolution of resistance to Cry1Ac by pink bollworm was substantially delayed by treating some non-Bt cotton refuge fields with nematodes that imposed a dominant fitness cost, similar to the cost observed in laboratory experiments with S. riobrave. Based on the results here and in related studies, we conclude that entomopathogenic nematodes could bolster insect resistance management, but the success of this approach will depend on selecting the appropriate species of nematode and environment, as fitness costs were magnified by only two of five species evaluated and also depended on environmental factors.  相似文献   

16.
17.
The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was autosomal and recessive. At the highest dose of Cry1Ac tested, resistance was completely recessive, while at the lowest dose, it was incompletely dominant. A direct test of monogenic inheritance based on a backcross of F1 progeny with the Karak population suggested that resistance to Cry1Ac was controlled by a single locus. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed greatly reduced binding to brush border membrane vesicles prepared from this field population.  相似文献   

18.
Toxins from Bacillus thuringiensis (Bt) are widely used for pest control. In particular, Bt toxin Cry1Ac produced by transgenic cotton kills some key lepidopteran pests. We found that Cry1Ac binds to recombinant peptides corresponding to extracellular regions of a cadherin protein (BtR) in a major cotton pest, pink bollworm (Pectinophora gossypiella) (PBW). In conjunction with previous results showing that PBW resistance to Cry1Ac is linked with mutations in the BtR gene, the results reported here support the hypothesis that BtR is a receptor for Cry1Ac in PBW. Similar to other lepidopteran cadherins that bind Bt toxins, BtR has at least two Cry1Ac-binding domains in cadherin-repeat regions 10 and 11, which are immediately adjacent to the membrane proximal region. However, unlike cadherins from Manduca sexta and Bombyx mori, toxin binding was not seen in regions more distal from the membrane proximal region. We also found that both the protoxin and activated toxin forms of Cry1Ac bound to recombinant BtR fragments, suggesting that Cry1Ac activation may occur either before or after receptor binding.  相似文献   

19.
A disrupted allele (r1) of a cadherin gene (Ha_BtR) is genetically associated with incompletely recessive resistance to Bacillus thuringiensis toxin Cry1Ac in a Cry1Ac-selected strain (GYBT) of Helicoverpa armigera. The r1 allele of Ha_BtR was introgressed into a susceptible SCD strain by crossing the GYBT strain to the SCD strain, followed by repeated backcrossing to the SCD strain and molecular marker assisted family selection. The introgressed strain (designated as SCD-r1, carrying homozygous r1 allele) obtained 438-fold resistance to Cry1Ac, >41-fold resistance to Cry1Aa and 31-fold resistance Cry1Ab compared with the SCD strain; however, there was no significant difference in susceptibility to Cry2Aa between the integrated and parent strains. It confirms that the loss of function mutation of Ha_BtR alone can confer medium to high levels of resistance to the three Cry1A toxins in H. armigera. Reciprocal crosses between the SCD and SCD-r1 strains showed that resistance to Cry1Ac in the SCD-r1 strain was completely recessive. Life tables of the SCD and SCD-r1 strains on artificial diet in the laboratory were constructed, and results showed that the net replacement rate (R0) did not differ between the strains. The toxicity of two chemical insecticides, fenvalerate and monocrotophos, against the SCD-r1 strain was not significantly different from that to the SCD strain. However, larval development time of the SCD-r1 strain was significantly longer than that of the SCD strain, indicating a fitness cost of slower larval growth is associated with Ha_BtR disruption in H. armigera.  相似文献   

20.
The cabbage looper, Trichoplusia ni, is one of only two insect species that have evolved resistance to Bacillus thuringiensis in agricultural situations. The trait of resistance to B. thuringiensis toxin Cry1Ac from a greenhouse-evolved resistant population of T. ni was introgressed into a highly inbred susceptible laboratory strain. The resulting introgression strain, GLEN-Cry1Ac-BCS, and its nearly isogenic susceptible strain were subjected to comparative genetic and biochemical studies to determine the mechanism of resistance. Results showed that midgut proteases, hemolymph melanization activity, and midgut esterase were not altered in the GLEN-Cry1Ac-BCS strain. The pattern of cross-resistance of the GLEN-Cry1Ac-BCS strain to 11 B. thuringiensis Cry toxins showed a correlation of the resistance with the Cry1Ab/Cry1Ac binding site in T. ni. This cross-resistance pattern is different from that found in a previously reported laboratory-selected Cry1Ab-resistant T. ni strain, evidently indicating that the greenhouse-evolved resistance involves a mechanism different from the laboratory-selected resistance. Determination of specific binding of B. thuringiensis toxins Cry1Ab and Cry1Ac to the midgut brush border membranes confirmed the loss of midgut binding to Cry1Ab and Cry1Ac in the resistant larvae. The loss of midgut binding to Cry1Ab/Cry1Ac is inherited as a recessive trait, which is consistent with the recessive inheritance of Cry1Ab/Cry1Ac resistance in this greenhouse-derived T. ni population. Therefore, it is concluded that the mechanism for the greenhouse-evolved Cry1Ac resistance in T. ni is an alteration affecting the binding of Cry1Ab and Cry1Ac to the Cry1Ab/Cry1Ac binding site in the midgut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号