首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell division requires proper spindle assembly; a surveillance pathway, the spindle assembly checkpoint (SAC), monitors whether the spindle is normal and correctly attached to kinetochores. The SAC proteins regulate mitotic chromosome segregation by affecting CDC20 (Cell Division Cycle 20) function. However, it is unclear whether CDC20 regulates meiotic spindle assembly and proper homolog segregation. Here, we show that the Arabidopsis thaliana CDC20.1 gene is indispensable for meiosis and male fertility. We demonstrate that cdc20.1 meiotic chromosomes align asynchronously and segregate unequally and the metaphase I spindle has aberrant morphology. Comparison of the distribution of meiotic stages at different time points between the wild type and cdc20.1 reveals a delay of meiotic progression from diakinesis to anaphase I. Furthermore, cdc20.1 meiocytes exhibit an abnormal distribution of a histone H3 phosphorylation mark mediated by the Aurora kinase, providing evidence that CDC20.1 regulates Aurora localization for meiotic chromosome segregation. Further evidence that CDC20.1 and Aurora are functionally related was provided by meiosis-specific knockdown of At-Aurora1 expression, resulting in meiotic chromosome segregation defects similar to those of cdc20.1. Taken together, these results suggest a critical role for CDC20.1 in SAC-dependent meiotic chromosome segregation.  相似文献   

2.
Bock  E.  Berezin  V. 《Neurophysiology》2002,34(2-3):83-84
Based on published data and on our own experimental findings, we analyze key aspects of the structure and functions of the neural cell adhesion molecule (NCAM). We conclude that identification of NCAM mimetics opens up novel prospects for elucidation of the role of NCAM in neural differentiation and plasticity and, therefore, for practical development of new tools useful for the treatment of neurodegenerative disorders.  相似文献   

3.
Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components.  相似文献   

4.
前期研究观察到一种现象, 在正常妊娠的胎盘中细胞粘附分子CD146选择性地表达在侵入性滋养层细胞中, 而在滋养层细胞侵入不足的先兆子痫病人的胎盘中CD146表达降低或缺失.本文进一步研究了CD146分子影响滋养层细胞侵入行为的作用机理.免疫荧光实验显示CD146分子选择性地表达在具有侵袭能力的中间滋养层细胞,而在非侵入性的细胞滋养层细胞和合体滋养层细胞中不表达.细胞功能实验表明,影响滋养层细胞侵入性的两个关键要素,即细胞迁移和基质金属蛋白酶的分泌,都受到CD146特异抗体的显著抑制.这些研究结果提示,粘附分子CD146是影响细胞侵入行为的关键分子.这为深入研究胚胎植入和肿瘤浸润的分子调控机理提供了一个关键的分子模型.  相似文献   

5.
The aberrant expression of the transmembrane protein EpCAM is associated with tumor progression, affecting different cellular processes such as cell–cell adhesion, migration, proliferation, differentiation, signaling, and invasion. However, the in vivo function of EpCAM still remains elusive due to the lack of genetic loss-of-function studies. Here, we describe epcam (tacstd) null mutants in zebrafish. Maternal-zygotic mutants display compromised basal protrusive activity and epithelial morphogenesis in cells of the enveloping layer (EVL) during epiboly. In partial redundancy with E-cadherin (Ecad), EpCAM made by EVL cells is further required for cell–cell adhesion within the EVL and, possibly, for proper attachment of underlying deep cells to the inner surface of the EVL, thereby also affecting deep cell epiboly movements. During later development, EpCAM per se becomes indispensable for epithelial integrity within the periderm of the skin, secondarily leading to disrupted morphology of the underlying basal epidermis and moderate hyper-proliferation of skin cells. On the molecular level, EVL cells of epcam mutant embryos display reduced levels of membranous Ecad, accompanied by an enrichment of tight junction proteins and a basal extension of apical junction complexes (AJCs). Our data suggest that EpCAM acts as a partner of E-cadherin to control adhesiveness and integrity as well as plasticity and morphogenesis within simple epithelia. In addition, EpCAM is required for the interaction of the epithelia with underlying cell layers.  相似文献   

6.
The cell neural adhesion molecule contactin-2 plays a key role in axon extension and guidance, fasciculation, and myelination during development. We thus asked, whether contactin-2 is also important in nervous system regeneration after trauma. In this study, we used an adult zebrafish spinal cord transection model to test the functions of contactin-2 in spinal cord regeneration. The expression patterns of contactin-2 at different time points after spinal cord injury were studied at the mRNA level by qPCR and in situ hybridization, and contactin-2 protein levels and immunohistological localization were detected by Western blot and immunofluorescence analyses, respectively. Contactin-2 mRNA and protein levels were increased along the central canal at 6 days and 11 days after spinal cord injury, suggesting a requirement for contactin-2 in spinal cord regeneration. Co-localization of contactin-2 and islet-1 (a motoneuron marker) was observed in spinal cords before and after injury. To further explore the functions of contactin-2 in regeneration, an anti-sense morpholino was used to knock down the expression of contactin-2 protein by application at the time of injury. Motion analysis showed that inhibition of contactin-2 retarded the recovery of swimming functions when compared to standard control morpholino. Anterograde and retrograde tracing at 6 weeks after injury showed that knock down of contactin-2 inhibited axonal regrowth from NMLF neurons beyond lesion site. The combined observations indicate that contactin-2 contributes to locomotor recovery and successful regrowth of axons after spinal cord injury in adult zebrafish.  相似文献   

7.
Kirichenko  S. V.  Nedzvetsky  V. S.  Baydas  G.  Nerush  P. A. 《Neurophysiology》2002,34(2-3):153-153
Diabetes mellitus is associated with significant cognitive deficiencies, which develop in a parallel manner with neurophysiological and structural changes in the brain. Intravenous or intraperitoneal injections of a cytotoxic agent influencing the cells, streptozotocin (STZ), is most often used to create animal models of diabetes. The pathogenesis of diabetic encephalopathy is not yet understood, but an impairment of spatial learning occurs in association with distinct changes in hippocampal synaptic plasticity. Cell adhesion molecules are good candidates to participate in synaptogenesis on neuronal plasticity. It has been proposed that neural cell adhesion molecule mediates synaptic plasticity during learning and memory formation.  相似文献   

8.
The neural cell adhesion molecule L1 is a phosphorylated integral membrane glycoprotein that is recovered from adult mouse brain by immunoaffinity chromatography as a set of polypeptides with apparent molecular masses of 200, 180, 140, 80, and 50 kilodaltons (L1-200, L1-180, L1-140, L1-80, and L1-50, respectively). In the present study, we show that two kinase activities are associated with immunopurified L1: One specifically phosphorylates L1-200 and L1-80 but not L1-180, L1-140, or L1-50. This pattern of phosphorylation corresponds to the one described for L1 after metabolic phosphate incorporation into cultures of cerebellar cells. In both cases, serine is the main amino acid that is labeled by radioactive phosphate. The kinase activity is not activated by Ca2+, calmodulin, phosphatidylserine, diolein, cyclic AMP, or cyclic GMP, a result suggesting that the enzyme is distinct from Ca2+/calmodulin-dependent kinases, from protein kinase C, or from cyclic AMP/cyclic GMP-dependent kinases and may belong to the independent kinase group. The other kinase phosphorylates only casein but not L1, utilizes GTP as well as ATP, and is strongly inhibited by heparin. Because the primary structure of the L1 protein does not contain consensus sequences characteristic for known kinases, we believe that the catalytic activities detectable in immunopurified L1 are due to kinases that are strongly enough associated with L1 to withstand the stringent purification procedures.  相似文献   

9.
Human and rodent islets differ substantially in several features, including architecture, cell composition, gene expression and some aspects of insulin secretion. Mouse pancreatic islets are highly vascularized with interactions between islet endothelial and endocrine cells being important for islet cell differentiation and function. To determine whether human islets have a similar high degree of vascularization and whether this is altered with diabetes, we examined the vascularization of islets from normal human subjects, subjects with type 2 diabetes (T2D), and normal mice. Using an integrated morphometry approach to quantify intra-islet capillary density in human and mouse pancreatic sections, we found that human islets have five-fold fewer vessels per islet area than mouse islets. Islets in pancreatic sections from T2D subjects showed capillary thickening, some capillary fragmentation and had increased vessel density as compared with non-diabetic controls. These changes in islet vasculature in T2D islets appeared to be associated with amyloid deposition, which was noted in islets from 8/9 T2D subjects (and occupied 14% ± 4% of islet area), especially around the intra-islet capillaries. The physiological implications of the differences in the angioarchitecture of mouse and human islets are not known. Islet vascular changes in T2D may exacerbate β cell/islet dysfunction and β cell loss.  相似文献   

10.
Separation of the endocrine from the exocrine pancreatic tissue by fluorescence activated sorting has been limited by the lack of an ideal fluorescent label for islet tissue. Our studies indicates the zinc-specific stain N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ), has characteristics ideal for use as a fluorescent label for islet tissue. Dispersed rat pancreas cells stained with TSQ produced bright blue fluorescence when excited by UV light [peak emission wavelength at 480 nm. maximal excitation at 365 nm). The fluorescence was specific for islet tissue as confirmed by counterstaining with the islet-specific stain dithizone and there was minimal background staining of exocrine tissue. Stained tissue remained brightly fluorescent for 2 hr. with some fading by 4 hr. Injection of TSQ into rats at a concentration sufficient to produce staining of islets produced no toxicity discernible at 4 months. The viability of isolated rat islets stained with TSQ was maintained as shown by supravital staining, in vitro secretion of insulin, and reversal of diabetes after transplantation of stained islets into diabetic syngeneic recipients.  相似文献   

11.
12.
The neural cell adhesion molecule NCAM is a major adhesion receptor involved in the development and regeneration of the nervous system. It is expressed in three major isoforms of which two have large intracellular domains of different lengths (NCAM140 and NCAM180). Several intracellular ligands of NCAM have been described. One of them is the collapsin response mediator protein-2 (CRMP-2), which is known to be involved in cell differentiation and axonal growth. The cytoplasmic domains of NCAM contain up to 49 phosphorylation sites and it has been demonstrated recently that the phosphorylation of serine 774 is crucial for NCAM-mediated signal transduction and neurite outgrowth. Here we analyzed the interaction of NCAM with CRMP-2 in more detail using a biochemical approach. We found that CRMP-2 binds specifically to NCAM180 in a sequence between amino acid 788 and 819. In addition we could demonstrate that serine 774, which has been shown previously to be phosphorylated and involved in neurite outgrowth, is also important for the interaction of CRMP-2 with NCAM.  相似文献   

13.
14.
Recently, it was discovered that serglycin, a hematopoietic cell proteoglycan, is the major proteoglycan expressed and constitutively secreted by multiple myeloma (MM) cells. High levels of serglycin are present in the bone marrow aspirates of at least 30% of newly diagnosed MM patients. However, its contribution to the pathophysiology of MM is unknown. Here, we show that serglycin knockdown (by ∼85% compared with normal levels), using lentiviral shRNA, dramatically attenuated MM tumor growth in mice with severe combined immunodeficiency. Tumors formed from cells deficient in serglycin exhibited diminished levels of hepatocyte growth factor expression and impaired development of blood vessels, indicating that serglycin may affect tumor angiogenesis. Furthermore, knockdown of serglycin significantly decreased MM cell adhesion to bone marrow stromal cells and collagen I. Even though serglycin proteoglycan does not have a transmembrane domain, flow cytometry showed that serglycin is present on the MM cell surface, and attachment to the cell surface is, at least in part, dependent on its chondroitin sulfate side chains. Co-precipitation of serglycin from conditioned medium of MM cells using a CD44-Fc chimera suggests that CD44 is the cell surface-binding partner for serglycin, which therefore may serve as a major ligand for CD44 at various stages during myeloma progression. Finally, we demonstrate that serglycin mRNA expression in MM cells is up-regulated by activin, a predominant cytokine among those increased in MM patients with osteolytic lesions. These studies provide direct evidence for a critical role for serglycin in MM pathogenesis and show that targeting serglycin may provide a novel therapeutic approach for MM.  相似文献   

15.
To investigate the contributions of phosphatidylethanolamine to the growth and morphogenesis of the fission yeast Schizosaccharomyces pombe, we have characterized three predicted genes in this organism, designated psd1, psd2, and psd3, encoding phosphatidylserine decarboxylases, which catalyze the conversion of phosphatidylserine to phosphatidylethanolamine in both eukaryotic and prokaryotic organisms. S. pombe mutants carrying deletions in any one or two psd genes are viable in complex rich medium and synthetic defined minimal medium. However, mutants carrying deletions in all three psd genes (psd1-3Δ mutants) grow slowly in rich medium and are inviable in minimal medium, indicating that the psd1 to psd3 gene products share overlapping essential cellular functions. Supplementation of growth media with ethanolamine, which can be converted to phosphatidylethanolamine by the Kennedy pathway, restores growth to psd1-3Δ cells in minimal medium, indicating that phosphatidylethanolamine is essential for S. pombe cell growth. psd1-3Δ cells produce lower levels of phosphatidylethanolamine than wild-type cells, even in medium supplemented with ethanolamine, indicating that the Kennedy pathway can only partially compensate for the loss of phosphatidylserine decarboxylase activity in S. pombe. psd1-3Δ cells appear morphologically indistinguishable from wild-type S. pombe cells in medium supplemented with ethanolamine, but when cultured in nonsupplemented medium, they produce high frequencies of abnormally shaped cells as well as cells exhibiting severe septation defects, including multiple, mispositioned, deformed, and misoriented septa. Our results demonstrate that phosphatidylethanolamine is essential for cell growth and for normal cytokinesis and cellular morphogenesis in S. pombe, and they illustrate the usefulness of this model eukaryote for investigating potentially conserved biological and molecular functions of phosphatidylethanolamine.Phosphatidylethanolamine (PE) is a major phospholipid component of cell membranes in both prokaryotic and eukaryotic organisms (34, 35). There are three distinct pathways for PE synthesis in eukaryotic cells: (i) decarboxylation of phosphatidylserine (PS) via reactions catalyzed by PS decarboxylase (PSD) enzymes; (ii) the CDP-ethanolamine branch of the Kennedy pathway, which converts ethanolamine to PE (34); and (iii) acylation of lysophosphatidylethanolamine (21, 29), a reaction that in the budding yeast Saccharomyces cerevisiae is catalyzed by the enzyme Ale1 (22). Genetic studies have demonstrated that PE is essential for cell viability in S. cerevisiae, although the minimal threshold of PE required for cell growth in this organism can apparently be provided by any of the routes of PE synthesis listed above (22). In contrast, the results of mouse knockout experiments indicate that both PSD- and Kennedy pathway-catalyzed pathways for PE synthesis are essential for embryonic development (9, 28, 35).While PE is present in most, if not all, eukaryotic cell membranes, it is particularly enriched in the membranes of mitochondria (32, 35, 37). Indeed, S. cerevisiae mutants carrying a null mutation in the PSD1 gene, which encodes a mitochondrially localized PSD, exhibit phenotypes indicative of mitochondrial dysfunction, as do cells derived from mouse embryos carrying a disruption of the Psid gene, which encodes a protein highly homologous in structure to S. cerevisiae Psd1 (28, 32). A second PSD enzyme in S. cerevisiae, encoded by the PSD2 gene, is localized to Golgi and vacuolar membranes (33, 37). Consistent with a role in vacuolar function, PE has been implicated in the process of autophagy by genetic studies utilizing S. cerevisiae vacuolar targeting mutants and by studies showing that Atg8, a ubiquitin-like protein required for yeast autophagy, is conjugated to PE, as are several related mammalian proteins (19, 20, 27).Interestingly, studies utilizing a streptavidin-conjugated form of the PE-binding peptide cinnamycin demonstrated that PE is enriched at cell division sites in S. cerevisiae, the fission yeast Schizosaccharomyces pombe, and mammalian cells (6, 11). Moreover, streptavidin-conjugated cinnamycin was shown to inhibit the disassembly of the contractile ring and the completion of cytokinesis in cultures of Chinese hamster ovary cells, and a PE-deficient cell line from the same species was found to arrest growth in cytokinesis with an intact contractile ring (7). PE has also been shown to be enriched at the growing ends of interphase S. pombe cells and at the emerging bud cortex in dividing cells of S. cerevisiae, findings that implicate PE in processes controlling polarized cell growth (11).Although S. pombe mutants defective in enzymes that directly catalyze PE synthesis have not been described previously, we recently showed that mutants carrying a null mutation in the PS synthase gene pps1 are ethanolamine auxotrophs that exhibit severe morphology- and cytokinesis-defective phenotypes under ethanolamine-limited growth conditions (17). These findings implicated PE in the regulation of cellular morphogenesis and cytokinesis in S. pombe. To investigate the biological functions of PE in S. pombe, in particular its contributions to the control of cell morphology and cytokinesis, we have in the present study generated and characterized mutants carrying null mutations in three open reading frames predicted to encode PSD enzymes in this organism. In this paper, we describe the phenotypes of S. pombe PSD-null mutants, which demonstrate central roles for PE in the regulation of cell morphology and cytokinesis in this model eukaryote.  相似文献   

16.
The aim of this study was to determine whether elevated levels of circulating forms of the soluble adhesion molecules, Intercellular Adhesion Molecule-1 (cICAM-1), Vascular Cell Adhesion Molecule-1 (cVCAM-1) and E-Selectin (cE-Selectin) are observed in the sera of HIV-1 infected individuals as compared to healthy HIV seronegative adults and whether these elevated levels can be correlated with disease progression. Significantly elevated levels of cICAM-1—ranging from 184 to 1116 ng/ml with a mean of 617 ng/ml—and cVCAM-1—ranging from 653 to 3456 ng/ml with a mean of 1500 ng/ml—were observed in the sera of 29 HIV-1 infected individuals as compared to controls-ranging from 152 to 354 ng/ml with a mean of 248 ng/ml for cICAM-1 and from 328 to 792 ng/ml with a mean of 560 ng/ml for cVCAM-1 (P < 0.001). The serum concentrations of cE-Selectin of the HIV-1 infected individuals did not differ from those of the healthy controls. The elevated levels of cICAM-1, cVCAM-1 did not correlate with the CD4 count or the serum concentration of C-reactive protein. However, a significant correlation was observed between the serum concentrations of cVCAM-1 and those of neopterin. Since cICAM-1 as well as cV-CAM-1 can interfere with adhesion events leading to immunological functions, it can be suggested that the high amounts of these circulating forms of adhesion molecules, when present in the sera of HIV-1 positive individuals, can further disturb the immune system of these patients. In addition, the present study also suggests that the seric concentrations of cVCAM-1 can be used as pronostic indicators.  相似文献   

17.
Before the middle of the previous century, cell types of the pancreatic islets of Langerhans were identified primarily on the basis of their color reactions with histological dyes. At that time, the chemical basis for the staining properties of islet cells in relation to the identity, chemistry and structure of their hormones was not fully understood. Nevertheless, the definitive islet cell types that secrete glucagon, insulin, and somatostatin (A, B, and D cells, respectively) could reliably be differentiated from each other with staining protocols that involved variations of one or more tinctorial techniques, such as the Mallory-Heidenhain azan trichrome, chromium hematoxylin and phloxine, aldehyde fuchsin, and silver impregnation methods, which were popularly used until supplanted by immunohistochemical techniques. Before antibody-based staining methods, the most bona fide histochemical techniques for the identification of islet B cells were based on the detection of sulfhydryl and disulfide groups of insulin. The application of the classical islet tinctorial staining methods for pathophysiological studies and physiological experiments was fundamental to our understanding of islet architecture and the physiological roles of A and B cells in glucose regulation and diabetes.  相似文献   

18.
The polypeptide composition and glycosylation of soluble isoforms of neural cell adhesion molecule (NCAM) in developing rat brain, CSF, and plasma were characterized. Soluble NCAM in rat brain consisted of several glycosylated isoforms. The degree of glycosylation was developmentally regulated. After desialylation, four polypeptides of M(r) values of approximately 190,000 (s1), 135,000 (s2), 115,000 (s3), and 110,000 (s4) were observed. Polypeptides s1, s2, and s3 were also present in CSF, whereas only s3 and s4 were observed in plasma. Treatment of soluble brain NCAM with N-glycosidase F, which removes N-linked carbohydrates, produced polypeptides of M(r) values of approximately 190,000, 125,000, and 108,000-97,000. The monoclonal antibody OB11, which recognizes an epitope on the cytoplasmic part of transmembrane forms of NCAM, did not react with any of the soluble isoforms. Purified soluble NCAM, consisting mainly of s3, contained an N-terminal sequence identical to that of membrane-associated NCAM. Gel filtration of s3 indicated that it was present as a dimer under the chosen conditions. NCAM-expressing glioma cells adhered specifically to immobilized soluble NCAM. This implies that functionally significant soluble forms of NCAM are present in the extracellular fluid.  相似文献   

19.
Desmosomes first assemble in the E3.5 mouse trophectoderm, concomitant with establishment of epithelial polarity and appearance of a blastocoel cavity. Throughout development, they increase in size and number and are especially abundant in epidermis and heart muscle. Desmosomes mediate cell–cell adhesion through desmosomal cadherins, which differ from classical cadherins in their attachments to intermediate filaments (IFs), rather than actin filaments. Of the proteins implicated in making this IF connection, only desmoplakin (DP) is both exclusive to and ubiquitous among desmosomes. To explore its function and importance to tissue integrity, we ablated the desmoplakin gene. Homozygous −/− mutant embryos proceeded through implantation, but did not survive beyond E6.5. Mutant embryos proceeded through implantation, but did not survive beyond E6.5. Surprisingly, analysis of these embryos revealed a critical role for desmoplakin not only in anchoring IFs to desmosomes, but also in desmosome assembly and/or stabilization. This finding not only unveiled a new function for desmoplakin, but also provided the first opportunity to explore desmosome function during embryogenesis. While a blastocoel cavity formed and epithelial cell polarity was at least partially established in the DP (−/−) embryos, the paucity of desmosomal cell–cell junctions severely affected the modeling of tissue architecture and shaping of the early embryo.  相似文献   

20.
The Polo-like kinase (PLK) in Trypanosoma brucei plays multiple roles in basal body segregation, flagellum attachment, and cytokinesis. However, the mechanistic role of TbPLK remains elusive, mainly because most of its substrates are not known. Here, we report a new substrate of TbPLK, SPBB1, and its essential roles in T. brucei. SPBB1 was identified through yeast two-hybrid screening with the kinase-dead TbPLK as the bait. It interacts with TbPLK in vitro and in vivo, and is phosphorylated by TbPLK in vitro. SPBB1 localizes to both the mature basal body and the probasal body throughout the cell cycle, and co-localizes with TbPLK at the basal body during early cell cycle stages. RNAi against SPBB1 in procyclic trypanosomes inhibited basal body segregation, disrupted the new flagellum attachment zone filament, detached the new flagellum, and caused defective cytokinesis. Moreover, RNAi of SPBB1 confined TbPLK at the basal body and the bilobe structure, resulting in constitutive phosphorylation of TbCentrin2 at the bilobe. Altogether, these results identified a basal body protein as a TbPLK substrate and its essential role in promoting basal body segregation and flagellum attachment zone filament assembly for flagellum adhesion and cytokinesis initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号