首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C-type inactivation of Shaker potassium channels involves entry into a state (or states) in which the inactivated channels appear nonconducting in physiological solutions. However, when Shaker channels, from which fast N-type inactivation has been removed by NH2-terminal deletions, are expressed in Xenopus oocytes and evaluated in inside-out patches, complete removal of K+ ions from the internal solution exposes conduction of Na+ and Li+ in C-type inactivated conformational states. The present paper uses this observation to investigate the properties of ion conduction through C-type inactivated channel states, and demonstrates that both activation and deactivation can occur in C-type states, although with slower than normal kinetics. Channels in the C-type states appear “inactivated” (i.e., nonconducting) in physiological solutions due to the summation of two separate effects: first, internal K+ ions prevent Na+ ions from permeating through the channel; second, C-type inactivation greatly reduces the permeability of K+ relative to the permeability of Na+, thus altering the ion selectivity of the channel.  相似文献   

2.
Kv4 potassium channels undergo rapid inactivation but do not seem to exhibit the classical N-type and C-type mechanisms present in other Kv channels. We have previously hypothesized that Kv4 channels preferentially inactivate from the preopen closed state, which involves regions of the channel that contribute to the internal vestibule of the pore. To further test this hypothesis, we have examined the effects of permeant ions on gating of three Kv4 channels (Kv4.1, Kv4.2, and Kv4.3) expressed in Xenopus oocytes. Rb+ is an excellent tool for this purpose because its prolonged residency time in the pore delays K+ channel closing. The data showed that, only when Rb+ carried the current, both channel closing and the development of macroscopic inactivation are slowed (1.5- to 4-fold, relative to the K+ current). Furthermore, macroscopic Rb+ currents were larger than K+ currents (1.2- to 3-fold) as the result of a more stable open state, which increases the maximum open probability. These results demonstrate that pore occupancy can influence inactivation gating in a manner that depends on how channel closing impacts inactivation from the preopen closed state. By examining possible changes in ionic selectivity and the influence of elevating the external K+ concentration, additional experiments did not support the presence of C-type inactivation in Kv4 channels.  相似文献   

3.
C-type inactivation in Shaker potassium channels inhibits K+ permeation. The associated structural changes appear to involve the outer region of the pore. Recently, we have shown that C-type inactivation involves a change in the selectivity of the Shaker channel, such that C-type inactivated channels show maintained voltage-sensitive activation and deactivation of Na+ and Li+ currents in K+-free solutions, although they show no measurable ionic currents in physiological solutions. In addition, it appears that the effective block of ion conduction produced by the mutation W434F in the pore region may be associated with permanent C-type inactivation of W434F channels. These conclusions predict that permanently C-type inactivated W434F channels would also show Na+ and Li+ currents (in K+-free solutions) with kinetics similar to those seen in C-type-inactivated Shaker channels. This paper confirms that prediction and demonstrates that activation and deactivation parameters for this mutant can be obtained from macroscopic ionic current measurements. We also show that the prolonged Na+ tail currents typical of C-type inactivated channels involve an equivalent prolongation of the return of gating charge, thus demonstrating that the kinetics of gating charge return in W434F channels can be markedly altered by changes in ionic conditions.  相似文献   

4.
Conformational change in the selectivity filter of KcsA as a function of ambient potassium concentration is studied with solid-state NMR. This highly conserved region of the protein is known to chelate potassium ions selectively. We report solid-state NMR chemical shift fingerprints of two distinct conformations of the selectivity filter; significant changes are observed in the chemical shifts of key residues in the filter as the potassium ion concentration is changed from 50 mM to 1 μM. Potassium ion titration studies reveal that the site-specific Kd for K+ binding at the key pore residue Val76 is on the order of ∼ 7 μM and that a relatively high sample hydration is necessary to observe the low-K+ conformer. Simultaneous detection of both conformers at low ambient potassium concentration suggests that the high-K+ and low-K+ states are in slow exchange on the NMR timescale (kex < 500 s− 1). The slow rate and tight binding for evacuating both inner sites simultaneously differ from prior observations in detergent in solution, but agree well with measurements by electrophysiology and appear to result from our use of a hydrated bilayer environment. These observations strongly support a common assumption that the low-K+ state is not involved in ion transmission, and that during transmission one of the two inner sites is always occupied. On the other hand, these kinetic and thermodynamic characteristics of the evacuation of the inner sites certainly could be compatible with participation in a control mechanism at low ion concentration such as C-type inactivation, a process that is coupled to activation and involves closing of the outer mouth of the channel.  相似文献   

5.
Most voltage-gated potassium (Kv) channels undergo C-type inactivation during sustained depolarization. The voltage dependence and other mechanistic aspects of this process are debated, and difficult to elucidate because of concomitant voltage-dependent activation. Here, we demonstrate that MinK-KCNQ1 (IKs) channels with an S6-domain mutation, F340W in KCNQ1, exhibit constitutive activation but voltage-dependent C-type inactivation. F340W-IKs inactivation was sensitive to extracellular cation concentration and species, and it altered ion selectivity, suggestive of pore constriction. The rate and extent of F340W-IKs inactivation and recovery from inactivation were voltage-dependent with physiologic intracellular ion concentrations, and in the absence or presence of external K+, with an estimated gating charge, zi, of ∼1. Finally, double-mutant channels with a single S4 charge neutralization (R231A,F340W-IKs) exhibited constitutive C-type inactivation. The results suggest that F340W-IKs channels exhibit voltage-dependent C-type inactivation involving S4, without the necessity for voltage-dependent opening, allosteric coupling to voltage-dependent S6 transitions occurring during channel opening, or voltage-dependent changes in ion occupancy. The data also identify F340 as a critical hub for KCNQ1 gating processes and their modulation by MinK, and present a unique system for further mechanistic studies of the role of coupling of C-type inactivation to S4 movement, without contamination from voltage-dependent activation.  相似文献   

6.
L Kiss  S J Korn 《Biophysical journal》1998,74(4):1840-1849
With prolonged or repetitive activation, voltage-gated K+ channels undergo a slow (C-type) inactivation mechanism, which decreases current flow through the channel. Previous observations suggest that C-type inactivation results from a localized constriction in the outer mouth of the channel pore and that the rate of inactivation is controlled by the-rate at which K+ leaves an unidentified binding site in the pore. We have functionally identified two K+ binding sites in the conduction pathway of a chimeric K+ channel that conducts Na+ in the absence of K+. One site has a high affinity for K+ and contributes to the selectivity filter mechanism for K+ over Na+. Another site, external to the high-affinity site, has a lower affinity for K+ and is not involved in channel selectivity. Binding of K+ to the high-affinity binding site slowed inactivation. Binding of cations to the external low-affinity site did not slow inactivation directly but could slow it indirectly, apparently by trapping K+ at the high-affinity site. These data support a model whereby C-type inactivation involves a constriction at the selectivity filter, and the constriction cannot proceed when the selectivity filter is occupied by K+.  相似文献   

7.
Voltage-gated potassium (K+) channels are multi-ion pores. Recent studies suggest that, similar to calcium channels, competition between ionic species for intrapore binding sites may contribute to ionic selectivity in at least some K+ channels. Molecular studies suggest that a putative constricted region of the pore, which is presumably the site of selectivity, may be as short as one ionic diameter in length. Taken together, these results suggest that selectivity may occur at just a single binding site in the pore. We are studying a chimeric K+ channel that is highly selective for K+ over Na+ in physiological solutions, but conducts Na+ in the absence of K+. Na+ and K+ currents both display slow (C-type) inactivation, but had markedly different inactivation and deactivation kinetics; Na+ currents inactivated more rapidly and deactivated more slowly than K+ currents. Currents carried by 160 mM Na+ were inhibited by external K+ with an apparent IC50 <30 μM. K+ also altered both inactivation and deactivation kinetics of Na+ currents at these low concentrations. In the complementary experiment, currents carried by 3 mM K+ were inhibited by external Na+, with an apparent IC50 of ∼100 mM. In contrast to the effects of low [K+] on Na+ current kinetics, Na+ did not affect K+ current kinetics, even at concentrations that inhibited K+ currents by 40–50%. These data suggest that Na+ block of K+ currents did not involve displacement of K+ from the high affinity site involved in gating kinetics. We present a model that describes the permeation pathway as a single high affinity, cation-selective binding site, flanked by low affinity, nonselective sites. This model quantitatively predicts the anomalous mole fraction behavior observed in two different K+ channels, differential K+ and Na+ conductance, and the concentration dependence of K+ block of Na+ currents and Na+ block of K+ currents. Based on our results, we hypothesize that the permeation pathway contains a single high affinity binding site, where selectivity and ionic modulation of gating occur.  相似文献   

8.
When attached to specific sites near the S4 segment of the nonconducting (W434F) Shaker potassium channel, the fluorescent probe tetramethylrhodamine maleimide undergoes voltage-dependent changes in intensity that correlate with the movement of the voltage sensor (Mannuzzu, L.M., M.M. Moronne, and E.Y. Isacoff. 1996. Science. 271:213–216; Cha, A., and F. Bezanilla. 1997. Neuron. 19:1127–1140). The characteristics of this voltage-dependent fluorescence quenching are different in a conducting version of the channel with a different pore substitution (T449Y). Blocking the pore of the T449Y construct with either tetraethylammonium or agitoxin removes a fluorescence component that correlates with the voltage dependence but not the kinetics of ionic activation. This pore-mediated modulation of the fluorescence quenching near the S4 segment suggests that the fluorophore is affected by the state of the external pore. In addition, this modulation may reflect conformational changes associated with channel opening that are prevented by tetraethylammonium or agitoxin. Studies of pH titration, collisional quenchers, and anisotropy indicate that fluorophores attached to residues near the S4 segment are constrained by a nearby region of protein. The mechanism of fluorescence quenching near the S4 segment does not involve either reorientation of the fluorophore or a voltage-dependent excitation shift and is different from the quenching mechanism observed at a site near the S2 segment. Taken together, these results suggest that the extracellular portion of the S4 segment resides in an aqueous protein vestibule and is influenced by the state of the external pore.  相似文献   

9.
Regulation of ion conduction through the pore of a K+ channel takes place through the coordinated action of the activation gate at the bundle crossing of the inner helices and the inactivation gate located at the selectivity filter. The mechanism of allosteric coupling of these gates is of key interest. Here we report new insights into this allosteric coupling mechanism from studies on a W67F mutant of the KcsA channel. W67 is in the pore helix and is highly conserved in K+ channels. The KcsA W67F channel shows severely reduced inactivation and an enhanced rate of activation. We use continuous wave EPR spectroscopy to establish that the KcsA W67F channel shows an altered pH dependence of activation. Structural studies on the W67F channel provide the structures of two intermediate states: a pre- open state and a pre-inactivated state of the KcsA channel. These structures highlight key nodes in the allosteric pathway. The structure of the KcsA W67F channel with the activation gate open shows altered ion occupancy at the second ion binding site (S2) in the selectivity filter. This finding in combination with previous studies strongly support a requirement for ion occupancy at the S2 site for the channel to inactivate.  相似文献   

10.
Kv4 channels are thought to lack a C-type inactivation mechanism (collapse of the external pore) and to inactivate as a result of a concerted action of cytoplasmic regions of the channel. To investigate whether Kv4 channels have outer pore conformational changes during the inactivation process, the inactivation properties of Kv4.3 were characterized in 0 mM and in 2 mM external K+ in whole-cell voltage-clamp experiments. Removal of external K+ increased the inactivation rates and favored cumulative inactivation by repetitive stimulation. The reduction in current amplitude during repetitive stimulation and the faster inactivation rates in 0 mM external K+ were not due to changes in the voltage dependence of channel opening or to internal K+ depletion. The extent of the collapse of the K+ conductance upon removal of external K+ was more pronounced in NMG+-than in Na+-containing solutions. The reduction in the current amplitude during cumulative inactivation by repetitive stimulation is not associated with kinetic changes, suggesting that it is due to a diminished number of functional channels with unchanged gating properties. These observations meet the criteria for a typical C-type inactivation, as removal of external K+ destabilizes the conducting state, leading to the collapse of the pore. A tentative model is presented, in which K+ bound to high-affinity K+-binding sites in the selectivity filter destabilizes an outer neighboring K+ modulatory site that is saturated at approximately 2 mM external K+. We conclude that Kv4 channels have a C-type inactivation mechanism and that previously reported alterations in the inactivation rates after N- and C- termini mutagenesis may arise from secondary changes in the electrostatic interactions between K+-binding sites in the selectivity filter and the neighboring K+-modulatory site, that would result in changes in its K+ occupancy.  相似文献   

11.
C-type inactivation is a time-dependent process of great physiological significance that is observed in a large class of K+ channels. Experimental and computational studies of the pH-activated KcsA channel show that the functional C-type inactivated state, for this channel, is associated with a structural constriction of the selectivity filter at the level of the central glycine residue in the signature sequence, TTV(G)YGD. The structural constriction is allosterically promoted by the wide opening of the intracellular activation gate. However, whether this is a universal mechanism for C-type inactivation has not been established with certainty because similar constricted structures have not been observed for other K+ channels. Seeking to ascertain the general plausibility of the constricted filter conformation, molecular dynamics simulations of a homology model of the pore domain of the voltage-gated potassium channel Shaker were performed. Simulations performed with an open intracellular gate spontaneously resulted in a stable constricted-like filter conformation, providing a plausible nonconductive state responsible for C-type inactivation in the Shaker channel. While there are broad similarities with the constricted structure of KcsA, the hypothetical constricted-like conformation of Shaker also displays some subtle differences. Interestingly, those are recapitulated by the Shaker-like E71V KcsA mutant, suggesting that the residue at this position along the pore helix plays a pivotal role in determining the C-type inactivation behavior. Free energy landscape calculations show that the conductive-to-constricted transition in Shaker is allosterically controlled by the degree of opening of the intracellular activation gate, as observed with the KcsA channel. The behavior of the classic inactivating W434F Shaker mutant is also characterized from a 10-μs MD simulation, revealing that the selectivity filter spontaneously adopts a nonconductive conformation that is constricted at the level of the second glycine in the signature sequence, TTVGY(G)D.  相似文献   

12.
In the Kv2.1 potassium channel, binding of K(+) to a high-affinity site associated with the selectivity filter modulates channel sensitivity to external TEA. In channels carrying Na(+) current, K(+) interacts with the TEA modulation site at concentrations 相似文献   

13.
Voltage-dependent ion channels transduce changes in the membrane electric field into protein rearrangements that gate their transmembrane ion permeation pathways. While certain molecular elements of the voltage sensor and gates have been identified, little is known about either the nature of their conformational rearrangements or about how the voltage sensor is coupled to the gates. We used voltage clamp fluorometry to examine the voltage sensor (S4) and pore region (P-region) protein motions that underlie the slow inactivation of the Shaker K+ channel. Fluorescent probes in both the P-region and S4 changed emission intensity in parallel with the onset and recovery of slow inactivation, indicative of local protein rearrangements in this gating process. Two sequential rearrangements were observed, with channels first entering the P-type, and then the C-type inactivated state. These forms of inactivation appear to be mediated by a single gate, with P-type inactivation closing the gate and C-type inactivation stabilizing the gate''s closed conformation. Such a stabilization was due, at least in part, to a slow rearrangement around S4 that stabilizes S4 in its activated transmembrane position. The fluorescence reports of S4 and P-region fluorophore are consistent with an increased interaction of the voltage sensor and inactivation gate upon gate closure, offering insight into how the voltage-sensing apparatus is coupled to a channel gate.  相似文献   

14.
Voltage-gated K+ channels are tetramers formed by coassembly of four identical or highly related subunits. All four subunits contribute to formation of the selectivity filter, the narrowest region of the channel pore which determines K+ selective conductance. In some K+ channels, the selectivity filter can undergo a conformational change to reduce K+ flux by a mechanism called C-type inactivation. In human ether-a-go-go–related gene 1 (hERG1) K+ channels, C-type inactivation is allosterically inhibited by ICA-105574, a substituted benzamide. PD-118057, a 2-(phenylamino) benzoic acid, alters selectivity filter gating to enhance open probability of channels. Both compounds bind to a hydrophobic pocket located between adjacent hERG1 subunits. Accordingly, a homotetrameric channel contains four identical activator binding sites. Here we determine the number of binding sites required for maximal drug effect and determine the role of subunit interactions in the modulation of hERG1 gating by these compounds. Concatenated tetramers were constructed to contain a variable number (zero to four) of wild-type and mutant hERG1 subunits, either L646E to inhibit PD-118057 binding or F557L to inhibit ICA-105574 binding. Enhancement of hERG1 channel current magnitude by PD-118057 and attenuated inactivation by ICA-105574 were mediated by cooperative subunit interactions. Maximal effects of the both compounds required the presence of all four binding sites. Understanding how hERG1 agonists allosterically modify channel gating may facilitate mechanism-based drug design of novel agents for treatment of long QT syndrome.  相似文献   

15.
The x-ray structure of the KcsA channel at different [K(+)] and [Rb(+)] provided insight into how K(+) channels might achieve high selectivity and high K(+) transit rates and showed marked differences between the occupancies of the two ions within the ion channel pore. In this study, the binding of kappa-conotoxin PVIIA (kappa-PVIIA) to Shaker K(+) channel in the presence of K(+) and Rb(+) was investigated. It is demonstrated that the complex results obtained were largely rationalized by differences in selectivity filter occupancy of this 6TM channels as predicted from the structural work on KcsA. kappa-PVIIA inhibition of the Shaker K(+) channel differs in the closed and open state. When K(+) is the only permeant ion, increasing extracellular [K(+)] decreases kappa-PVIIA affinity for closed channels by decreasing the "on" binding rate, but has no effect on the block of open channels, which is influenced only by the intracellular [K(+)]. In contrast, extracellular [Rb(+)] affects both closed- and open-channel binding. As extracellular [Rb(+)] increases, (a) binding to the closed channel is slightly destabilized and acquires faster kinetics, and (b) open channel block is also destabilized and the lowest block seems to occur when the pore is likely filled only by Rb(+). These results suggest that the nature of the permeant ions determines both the occupancy and the location of the pore site from which they interact with kappa-PVIIA binding. Thus, our results suggest that the permeant ion(s) within a channel pore can determine its functional and pharmacological properties.  相似文献   

16.
Large-conductance Ca-activated potassium channels (BK channels) are uniquely sensitive to both membrane potential and intracellular Ca2+. Recent work has demonstrated that in the gating of these channels there are voltage-sensitive steps that are separate from Ca2+ binding steps. Based on this result and the macroscopic steady state and kinetic properties of the cloned BK channel mslo, we have recently proposed a general kinetic scheme to describe the interaction between voltage and Ca2+ in the gating of the mslo channel (Cui, J., D.H. Cox, and R.W. Aldrich. 1997. J. Gen. Physiol. In press.). This scheme supposes that the channel exists in two main conformations, closed and open. The conformational change between closed and open is voltage dependent. Ca2+ binds to both the closed and open conformations, but on average binds more tightly to the open conformation and thereby promotes channel opening. Here we describe the basic properties of models of this form and test their ability to mimic mslo macroscopic steady state and kinetic behavior. The simplest form of this scheme corresponds to a voltage-dependent version of the Monod-Wyman-Changeux (MWC) model of allosteric proteins. The success of voltage-dependent MWC models in describing many aspects of mslo gating suggests that these channels may share a common molecular mechanism with other allosteric proteins whose behaviors have been modeled using the MWC formalism. We also demonstrate how this scheme can arise as a simplification of a more complex scheme that is based on the premise that the channel is a homotetramer with a single Ca2+ binding site and a single voltage sensor in each subunit. Aspects of the mslo data not well fitted by the simplified scheme will likely be better accounted for by this more general scheme. The kinetic schemes discussed in this paper may be useful in interpreting the effects of BK channel modifications or mutations.  相似文献   

17.
C-type inactivation of potassium channels is distinct from N-terminal mediated (N-type) inactivation and involves a closing of the outer mouth of the channel. We have investigated the role of the individual subunits of the tetrameric channel in the C-type inactivation conformational change by comparing the inactivation rates of channels constructed from different combinations of subunits. The relationship between the inactivation rate and the number of fast subunits is exponential, as would be predicted by a cooperative mechanism where the C-type conformational change involves all four subunits, and rules out a mechanism where a conformational change in any of the individual subunits is sufficient for inactivation. Subunit interactions in C-type inactivation are further supported by an interaction between separate mutations affecting C-type inactivation when in either the same or separate subunits.  相似文献   

18.
Molecular determinants of gating at the potassium-channel selectivity filter   总被引:10,自引:0,他引:10  
We show that in the potassium channel KcsA, proton-dependent activation is followed by an inactivation process similar to C-type inactivation, and this process is suppressed by an E71A mutation in the pore helix. EPR spectroscopy demonstrates that the inner gate opens maximally at low pH regardless of the magnitude of the single-channel-open probability, implying that stationary gating originates mostly from rearrangements at the selectivity filter. Two E71A crystal structures obtained at 2.5 A reveal large structural excursions of the selectivity filter during ion conduction and provide a glimpse of the range of conformations available to this region of the channel during gating. These data establish a mechanistic basis for the role of the selectivity filter during channel activation and inactivation.  相似文献   

19.
The interpretation of slow inactivation in potassium channels has been strongly influenced by work on C-type inactivation in Shaker channels. Slow inactivation in Shaker and some other potassium channels can be dramatically modulated by the state of the pore, including mutations at outer pore residue T449, which altered inactivation kinetics up to 100-fold. KV2.1, another voltage-dependent potassium channel, exhibits a biophysically distinct inactivation mechanism with a U-shaped voltage-dependence and preferential closed-state inactivation, termed U-type inactivation. However, it remains to be demonstrated whether U-type and C-type inactivation have different molecular mechanisms. This study examines mutations at Y380 (homologous to Shaker T449) to investigate whether C-type and U-type inactivation have distinct molecular mechanisms, and whether C-type inactivation can occur at all in KV2.1. Y380 mutants do not introduce C-type inactivation into KV2.1 and have little effect on U-type inactivation of KV2.1. Interestingly, two of the mutants tested exhibit twofold faster recovery from inactivation compared to wild-type channels. The observation that mutations have little effect suggests KV2.1 lacks C-type inactivation as it exists in Shaker and that C-type and U-type inactivation have different molecular mechanisms. Kinetic modeling predicts that all mutants inactivate preferentially, but not exclusively, from partially activated closed states. Therefore, KV2.1 exhibits a single U-type inactivation process including some inactivation from open as well as closed states.  相似文献   

20.
Potassium ions diffuse across the cell membrane in a single file through the narrow selectivity filter of potassium channels. The crystal structure of the KcsA K+ channel revealed the chemical structure of the selectivity filter, which contains four binding sites for K+. In this study, we used Tl+ in place of K+ to address the question of how many ions bind within the filter at a given time, i.e. what is the absolute ion occupancy? By refining the Tl+ structure against data to 1.9A resolution with an anomalous signal, we determined the absolute occupancy of Tl+. Then, by comparing the electron density of Tl+ with that of K+, Rb+ and Cs+, we estimated the absolute occupancy of these three ions. We further analyzed how the ion occupancy affects the conformation of the selectivity filter by analyzing the structure of KcsA at different concentrations of Tl+. Our results indicate that the average occupancy for each site in the selectivity filter is about 0.63 for Tl+ and 0.53 for K+. For K+, Rb+ and Cs+, the total number of ions contained within four sites in the selectivity filter is about two. At low concentrations of permeant ion, the number of ions drops to one in association with a conformational change in the selectivity filter. We conclude that electrostatic balance and coupling of ion binding to a protein conformational change underlie high conduction rates in the setting of high selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号