首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have partially reconstituted 20S proteasome/RNA complexes using oligonucleotides corresponding to ARE (adenosine- and uridine-rich element) (AUUUA)4 and HIV-TAR (human immunodeficiency virus-Tat transactivation response element), a stem-loop structure in the 5 UTR (untranslated region) of HIV-mRNAs. We demonstrate that these RNAs which associate with proteasomes are degraded by proteasomal endonuclease activity. The formation of these 20S proteasome/RNA substrate complexes is rather specific since 20S proteasomes do not interfere with truncated TAR that is not cleaved by proteasomal endonuclease. In addition, affinity of proteasomes for (AUUUA)4 is much stronger as it is for HIV-TAR. These results provide further arguments for our hypothesis that proteasomes could be involved in the destabilisation of cytokines mRNAs containing AUUUA sequences as well as viral mRNAs.  相似文献   

4.
Human α-l-fucosidase is a soluble lysosomal enzyme which hydrolyzes α-l-fucose residues linked to the 2 position of galactose or the 3, 4, or 6 position ofN-acetylglucosamine. Demonstration of activity towards natural oligosaccharide or glycosphingolipid substrates was achieved by measuring liberated l-fucose by coupling to fucose dehydrogenase and NAD and measuring NADH production spectrophotometrically. Activity of purified human spleen, brain, and cultured skin fibroblast or crude cell extracts towards 4-methylumbelliferyl-α-l-fucoside had a pH optimum of 4.5 to 5.5 and was unaffected by the presence of neutral detergents such as Triton X-100. However, the addition of sodium taurocholate or other bile salts to the incubation mixture caused a marked inhibition at pH 5 and a shift in pH optimum to the pH 6–7 region. Sodium taurocholate effected a threefold reduction in the apparent Km for α-l-fucosidase at pH 6.0, but studies on fucosidosis tissue (α-fucosidase deficiency) or subcellular fractions derived from rat liver failed to indicate the existence of a membrane-bound α-l-fucosidase. The response of other lysosomal hydrolases to the presence of bile salts was investigated and was found to be variable, perhaps depending upon the hydrophilic or hydrophobic nature of the natural substrate and/or the state of association of the active enzyme.  相似文献   

5.
Ascorbate oxidase oxidizes leuco 2, 6-dichloroindophenol to the blue quinoid dye and produces spectral changes in the UV spectra of certain substituted polyhydric and amino phenols at pH 5.7. The new peaks produced by the addition of enzyme to the dichlorohydroquinones (2,5 and 2,6) and hydroxyhydroquinone correspond to the respective p-quinones of these substrates. At pH 5.7, the enzyme does not oxidize hydroquinone, barely oxidizes chlorohydroquinone, but oxidizes 2,6- and 2,5-dichlorohydroquinone and hydroxyhydroquinone at a rate about 112 that of ascorbic acid, with the uptake of one gram atom of oxygen per mole of substrate. A correlation has been found between the concentration of anion present in solution at pH 5.7 and the rate of oxidation of compounds of the hydroquinone series by the enzyme. The results indicate that an anionic form of the substrate is an important requirement of the enzyme specificity.  相似文献   

6.
Substrate specificity of purified tadpole collagenase (EC 3.4.24.3) has been studied using eleven synthetic peptides. A pentapeptide, t-butyloxycarbonylprolylalanylglycylisoleucylalanine amide, was susceptible to the action of the enzyme and an octapeptide, acetylprolylglutaminylglycylisoleucylalanylglycylglutaminylarginine ethyl ester, was proposed to be the best substrate for vertebrate collagenase among the peptides tested.  相似文献   

7.
8.
Y T Ma  A Chaudhuri  R R Rando 《Biochemistry》1992,31(47):11772-11777
Proteins containing a CAAX motif at their carboxyl termini are subject to isoprenylation at the cysteine residue. Proteolytic trimming of isoprenylated proteins is essential in the activation of these proteins. A microsomal endopeptidase activity has been identified which cleaves all-trans farnesylated cysteine containing tetrapeptides between the modified residue and the adjacent amino acid to liberate the modified cysteine residue and an intact tripeptide. Structure/activity studies are reported here on this endopeptidase activity which are consistent with the premise that this protease is identical to the one normally involved in the cellular isoprenylation pathway. The protease only processes peptides which possess an isoprenyl moiety. Within the isoprenyl series, the enzyme hydrolyzes all-trans-farnesyl-, all-trans-geranylgeranyl-, and geranyl-containing peptides. The protease also recognizes the AAX sequence, because the protease behaves either stereospecifically or stereoselectively with respect to the individual amino acids of the tripeptide. The enzyme only measurably hydrolyzes isoprenylated peptides possessing L-amino acids at C and A. On the other hand, there is a small but measurable hydrolysis of isoprenylated peptides containing a D-amino acid at X.  相似文献   

9.
Trypanosoma cruzi trypomastigotes acquire sialic acid (SA) from host glycoconjugates by means of a plasma membrane-associated trans-sialidase (TS). Here we study the substrate specificity of TS, which differs from all known sialyltransferases in that it does not require cytidine monophosphate (CMP)-SA as donor. The T. cruzi TS reversibly transfers SA to saccharides with terminal beta-Gal (but not alpha-Gal) residues. Donors are saccharides with SA linked to terminal beta-Gal residues by (alpha 2-3), but not (alpha 2-6) bonds. The type of beta-linkage of the terminal Gal residue is of minor importance (beta 1-4 and beta 1-6 are slightly better than beta 1-3), whereas chain length and the structure of additional vicinal sugar residues are not relevant. SA on the surface of living trypomastigotes of T. cruzi is transferred back and forth between the parasite surface and acceptor molecules with terminal beta-Gal, either in solution or on the surface of neighbouring mammalian cells. Addition of fucose residue on or close to the terminal galactose impairs TS activity. As a consequence, the enzyme acts poorly on the E-selectin ligand sialyl-Lewisx and its precursor Lewisx, and in vitro adhesion of TS-treated neutrophils to L-cells expressing L-selectin is not affected. Modifications in the structure of the (alpha 2-3)-linked N-acetyl-neuraminic acid (Neu5Ac) (deoxy or methoxy) of the donor molecules do not impair transfer if the changes are at C9, whereas changes at C4, C7 and C8 impair the ability to donate the modified SA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The streptococcal pyrogenic exotoxin B (SpeB) is an important factor in mediating Streptococcus pyogenes infections. SpeB is the zymogen of the streptococcal cysteine protease (SCP), of which relatively little is known regarding substrate specificity. To investigate this aspect of SCP function, a series of internally quenched fluorescent substrates was designed based on the cleavage sites identified in the autocatalytic processing of SpeB to mature SCP. The best substrates for SCP contain three amino acids in the nonprimed position (i.e. AIK in P(3)-P(2)-P(1)). Varying the length of the substrate on the primed side of the scissile bond has a relatively lower effect on activity. The highest activity (k(cat)/K(M) = 2.8 +/- 0.6 (10(5) x m(-1)s(-1)) is observed for the pentamer 3-aminobenzoic acid-AIKAG-3-nitrotyrosine, which spans subsites S(3) to S(2)' on the enzyme. High pressure liquid chromatography and mass spectrometry analyses show that the substrates are cleaved at the site predicted from the autoprocessing experiments. These results show that SCP can display an important level of endopeptidase activity. Substitutions at position P(2) of the substrate clearly indicate that the S(2) subsite of SCP can readily accommodate substrates containing a hydrophobic residue at that position and that some topological preference exists for that subsite. Substitutions in positions P(3), P(1), and P(1)' had little or no effect on SCP activity. The substrate specificity outlined in this work further supports the similarity between SCP and the cysteine proteases of the papain family. From the data regarding the identified or proposed natural substrates for SCP, it appears that this substrate specificity profile may also apply to the processing of mammalian and streptococcal protein targets by SCP.  相似文献   

11.
1. Two beta-galactosidases from human small-intestinal mucosa were separated by gel-filtration chromatography and the properties of the two enzymes were studied. Lactose and four hetero beta-galactosides were used as substrates. 2. One of the enzymes was particle-bound and could be partially solubilized with papain. Of the substrates hydrolysed by this enzyme, lactose was hydrolysed most rapidly. This enzyme is thus essentially a disaccharidase and is named lactase. It is presumably identical with the ;lactase 1' described earlier. 3. The other enzyme was mainly soluble and hydrolysed all artificial substrates used, whereas no lactase activity could be detected. This enzyme has therefore been designated hetero beta-galactosidase. 4. p-Chloromercuribenzoate (0.1mm) inhibited the hetero beta-galactosidase completely but did not influence the activity of the lactase. Tris was a competitive inhibitor of both enzymes. 5. The residual lactase activity in the mucosa of lactose-intolerant patients may be exerted by a small amount of remaining lactase as such, or possibly by a third enzyme with a more acid pH optimum.  相似文献   

12.
3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) synthase catalyses the first step of the shikimate pathway, which is responsible for the biosynthesis of aromatic amino acids in microorganisms and plants. This enzyme catalyses an aldol reaction between phosphoenolpyruvate and D-erythrose 4-phosphate to generate DAH7P. Both 2-deoxyerythrose 4-phosphate and 3-deoxyerythrose 4-phosphate were synthesised and tested as alternative substrates for the enzyme. Both compounds were found to be substrates for the DAH7P synthases from Escherichia coli, Pyrococcus furiosus and Mycobacterium tuberculosis, consistent with an acyclic mechanism for the enzyme for which neither C2 nor C3 hydroxyl groups are required for catalysis. The enzymes all showed greater tolerance for the loss of the C2 hydroxyl group than the C3 hydroxyl group.  相似文献   

13.
Twenty five uridine analogues have been tested and compared with uridine with respect to their potency to bind to E. coli uridine phosphorylase. The kinetic constants of the phosphorolysis reaction of uridine derivatives modified at 2′-, 3′- and 5′-positions of the sugar moiety and 2-, 4-, 5- and 6-positions of the heterocyclic base were determined. The absence of the 2′- or 5′-hydroxyl group is not crucial for the successful binding and phosphorolysis. On the other hand, the absence of both the 2′- and 5′-hydroxyl groups leads to the loss of substrate binding to the enzyme. The same effect was observed when the 3′-hydroxyl group is absent, thus underlining the key role of this group. Our data shed some light on the mechanism of ribo- and 2′-deoxyribonucleoside discrimination by E. coli uridine phosphorylase and E. coli thymidine phosphorylase. A comparison of the kinetic results obtained in the present study with the available X-ray structures and analysis of hydrogen bonding in the enzyme-substrate complex demonstrates that uridine adopts an unusual high-syn conformation in the active site of uridine phosphorylase.  相似文献   

14.
15.
16.
The substrate specificity of carboxypeptidase (F-II) purified from watermelon for various synthetic peptides and esters was examined kinetically. The enzyme showed a broad substrate specificity against various carbobenzoxy- and benzyl-dipeptides. Peptides containing glycine or proline were hydrolyzed slowly by the enzyme. Peptides containing hydrophobic amino acids were hydrolyzed rapidly. The presence of hydrophobic amino acid residues, not only at the C-terminal position but also at the second position and probably the third position from the C-terminal resulted in an increase in the rate of hydrolysis. Inhibition studies with diisopropyl flurophosphate and diastereomers of carbobenzoxy-Phe-Ala demonstrated that the peptidase and esterase activities of the enzyme are both catalyzed by the same site of the enzyme molecule, but the binding sites for peptides and esters seem not to be the same. The enzyme also had amidase activity, which was optimal at pH 7.0.  相似文献   

17.
18.
Substrate specificity of Ty1 integrase.   总被引:4,自引:2,他引:4       下载免费PDF全文
Integration of the Saccharomyces cerevisiae retrotransposon Ty1 requires the element-encoded integrase (IN) protein, which is a component of cytoplasmic virus-like particles (VLPs). Using purified recombinant Ty1 IN and an oligonucleotide integration assay based on Ty1 long terminal repeat sequences, we have compared IN activity on substrates having either wild-type or altered donor ends. IN showed a marked preference for blunt-end substrates terminating in an A:T pair over substrates ending in a G:C pair or a 3' dideoxyadenosine. VLP activity on representative substrates also showed preference for donor strands which have an adenosine terminus. Staggered-end substrates showed little activity when nucleotides were removed from the end of the wild-type donor strand, but removal of one nucleotide from the complementary strand did not significantly diminish activity. Removal of additional nucleotides from the complementary strand reduced activity to minimal detection levels. These results suggest that the sequence specificity of Ty1 IN is not stringent in vitro. The absence of Ty1 IN-mediated 3' dinucleotide cleavage, a characteristic of retroviral integrases, was demonstrated by using selected substrates. In addition to the forward reaction, both recombinant IN and VLP-associated IN carry out the reverse disintegration reaction with long terminal repeat-based dumbbell substrates. Disintegration activity exhibits sequence preferences similar to those observed for the forward reaction.  相似文献   

19.
In this study, the substrate specificity of a newly identified rat brain ceramidase (CDase) was investigated. To this end, the major functional groups and stereochemistry of ceramide (Cer) were evaluated for their influence on the hydrolysis of substrate by this CDase. The results showed that, of the four possible stereoisomers of Cer, only the natural d-e-C(18)-Cer isomer was used as substrate (K(m) of 1.1 mol% and V(max) of 5 micromol/min/mg). Removal of the 4-5 trans double bond to generate dihydroceramide decreased the affinity of the enzyme toward its substrate by around 90%, whereas changing the configuration of the double bond from the natural trans configuration into cis or introduction of a hydroxyl group (phytoceramide) resulted in loss of hydrolysis. Shortening the chain length of the sphingosine backbone resulted in decreased affinity. Methylation of either the primary or the secondary hydroxyl groups resulted in loss of activity. Results also indicated that Cer species that harbor long saturated or monounsaturated fatty acyl chains are preferred substrates of the enzyme. alpha-Hydroxylated Cer demonstrated considerably higher affinity, indicating a preference of the enzyme to those Cer molecular species. These results disclose a very high specificity of nonlysosomal CDase for its substrate, Cer.  相似文献   

20.
For Escherichia coli Bos12 (O16:K92:H-), a bacteriophage (phi 92) has been isolated which carries a depolymerase active on the K92 capsular polysaccharide. As seen under the electron microscope, phi 92 belongs to Bradley's morphology group A and is different from the phage phi 1.2 previously described (Kwiatkowski et al., J. Virol. 43:697-704, 1982), which grows on E. coli K235 (O1:K1:H-), depolymerizes colominic acid, and belongs to morphology group C. The specificity of the phi 1.2- and phi 92-associated endo-N-acetylneuraminidases has been studied with respect to the following substrates (all alkali treated, and where NeuNAc represents N-acetylneuraminic acid): (i) [-alpha-NeuNAc-(2 leads to 8)-]n (colominic acid), (ii) [-alpha-NeuNAc-(2 leads to 8)-alpha-NeuNAc-(2 leads to 9)-]n (E. coli K92 polysaccharide), and (iii) [-alpha-NeuNAc-(2 leads to 9)-]n (Neisseria meningitidis type C capsular polysaccharide). The increase in periodate consumption of these glycans upon incubation with purified phi 1.2 or phi 92 particles was measured, and the split products obtained from all substrates after exhaustive degradation were analyzed by gel chromatography. It was found that the Neisseria polysaccharide is not appreciably affected by either virus enzyme and that phi 1.2 only depolymerizes a small fraction of the K92 glycan. Colominic acid, however, is completely degraded by both agents, phi 92 yielding smaller fragments (one to six NeuNAc residues) than phi 1.2 (two to seven). Phage phi 92 additionally depolymerizes the K92 glycan, essentially to oligosaccharides of two, four, and six residues. The size distribution of these K92 oligosaccharides indicates that the phi 92 enzyme predominantly cleaves the alpha(2 leads to 8) linkages in this polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号