首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TRAIL (TNF-related apoptosis-inducing ligand) death receptors DR4 and DR5 facilitate the selective elimination of malignant cells through the induction of apoptosis. From previous studies the regulation of the DR4 and DR5 cell-death pathways appeared similar; nevertheless in this study we screened a library of small interfering RNA (siRNA) for genes, which when silenced, differentially affect DR4- vs. DR5-mediated apoptosis. These experiments revealed that expression of the signal recognition particle (SRP) complex is essential for apoptosis mediated by DR4, but not DR5. Selective diminution of SRP subunits by RNA interference resulted in a dramatic decrease in cell surface DR4 receptors that correlated with inhibition of DR4-dependent cell death. Conversely, SRP silencing had little influence on cell surface DR5 levels or DR5-mediated apoptosis. Although loss of SRP function in bacteria, yeast and protozoan parasites causes lethality or severe growth defects, we observed no overt phenotypes in the human cancer cells studied--even in stable cell lines with diminished expression of SRP components. The lack of severe phenotype after SRP depletion allowed us to delineate, for the first time, a mechanism for the differential regulation of the TRAIL death receptors DR4 and DR5--implicating the SRP complex as an essential component of the DR4 cell-death pathway.  相似文献   

2.
The number and activity of osteoclasts (OCs) are critical for maintaining normal bone turnover. The number is determined by the rates of cell differentiation and death. TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, induces apoptosis by interacting with its death receptors, (DR4, DR5). However, its activity can be modulated by two decoy receptors, (DcR1 and DcR2). In this paper we show that TRAIL treatment causes reduced OC viability as well as an increased apoptotic OC number. Loss of nuclei integrity and derangement of the actin microfilament were also induced by TRAIL in OCs. Moreover, we demonstrated the expression of all TRAIL receptors in both precursors and differentiated OCs, and the upregulation of DR5 during OC differentiation. Interestingly, DcR2 was upregulated in the early stage of osteoclastogenesis and downregulated at the end of the differentiation process. We showed that DR5, upregulated by TRAIL, could be the mediator of TRAIL-induced OC apoptosis, since the addition of anti-DR5 neutralizing antibodies restores the OC viability previously reduced by TRAIL. Furthermore, the intracellular pathway induced by TRAIL in OCs involves caspase-8 and Bid activation. In conclusion, our data highlight an important role for the TRAIL/TRAIL receptor system in the regulation of OC apoptosis.  相似文献   

3.
Apoptosis control by death and decoy receptors   总被引:43,自引:0,他引:43  
The death receptors Fas and tumor necrosis factor receptor 1 (TNFR1) trigger apoptosis upon engagement by their cognate death ligands. Recently, researchers have discovered several novel homologues of Fas and TNFR1: DR 3, 4, 5, and 6 function as death receptors that signal apoptosis, whereas DcR 1, 2, and 3 act as decoys that compete with specific death receptors for ligand binding. Further, mouse gene knockout studies have enabled researchers to delineate some of the signaling pathways that connect death receptors to the cell's apoptotic machinery.  相似文献   

4.
The specific contribution of insulin and IGF-I receptors to IRS-protein activation remains elusive. We studied the signalling properties of AspB10-insulin, an analog with enhanced affinity for the IGF-I receptor, in comparison to native insulin using primary human skeletal muscle cells. In myoblasts regular insulin and AspB10-insulin were equipotent in stimulating the IRS cascade, whereas this analog induced a significantly higher Shc phosphorylation. Phosphorylation of IRS-1 in response to insulin was inhibited equally by blocking either the insulin or the IGF-I receptor. IRS-1 activation by AspB10-insulin was only inhibited by blocking the IGF-I receptor. IRS-2 phosphorylation induced by both insulin and AspB10-insulin was nearly insensitive to blocking the insulin receptor, being predominantly mediated by the IGF-I receptor. We conclude that in myoblasts IRS-2, but not IRS-1, functions as preferred substrate for the IGF-I receptor. These data suggest a specific role for IRS-2 in growth and differentiation of human skeletal muscle.  相似文献   

5.
Apo2L/TRAIL and its death and decoy receptors   总被引:43,自引:0,他引:43  
Apo2 ligand or tumour necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is one of the several members of the tumour necrosis factor (TNF) gene superfamily that induce apoptosis through engagement of death receptors (DRs). Apo2L/TRAIL interacts with an unusually complex receptor system of two DRs and three decoys. This protein has garnered intense interest as a potential candidate for cancer therapy because as a trimer it selectively induces apoptosis in many transformed cells but not in normal cells. While much of the early characterisation of Apo2L/TRAIL and its receptors relied on overexpression studies, recent work using untransfected cells has clarified how endogenous proteins transmit apoptotic signals from this ligand. In this review, we focus on the apoptotic signalling pathways stimulated by Apo2L/TRAIL and summarise what is known about its physiological role.  相似文献   

6.
Differential ontogeny of type 1 and type 2 benzodiazepine receptors   总被引:9,自引:0,他引:9  
The postnatal development of Type 1 and Type 2 benzodiazepine receptors in rat cerebral cortex was studied using CL 218,872, a novel triazolopyridazine. On postnatal day 1 most 3H-flunitrazepam binding sites appeared to be Type 2 receptors, which increased rapidly during the first week of life and reached adult levels by 3–4 weeks of age. Type 1 receptors, on the other hand, represented only a small percentage of the binding sites on postnatal day 1 and did not begin to increase in number until approximately 7–16 days of age. These results demonstrate a differential postnatal development of two sub-populations of benzodiazepine receptors.  相似文献   

7.
Two glutamate receptors, metabotropic glutamate receptor 5 (mGluR5), and ionotropic NMDA receptors (NMDAR), functionally interact with each other to regulate excitatory synaptic transmission in the mammalian brain. In exploring molecular mechanisms underlying their interactions, we found that Ca2+/calmodulin‐dependent protein kinase IIα (CaMKIIα) may play a central role. The synapse‐enriched CaMKIIα directly binds to the proximal region of intracellular C terminal tails of mGluR5 in vitro. This binding is state‐dependent: inactive CaMKIIα binds to mGluR5 at a high level whereas the active form of the kinase (following Ca2+/calmodulin binding and activation) loses its affinity for the receptor. Ca2+ also promotes calmodulin to bind to mGluR5 at a region overlapping with the CaMKIIα‐binding site, resulting in a competitive inhibition of CaMKIIα binding to mGluR5. In rat striatal neurons, inactive CaMKIIα constitutively binds to mGluR5. Activation of mGluR5 Ca2+‐dependently dissociates CaMKIIα from the receptor and simultaneously promotes CaMKIIα to bind to the adjacent NMDAR GluN2B subunit, which enables CaMKIIα to phosphorylate GluN2B at a CaMKIIα‐sensitive site. Together, the long intracellular C‐terminal tail of mGluR5 seems to serve as a scaffolding domain to recruit and store CaMKIIα within synapses. The mGluR5‐dependent Ca2+ transients differentially regulate CaMKIIα interactions with mGluR5 and GluN2B in striatal neurons, which may contribute to cross‐talk between the two receptors.

  相似文献   


8.
Many leukemia and cancer cells exhibit constitutive activation of STAT5, which was suggested to provide an anti-apoptotic advantage. Transformation of cytokine-dependent hematopoietic cells, such as Ba/F3 cells to autonomous growth and tumorigenicity equally results in selection for constitutive activation of STAT5. We compared STAT5 signaling between erythropoietin(Epo)-dependent cells and cells that were transformed by oncogenic activation of the erythropoietin receptor (EpoR) by coexpression of the gp55-P envelope protein of the spleen focus forming virus or by expression of the R129C constitutively active EpoR mutant. In transformed cells it was mainly STAT5B that was constitutively activated. In contrast, Epo stimulation activated both STAT5A and STAT5B. In transformed cells, chromatin immunoprecipitation (ChIP) showed STAT5 to be physically bound to promoters of STAT5 target genes, such as Bcl(XL), and to be able to promote transactivation of the Bcl(XL) promoter in a constitutive fashion. Sequencing of native sequences after ChIP with anti-STAT5 antibodies in Epo-dependent and -transformed cells indicated that in gp55-transformed cells, STAT5B bound in the chromatin not only to N3 high affinity, but also to low affinity N4 GAS sites. Transactivation for N3 GAS sites in luciferase reporters was specific to gp55 transformation. Because we also found preferential constitutive STAT5B activation after transformation of cells by a truncated form of the G-CSF-R that produces severe neutropenia (Kostmann syndrome) and favors leukemia in humans, we discuss the potential role of STAT5B in oncogenic transformation of hematopoietic cells.  相似文献   

9.
Agonist stimulation of G protein-coupled receptors causes receptor activation, phosphorylation, beta-arrestin binding and receptor internalization. Angiotensin II (AngII) causes rapid internalization of the AT1 receptors, whereas AngII-bound AT2 receptors do not internalize. Although the activation of the rat AT1A receptor with AngII causes translocation of beta-arrestin2 to the receptor, no association of this molecule with the AT2 receptor can be detected after AngII treatment with confocal microscopy or bioluminescence resonance energy transfer. These data demonstrate that the two subtypes of angiotensin receptors have different mechanisms of regulation.  相似文献   

10.
The insulin-like growth factors (insulin-like growth factor I [IGF-I] and IGF-II) exert important effects on growth, development, and differentiation through the IGF-I receptor (IGF-IR) transmembrane tyrosine kinase. The insulin receptor (IR) is structurally related to the IGF-IR, and at high concentrations, the IGFs can also activate the IR, in spite of their generally low affinity for the latter. Two mechanisms that facilitate cross talk between the IGF ligands and the IR at physiological concentrations have been described. The first of these is the existence of an alternatively spliced IR variant that exhibits high affinity for IGF-II as well as for insulin. A second phenomenon is the ability of hybrid receptors comprised of IGF-IR and IR hemireceptors to bind IGFs, but not insulin. To date, however, direct activation of an IR holoreceptor by IGF-I at physiological levels has not been demonstrated. We have now found that IGF-I can function through both splice variants of the IR, in spite of low affinity, to specifically activate IRS-2 to levels similar to those seen with equivalent concentrations of insulin or IGF-II. The specific activation of IRS-2 by IGF-I through the IR does not result in activation of the extracellular signal-regulated kinase pathway but does induce delayed low-level activation of the phosphatidylinositol 3-kinase pathway and biological effects such as enhanced cell viability and protection from apoptosis. These findings suggest that IGF-I can function directly through the IR and that the observed effects of IGF-I on insulin sensitivity may be the result of direct facilitation of insulin action by IGF-I costimulation of the IR in insulin target tissues.  相似文献   

11.
Affinity labeling and immunoprecipitation studies demonstrate that alpha 2-macroglobulin (alpha 2M) is the major serum-binding protein for transforming growth factors beta 1 and beta 2 (TGF-beta 1 and TGF-beta 2). Purified alpha 2M inhibits the binding of both 125I-TGF-beta 1 and 125I-TGF-beta 2 to cell surface receptors at I50 values of 200 and 10 micrograms/ml, respectively. alpha 2M (200 micrograms/ml) does not block TGF-beta 1 inhibition of CCL-64 mink lung cell growth but reduces this activity of TGF-beta 2 10-fold. The electrophoretic migration of 125I-TGF-beta.alpha 2M complexes on polyacrylamide gels under nondenaturing conditions demonstrates that alpha 2M has 10-fold greater affinity for TGF-beta 2 than for TGF-beta 1. Each of these complexes comigrates as a single band with the fast form of alpha 2M. We suggest that alpha 2M is an important differential regulator of the biological activities of TGF-beta 1 and TGF-beta 2 in vivo.  相似文献   

12.
Stimulation of human H1 and H2-histamine receptors (HRs) primarily activates signaling pathways to increase intracellular calcium [Ca2+]i and cyclic AMP (cAMP), respectively. Activation of H2-HR in human embryonic kidney (HEK) cells by histamine and dimaprit increases both cAMP formation and [Ca2+]i, as determined by cAMP-scintillation proximity assays and fluorescence imaging plate reader (FLIPR) assays. In HEK cells expressing relatively high levels of H2-HR (Bmax=26 pmol/mg protein), histamine and dimaprit are full agonists in eliciting cAMP responses with pEC50 values of 9.30 and 7.72 that are 1000-fold more potent than their respective pEC50 values of 6.13 and 4.91 for increasing [Ca2+]i. The agonist potencies decrease for both responses at lower H2-HR density (5 pmol/mg protein) and dimaprit exhibits partial agonist behavior for the [Ca2+]i response. The inverse agonists ranitidine and cimetidine more potently inhibit cAMP production in the higher expressing H2-HR line. Histamine also activated both signaling pathways via human H1-HRs highly expressed (Bmax=17 pmol/mg protein) in HEK cells, with a 1000-fold greater potency for [Ca2+]i vs. cAMP responses (pEC50=7.86 and 4.82, respectively). These studies demonstrate a markedly different potency for activation of multiple signaling pathways by H1- and H2-HRs that may contribute to the selectivity of histamine responses in vivo.  相似文献   

13.
HIV-1 uses mononuclear phagocytes (monocytes, tissue macrophages, and dendritic cells) as a vehicle for its own dissemination and as a reservoir for continuous viral replication. The mechanism by which the host immune system clears HIV-1-infected macrophages is not understood. TRAIL may play a role in this process. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The plasma level of TRAIL is increased in HIV-1-infected patients, particularly those with high viral loads. To study the effect of elevated TRAIL on mononuclear phagocytes, we used recombinant human (rh) TRAIL and human monocyte-derived macrophages (MDM) as an in vitro model. Our results demonstrated rhTRAIL-induced apoptosis in HIV-1-infected MDM and inhibited viral replication, while having a reduced effect on uninfected MDM. HIV-1 infection significantly decreased Akt-1 phosphorylation; rhTRAIL exposure further decreased Akt-1 phosphorylation. Infection with a dominant-negative Akt-1 adenovirus potentiated rhTRAIL-induced apoptosis, while constitutively active Akt-1 blocked rhTRAIL-induced apoptosis in HIV-1-infected MDM. From this data we conclude the death ligand TRAIL preferentially provokes apoptosis of HIV-1-infected MDM, and the mechanism is reliant upon the inhibition of Akt-1 phosphorylation. Understanding this mechanism may facilitate the elimination of HIV-1-infected macrophages and lead to new therapeutic avenues for treatment of HIV-1 infection.  相似文献   

14.
The mechanisms mediating and regulating assembly and disassembly of intercellular junctions is a subject of intensive research. The IgG autoantibodies produced in patients with the immunoblistering skin disease pemphigus vulgaris (PV) can induce keratinocyte (KC) dyshesion (acantholysis) via mechanisms that involve signaling kinases targeting intercellular adhesion molecules, thus providing a useful model to study the physiologic regulation of KC cohesion. Previous studies showed that activation of Src and protein kinase C are the earliest events in the PV IgG-induced intracellular phosphorylation cascades and that cholinergic agonists are effective for treating patients with pemphigus. In this study, we sought to elucidate the molecular mechanisms allowing cholinergic agonists to inhibit PV IgG-induced acantholysis and phosphorylation of KC adhesion molecules. The extent of acantholysis in KC monolayers correlated closely with the degree of PV IgG-induced phosphorylation of p120- and beta-catenins, with classic isoforms of protein kinase C mediating serine phosphorylation of beta-catenin and Src-tyrosine phosphorylation of p120-catenin. The M(1) muscarinic agonist pilocarpine blocked phosphorylation of both catenins, which could be abolised by the M(1) antagonist MT7. The alpha7 nicotinic agonist AR-R17779 inhibited phosphorylation of P120-cateinin. The alpha7 antagonist methyllycaconitine abolished the effect of AR-R17779. Okadaic acid abrogated protective effects of agonists on phosphorylation of beta-catenin, and pervanadate, on that of p120-catenin. Stimulation of KCs with pilocarpine significantly (p < 0.05) elevated both serine/threonine and tyrosine phosphatase activities in KCs. AR-R17779 both stimulated tyrosine phosphatase and decreased PV IgG-induced Src activity. Methyllycaconitine released Src activity in intact KCs and caused acantholysis. Thus, downstream signaling from M(1) abolished PV IgG-dependent catenin phosphorylation due to activation of both serine/threonine and tyrosine phosphatases, whereas alpha7 action involved both activation of tyrosine phosphatase and inhibition of Src. These findings identified novel paradigm of regulation of signaling kinases associated with cholinergic receptors and provided mechanistic explanation of therapeutic activity of cholinomimetics in PV patients.  相似文献   

15.
Recent studies indicate that membrane cholesterol can associate with G protein-coupled receptors (GPCRs) and affect their function. Previously, we reported that manipulation of membrane cholesterol affects ligand binding and signal transduction of the type 1 cholecystokinin receptor (CCK1R), a Class A GPCR. We now demonstrate that the closely related type 2 cholecystokinin receptor (CCK2R) does not share this cholesterol sensitivity. The sequences of both receptors reveal almost identical cholesterol interaction motifs in analogous locations in transmembrane segments two, three, four, and five. The disparity in cholesterol sensitivity between these receptors, despite their close structural relationship, provides a unique opportunity to define the possible structural basis of cholesterol sensitivity of CCK1R. To evaluate the relative contributions of different regions of CCK1R to cholesterol sensitivity, we performed ligand binding studies and biological activity assays of wild-type and CCK2R/CCK1R chimeric receptor-bearing Chinese hamster ovary cells after manipulation of membrane cholesterol. We also extended these studies to site-directed mutations within the cholesterol interaction motifs. The results contribute to a better understanding of the structural requirements for cholesterol sensitivity in CCK1R and provides insight into the function of other cholesterol-sensitive Class A GPCRs.  相似文献   

16.
The cytotoxic drugs 5-azacytidine and cytosine-arabinoside influence the enzymatic methylation of DNA in opposite ways (1,2). The in vitro effects of these two drugs on Con A induced proliferation of thymic and splenic rat lymphocytes were investigated. Cytosine-arabinoside was found to inhibit mitogen induced proliferation already at a concentration of 0.001 microM, whereas 5-azacytidine was inhibitory only above concentrations of 1 microM. A stimulation of mitogen induced T cell proliferation was consistently seen with 5-azacytidine, but not with cytosine-arabinoside, at concentrations lower than the cytotoxic concentration. The results show that 5-azacytidine and cytosine-arabinoside interfere with mitogen stimulated lymphocyte proliferation by different mechanisms and suggest that hypomethylated DNA plays a role in the proliferation of T cells.  相似文献   

17.
18.
The selective serotonin reuptake inhibitor (SSRI), fluoxetine (Prozac®), is an effective antidepressant that is also prescribed for other disorders (e.g. anorexia, bulimia, and premenstrual dysphoria) that are prevalent in females. However, fluoxetine also produces sexual side effects that may lead patients to discontinue treatment. The current studies were designed to evaluate several predictions arising from the hypothesis that serotonin 1A (5-HT1A) receptors contribute to fluoxetine-induced sexual dysfunction. In rodent models, 5-HT1A receptors are potent negative modulators of female rat sexual behavior. Three distinct experiments were designed to evaluate the contribution of 5-HT1A receptors to the effects of fluoxetine. In the first experiment, the ability of the 5-HT1A receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635), to prevent fluoxetine-induced lordosis inhibition was examined. In the second experiment, the effects of prior treatment with fluoxetine on the lordosis inhibitory effect of the 5-HT1A receptor agonist, (±)-8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), were studied. In the third experiment, the ability of progesterone to reduce the acute response to fluoxetine was evaluated. WAY100635 attenuated the effect of fluoxetine; prior treatment with fluoxetine decreased 8-OH-DPAT's potency in reducing lordosis behavior; and progesterone shifted fluoxetine's dose-response curve to the right. These findings are consistent with the hypothesis that 5-HT1A receptors contribute to fluoxetine-induced sexual side effects.  相似文献   

19.
Hwang MK  Ryu BJ  Kim SH 《Amino acids》2012,43(4):1679-1687
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in tumor cells, but when used alone, it is not effective at treating TRAIL-resistant tumors. This resistance is challenging for TRAIL-based anti-cancer therapies. In this study, we found that 1-(4-trifluoromethoxy-phenyl)-3-[4-(5-trifluoromethyl-2,5-dihydro-pyrazol-1-yl)-phenyl]-urea (AW00179) sensitized human lung cancer H1299 cells to TRAIL-mediated apoptosis. Even in the absence of TRAIL, AW00179 strongly induced DR5 expression and decreased the expression of anti-apoptotic proteins, suggesting that the sensitizing effect of AW00179 on TRAIL-mediated apoptosis is due to increased levels of DR5 protein and decreased anti-apoptotic molecules. AW00179 also induced the activation of c-Jun and ERK; however, a pharmacologic inhibition study revealed that JNK-c-Jun signaling is involved in the induction of DR5 expression. In addition, reactive oxygen species (ROS) appear to be involved in AW00179 activity. In conclusion, AW00179 has the potential to sensitize H1299 cells to TRAIL-mediated apoptosis through two distinct mechanisms: ROS-JNK-c-Jun-mediated up-regulation of DR5, and down-regulation of anti-apoptotic molecules.  相似文献   

20.
Killer cell inhibitory receptors (KIRs) inhibit NK and T cell cytotoxicity when recognizing MHC class I molecules on target cells. They possess two tandem intracytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs) that, when phosphorylated, each bind to the two Src homology 2 domain-bearing protein tyrosine phosphatases SHP-1 and SHP-2 in vitro. Using chimeric receptors having an intact intracytoplasmic KIR domain bearing both ITIMs (N + C-KIR), a deleted domain containing the N-terminal ITIM only (N-KIR), or a deleted domain containing the C-terminal ITIM only (C-KIR), we examined the respective contributions of the two ITIMs in the inhibition of cell activation in two experimental models (a rat mast cell and a mouse B cell line) that have been widely used to analyze KIR functions. We found that the two KIR ITIMs play distinct roles. When coaggregated with immunoreceptor tyrosine-based activation motif-bearing receptors such as high-affinity IgE receptors or B cell receptors, the N + C-KIR and the N-KIR chimeras, but not the C-KIR chimera, inhibited mast cell and B cell activation, became tyrosyl-phosphorylated, and recruited phosphatases in vivo. The N + C-KIR chimera recruited SHP-1 as expected, but also SHP-2. Surprisingly, the N-KIR chimera failed to recruit SHP-1; however, it did recruit SHP-2. Consequently, the N-terminal ITIM is sufficient to recruit SHP-2 and to inhibit cell activation, whereas the N-terminal and the C-terminal ITIMs are both necessary to recruit SHP-1. The two KIR ITIMs, therefore, are neither mandatory for inhibition nor redundant. Rather than simply amplifying inhibitory signals, they differentially contribute to the recruitment of distinct phosphatases that may cooperate to inhibit cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号