首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
In order to understand the impacts of forest fragmentation on Araucaria angustifolia populations, we evaluated the genetic diversity and mating system using SSR markers and open-pollinated seeds from four populations of varying sizes and spatial isolation, in and around one of the best-conserved Araucaria Forest remnants in Southern Brazil. The four population types of A. angustifolia include: (1) a continuous forest; (2) a physically isolated cluster located 2 km from the continuous forest; (3) an open population in a field located between the cluster and continuous forest; and (4) a fragment on a private property located 5 km from the cluster. Approximately 28 seeds were collected from ten reproductive trees in each population. We found higher amounts of alleles (113) and exclusive alleles (25) in the continuous forest than in the other populations. The multilocus paternity correlation was significantly higher and effective number of pollen donors was significantly lower in the private population, decreasing the diversity and consequently the variance effective size of families sampled from that population. However, despite its isolation from the other studied fragments, the private population had the second highest number of alleles as well as unique alleles from the other populations. Therefore, strategies for A. angustifolia conservation should focus not only on larger populations, such as those found in protected areas, but also include smaller and isolated fragments on private properties as these populations are able to maintain high levels of genetic diversity and functional connectivity between isolated stands across a landscape.  相似文献   

2.
The Brazilian Atlantic Forest suffered a severe geographic contraction along the last five centuries that reduced drastically most vascular epiphyte populations. Among the range of man-made matrixes, tree monocultures have the potential to contribute positively to the maintenance of the regional epiphyte diversity. Here, we test the similarity in abundance, richness, and species composition between vascular epiphytic communities established in managed monocultures of exotic and native species with natural communities occurring in neighboring native Araucaria Forest patches. In the São Francisco de Paula National Forest (Rio Grande do Sul state, Brazil), we recorded 62 epiphyte species from 300 phorophytes occurring in 12, one-hectare plots of Araucaria Forest and managed plantations of Pinus, Eucalyptus and Araucaria. Species richness, rarefied richness and abundance were significantly higher in Araucaria Forest in comparison to the exotic stands. Species composition was also substantially differentiated as Araucaria Forest patches harbored a greater number of zoochorous species than those of the exotic stands. Additionally, plantations of Araucaria angustifolia, a native species, sustained more individuals and more species than the exotic plantations. Neither tree height nor DBH explained epiphyte richness; however, both phorophyte diversity and stand age together accounted for 92% of the among-site variation in epiphytic species richness. We conclude that substrate heterogeneity in combination with time available for colonization contribute significantly to beta-diversity of epiphytes in Araucaria forests. However, demographic experimental studies are necessary in order to disentangle the role of substrate quality from metapopulation processes, such as dispersal limitation, at both temporal and spatial scales.  相似文献   

3.
In order to determine the implications of including planted populations in conservation planning, we investigate the structure and genetic diversity, mating system, and effective population size within families in three planted and one natural Araucaria angustifolia populations. The study area is a Brazilian National Forest in southern Brazil, established in the 1950s. Genetic analysis was investigated using nine allozyme loci. Significant and positive fixation index was detected for the adults of all studied populations. Although we observed lower levels of genetic diversity and biparental inbreeding in some populations, their pattern of mating, similar to that expected in panmixia, indicates that all populations can be used in conservation planning. Furthermore, the presence of unique alleles and the significant genetic differentiation among all adult populations (F ST = 0.404) reinforces that all populations are important conservation resources. The average paternity correlation was high in almost all populations, showing that open-pollinated families are composed of mixtures of half- and full-sibs. With regards to conservation strategies, our results suggest that seed collection from at least 133 seed trees is necessary to retain a reference effective population size of 500. Our results confirm that the planted Araucaria forests in southern Brazil can be useful as a genetic resource for conservation, breeding and reforestation strategies for this threatened species.  相似文献   

4.
This study examines the human use and management of Araucaria angustifolia ethnovarieties from Santa Catarina, Brazil, and contributes to what is known about the ethnobotany of Araucaria species. The available literature on varietal differences of A. angustifolia is somewhat divergent, and there are currently no ethnobotanical studies on the intraspecific variation and management of this species. The study examined local knowledge and sociocultural and economic values of A. angustifolia varieties to understand how the varieties are managed and how management practices are influencing the conservation of the species. Semi-structured interviews were conducted with 33 informants (identified using the snowball method) in the Painel and Urubici municipalities. Participants identified 12 local varieties, four of which were cited by more than one informant. Characteristic differences include size, color and flavor of the nut-like seeds (pinhão), and most importantly, season of maturation of the cone. The “Caiová” variety was preferred for its bigger, firmer, and sweeter seeds that are considered easier to peel and last longer in storage. Even though there is some interest in developing management practices that favor some varieties in order to guarantee year-round production, seedlings are commonly removed. This management practice is most likely a response to current regulations that prohibit cutting down adult trees. The results of this study have important implications for the relationship between the knowledge of A. angustifolia practices and the current legal framework that protects this species. A more detailed understanding of the relevant ethnobotanical knowledge is required in order to establish the best practices for sustainable use of A. angustifolia and its varietal diversity and to support the communities that depend on this species as a resource.  相似文献   

5.
In an area reforested with Brazilian pine (Araucaria angustifolia) located in Paraná State, southern Brazil, 20‐ to 40‐year‐old trees representing 0.2% of the surveyed area had symptoms of root and crown rot, yellowing and browning of leaves from the uppermost branches and death. Three Phytophthora isolates obtained from diseased plant tissue were tested against 1‐year‐old Brazilian pine seedlings and found to display positive pathogenicity. Based on their morphological and physiological characteristics, the isolates were identified as Phytophthora cinnamomi. A GenBank BLAST search of partial sequences from the β‐tubulin and elongation factor‐1α genes, as well as the ITS regions and 5.8S gene of rDNA, confirmed the species identification. This is the first report of the involvement of this pathogen on the aetiology of Brazilian pine root and crown rot.  相似文献   

6.
Phylogeographic studies allow us to better understand the past history of species and the factors that mold their current distribution. Here, we demonstrate the potential human impact on the distribution of a tree species. In particular, it was hypothesized that Araucaria angustifolia, an endangered South American conifer, was dispersed from its Pleistocene glacial refugium to its maximum occurrence distribution (MOD), mainly by pre-Columbian human groups (ca 2000 years ago). In order to test this hypothesis, we sampled 20 A. angustifolia populations in southern Brazil. Our analysis consisted of an integrative phylogeographic approach, supported by ecological aspects of the species. Therefore, we constructed the species chloroplast haplotype network, tested for possible neutrality deviations, genetic divergence, association between genetic and geographic distances, and simulated the amount of time that the species required to reach its MOD without human help. The species showed clear signs of rapid and recent expansion from a single refugium. The haplotype network had a star-like shape. Populations and the species showed negative values for the neutrality tests and low divergence values among populations (FST?=?0.041) not associated with geographic distance. The estimated dispersal time required for the species to reach its MOD from its putative refugium without human help is not consistent with the rapid and recent expansion of the species. Hence, we argue that humans played an important role in expanding the distribution of the currently endangered species, and it needs to be accounted for when analyzing landscape genetics or in the development of conservation strategies.  相似文献   

7.
The aim of this work was to assess the sporulation and diversity of arbuscular mycorrhizal fungi (AMF) at different forest sites with Araucaria angustifolia (Bert.) O. Ktze. (Brazil Pine). In addition, a greenhouse experiment was carried out to test the use of traditional trap plants (maize + peanut) or A. angustifolia to estimate the diversity of AMF at each site. Soil samples were taken in two State Parks at southwestern Brazil: Campos do Jordão (Parque Estadual de Campos do Jordão [PECJ]) and Apiaí (Parque Estadual Turístico do Alto Ribeira [PETAR]), São Paulo State, in sites of either native or replanted forest. In PECJ, an extra site of replanted forest that was impacted by accidental fire and is now in a state of recuperation was also sampled. The spore densities and their morphological identification were compiled at each site. In the greenhouse, soil samples from each site were used as inoculum to promote spore multiplication on maize + peanut or A. angustifolia grown on a sandy, low-fertility substrate. Plants were harvested, respectively, after 4 months or 1 year of growth and assessed for mycorrhizal root colonization. Spore counts and identification were also performed in the substrate, after the harvest of plants. Twenty-five taxa were identified considering all sites. Species richness and diversity were greater in native forest areas, being Acaulospora, the genus with the most species. Differences in number of spores, diversity, and richness were found at the different sites of each State Park. Differences were also found when maize + peanut or A. angustifolia were used as trap plants. The traditional methodology using trap plants seems to underestimate the diversity of the AMF. The use of A. angustifolia as trap plant showed similar species richness to the field in PECJ, but the identified species were not necessarily the same. Nevertheless, for PETAR, both A. angustifolia and maize + peanut underestimated the species richness. Because the AMF sporulation can be affected by many conditions, it is impossible to draw detailed conclusions from this kind of survey. More precise experiments have to be set up to isolate the different factors that modulate the ecophysiological interactions between host plant and endophyte.  相似文献   

8.
The Agave angustifolia complex, distributed from Mexico to Costa Rica, comprises four species and five varieties, including three species used for mescal production. The complex is represented in the Mexican state of Oaxaca by two wild taxa, A. angustifolia var. angustifolia and A. angustifolia var. rubescens, the cultivated form A. angustifolia “Espadín” and the partially cultivated species A. rodacantha. The aims of this study were to investigate the morphological and genetic variation of the A. angustifolia complex in the state of Oaxaca and to identify traits useful for taxonomic delimitation. Four wild and three cultivated populations of A. angustifolia from Oaxaca, one population of A. tequilana from Guanajuato and one population of A. angustifolia from Sonora were sampled for morphological, genetic and cytometric analyses. We showed that cultivated populations of A. angustifolia “Espadin,” A. rhodacantha and A. tequilana could be clearly differentiated from wild populations. Furthermore, the domesticated populations of A. angustifolia, known locally as “Espadin,” had a higher ploidy level and lower genetic variation than their related wild populations. The population of A. angustifolia from Sonora could be recognized as a different entity. Populations of A. rhodacantha need to be studied throughout their entire distribution area to further evaluate their taxonomic delimitation.  相似文献   

9.
Tree plantations for commercial use have been replacing native ecosystems all over the world. We investigated how forest conversion to plantations of exotic and native tree species may influence lichen diversity and composition in a southern Brazilian landscape. The lichen community from the National Forest of São Francisco de Paula was studied using three stands of each of the four vegetation types: native Araucaria forest and plantations of Araucaria, Pine and Eucalyptus trees. All plantation stands were surrounded by native Araucaria forest, were of smaller size and were allowed to endure longer than commercially managed plantations. Lichen species and their cover abundance were recorded on tree trunks from 30 to 150 cm above soil level in ten host-trees that were randomly selected in each replication. Seventy-eight lichen species, from 18 genera and 9 families, were registered. Conversion of native forest to plantations of exotic tree species altered species composition by reducing the occurrence of shade tolerant lichens. Plantations of Araucaria angustifolia sustained the highest lichen diversity measured, because this is an excellent host species. These results suggest that a greater diversity of lichens can be preserved in the landscape, if plantations of the exotic Pinus and Eucalyptus genera are replaced by plantations of this native species.  相似文献   

10.
The Chinese weevil, Hylobitelus xiaoi Zhang, is a major pest affecting the pine industry throughout southern China, but its dispersal is still poorly understood. We aimed to investigate its dispersal by assessing the genetic structure of seven geographical populations, using the distribution of two mitochondrial genes (cytochrome c oxidase subunit I and cytochrome b). A 1212-bp fragment of the two mitochondrial genes was sequenced for 70 individuals from seven geographical populations. The gene sequences included 861 conserved sites, 351 variable sites, 254 parsim-info sites, and 97 singleton sites. These polymorphic sites defined 24 haplotypes with a haplotype diversity of 0.825. Nucleotide diversity was low (0.04568). The differentiation parameter (0.619) was much greater than the coefficient of genetic differentiation (0.285). An analysis of molecular variance suggested that most of the variation was due to within-population differences (61.68%). This molecular data also demonstrated that there is significant divergence among the seven sampled populations of H. xiaoi. This is probably due to habitat fragmentation, preventing effective gene flow between sites. Our molecular evidence supports the view that the Chinese weevil is a native pest, and that outbreaks of H. xiaoi are caused by large plantations of the exotic slash pine.  相似文献   

11.
Abstract. Araucaria forests are among the most threatened biomes of one of the world's 25 biodiversity hotspots, the south Brazilian Atlantic Rain Forest. This study was focused on flatworm community structure in three protected areas located on the eastern border of the Araucaria Plateau in south Brazil. We addressed three main questions: (1) How species‐rich are Araucaria forests? (2) Are there any differences in the community structure within the three areas? (3) What is the distribution pattern of land flatworms in this type of forest? A total of 51 flatworm species in ten genera and two subfamilies were found. Non‐metric multidimensional scaling analysis showed that the assemblage structure differed within the three areas. The abundance and richness varied in time, being affected by an interaction between season and areas. Araucaria forests on the eastern border of the Araucaria Plateau should be considered a hotspot of land planarian diversity, harboring an estimated 64 species. The high combined species richness in the protected areas studied emphasizes the importance of their preservation. Notwithstanding their close proximity, they are not redundant in maintaining regional biodiversity.  相似文献   

12.
Habitat fragmentation and a decrease in population size may lead to a loss in population genetic diversity. For the first time, the reduction in genetic diversity in the northernmost limit of natural occurence (southeastern Brazil) of Araucaria angustifolia in comparison with populations in the main area of the species continuous natural distribution (southern Brazil), was tested. The 673 AFLPs markers revealed a high level of genetic diversity for the species (Ht = 0.27), despite anthropogenic influence throughout the last century, and a decrease of H in isolated populations of southeastern Brazil (H = 0.16), thereby indicating the tendency for higher genetic diversity in remnant populations of continuous forests in southern Brazil, when compared to natural isolated populations in the southeastern region. A strong differentiation among southern and southeastern populations was detected (AMOVA variance ranged from 10%-15%). From Bayesian analysis, it is suggested that the nine populations tested form five "genetic clusters" (K = 5). Five of these populations, located in the northernmost limit of distribution of the species, represent three "genetic clusters". These results are in agreement with the pattern of geographic distribution of the studied populations.  相似文献   

13.
The gopher tortoise (Gopherus polyphemus) is an important member of the sandhill, longleaf pine, and scrub ecosystems in the southeastern United States. Even though it is currently protected throughout its range, tortoise populations continue to decline. We assessed genetic diversity at nine microsatellite loci in 300 individuals from 21 locations throughout Florida and southern Georgia. Tortoise populations are clearly subdivided into at least eight genetic assemblages with an . Furthermore, we found indications of anthropogenic effects in the form of population bottlenecks in five populations and putative admixture in four. From these data, we recommend that the populations be managed to maintain existing genetic structure without further isolation of populations and the establishment of a holistic␣database to include genetic and demographic information useful for relocation and management purposes.  相似文献   

14.
Major threats to freshwater fish diversity now include loss of native genetic diversity as a consequence of translocations of fishes between sites and from hatcheries to sites, and small effective population sizes resulting from overfishing and/or habitat loss. Ten polymorphic microsatellite markers were employed to evaluate genetic diversity, population genetic structure and gene flow amongst nine populations of the ecologically and economically important fish, the northern snakehead (Channa argus), in three river systems in central China. Multiple analyses revealed evidence of high genetic diversity and pronounced subdivision based on both regional separation and on river systems. A lack of evidence of genetic bottleneck over recent generations was consistent with the long-term stability of population size and contemporary distribution. The effective population sizes for most C. argus populations were small, suggesting the need for future conservation efforts focusing on these populations. Different lines of evidence point to the local enhancement of stocks by both aquaculture-reared fish and the transfer of wild fish. This study illustrates how human activities may affect genetic diversity and population genetic structure of C. argus populations, and highlights the need for new management regimes to protect native freshwater fish genetic diversity.  相似文献   

15.
Currently, many Brazilian orchids are threatened with extinction resulting from habitat loss and intense harvesting pressure stemming from their value as ornamental plants. Therefore, the genetic diversity in remaining populations is fundamental to the survival of these species in natural environments. In order to inform conservation strategies, this study evaluated the genetic diversity and structure of Cattleya granulosa populations. The sample consisted of 151 individuals from 12 populations in the Atlantic Forest, northeastern Brazil, evaluated using 91 ISSR markers. Genetic variability was assessed through molecular variance, diversity indexes, clusters of genotypes through Bayesian analysis, and tests for genetic bottlenecks. From all polymorphic loci, genetic diversity (HE) varied between 0.210 and 0.321 and the Shannon index ranged from 0.323 and 0.472. Significant genetic differentiation between populations (ΦST = 0.391; P < 0.0001) resulted in the division of the populations into five groups based on the log-likelihood Bayesian analysis. We found significant positive correlation between geographical and genetic distances between populations (r = 0.794; P = 0.017), indicating isolation by distance. Patterns of allelic diversity within populations suggest the occurrence of bottlenecks in most C. granulosa populations (n = 8). Therefore, in order to maintain the genetic diversity of the species, the conservation of spatially distant groups is necessary.  相似文献   

16.
Honey bees are the most important managed pollinators as they provide key ecosystem services for crop production worldwide. Recent losses of honey bee colonies in North America and Europe have demonstrated a need to develop strategies to improve their health and conserve their populations. Previously, we showed that feral honey bees—colonies that live in the wild without human assistance—exhibit higher levels of immunocompetence than managed colonies in North Carolina (USA). In a first attempt to investigate the underlying mechanisms of this difference in immune response, here we characterize the genetic composition of feral and managed honey bees using microsatellite markers. Our results reveal significant but small genetic differentiation between feral and managed honey bee colonies (?CT = 0.047, P?=?0.03) indicating admixture between these two groups. Higher genetic diversity was correlated with higher immune response in feral (P MANOVA = 0.011) but not managed bees, despite the fact that the latter group showed significantly higher average genetic diversity (P ANCOVA < 0.001). These findings suggest that genetic diversity is positively associated with immunocompetence in feral honey bee colonies, and that the benefits of genetic diversity are obscured in managed bees, perhaps as a result of artificial selection. We hypothesize that high genetic variability provides the raw material upon which natural selection acts and generates adaptive genotypes in unmanaged populations. Feral populations could be useful sources of genetic variation to use in breeding programs that aim to improve honey bee health.  相似文献   

17.
Nine microsatellite loci for genetic analysis of three populations of the tropical tree Eugenia uniflora L. (pitanga or Brazilian cherry) from fragments of semideciduous forest were developed. We used the technique of building a (GA) n and (CA) n microsatellite-enriched library by capture with streptavidin-coated magnetic beads. We assessed the polymorphism of seven microsatellites in 84 mature trees found in three areas (Ribeirão Preto, Tambaú and São José do Rio Pardo), highly impacted by the agricultural practices, in a large region among Pardo river and Mogi-Guaçu river basins, in state of São Paulo, Brazil. All loci were polymorphic, and the number of alleles was high, ranging from 6 to 24, with a mean of 14.4. All stands showed the same high level of genetic diversity (mean H E  = 0.83) and a low genetic differentiation (mean F ST = 0.031), indicating that genetic diversity was higher within rather than among populations. Seven of the nine loci were highly variable, and sufficiently informative for E. uniflora. It was concluded that these new SSR markers can be efficiently used for gene flow studies.  相似文献   

18.
The elucidation of species diversity and connectivity is essential for conserving coral reef communities and for understanding the characteristics of coral populations. To assess the species diversity, intraspecific genetic diversity, and genetic differentiation among populations of the brooding coral Seriatopora spp., we conducted phylogenetic and population genetic analyses using a mitochondrial DNA control region and microsatellites at ten sites in the Ryukyu Archipelago, Japan. At least three genetic lineages of Seriatopora (Seriatopora-A, -B, and -C) were detected in our specimens. We collected colonies morphologically similar to Seriatopora hystrix, but these may have included multiple, genetically distinct species. Although sexual reproduction maintains the populations of all the genetic lineages, Seriatopora-A and Seriatopora-C had lower genetic diversity than Seriatopora-B. We detected significant genetic differentiation in Seriatopora-B among the three populations as follows: pairwise F ST = 0.064–0.116 (all P = 0.001), pairwise G′′ST = 0.107–0.209 (all P = 0.001). Additionally, only one migrant from an unsampled population was genetically identified within Seriatopora-B. Because the peak of the settlement of Seriatopora larvae is within 1 d and almost all larvae are settled within 5 d of spawning, our observations may be related to low dispersal ability. Populations of Seriatopora in the Ryukyu Archipelago will probably not recover unless there is substantial new recruitment from distant populations.  相似文献   

19.
Little is known about the population ecology of the recently described bottlenose dolphin species Tursiops australis. The classification of this species is still under debate, but this putative species is thought to be comprised of small and genetically distinct populations (including sub-populations under increasing anthropogenic threats) and is likely endemic to coastal southern Australia. Mitochondrial DNA (mtDNA) control region sequences and microsatellite loci were used to assess genetic variation and hierarchical population structure of coastal T. cf. australis across a range of spatial scales and environmental discontinuities between southern Western Australia (WA) and central South Australia (SA). Overall, genetic diversity was similar to that typically found for bottlenose dolphins, although very low mtDNA diversity was found in Gulf St. Vincent (GSV) dolphins. We found historical genetic subdivision and likely differences in colonisation between GSV and Spencer Gulf, outer- and inner-gulf locations, and SA/WA and previously identified Victorian/Tasmanian populations. A hierarchical metapopulation structure was revealed along southern Australia, with at least six genetic populations occurring between Esperance, WA and southern Tasmania. In addition, fine-scale genetic subdivision was observed within each SA/WA population. In general, contemporary migration was limited throughout southern Australia, but an important gene flow pathway was identified eastward along the Great Australian Bight. Management strategies that promote gene flow among populations should be implemented to assist with the maintenance of the inferred metapopulation structure. Further research into the population ecology of this species is needed to facilitate well-informed management decisions.  相似文献   

20.
Efforts to protect the remaining Araucaria Forest fragments in Southern Brazil have focused on large forests dominated by the threatened species Araucaria angustifolia. However, such an approach can miss significant biodiversity by ignoring smaller forest fragments scattered throughout the landscape, many of which exist on small farms. Here, I evaluate the method used to define a set of natural reserves in Southern Brazil to assess if it captures and preserves the significant biodiversity that exists in this unique biome. I used a relatively simple field sampling methodology and statistical analyses to evaluate floristic and structural parameters, comparing tree species diversity within a large forest fragment (with and without A. angustifolia dominance) to smaller fragments in the surrounding landscape. While stands dominated by A. angustifolia showed primary forest‐like physiognomy, they did not have the levels of diversity expected for old‐growth forests. Traditional forestry parameters, especially basal area and number of individuals, are useful for differentiating forest types in terms of structure. While no single diversity index provides a complete picture of the composition and variation of diversity in forest fragments, when taken together and assessed using extrapolation and comparative statistics, they provide a meaningful method for comparing and identifying high priority areas for conservation. Future conservation strategies should look to alternative approaches for assessing biodiversity across the landscape, while including small‐scale landowners in conservation efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号