首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perturbation of the equilibrium between human immunodeficiency virus type 1 (HIV-1) and the infected host by administering antiretroviral agents has revealed the rapid turnover of both viral particles and productively infected cells. In this study, we used the infusion of simian immunodeficiency virus (SIV) particles into rhesus macaques to obtain a more accurate estimate of viral clearance in vivo. Consistently, exogenously infused virions were cleared from plasma with an extremely short half-life, on the order of minutes (a mean of 3.3 min). This new estimate is ~100-fold lower than the upper bound of 6 h previously reported for HIV-1 in infected humans. In select animals, multiple tissues were collected at the completion of each experiment to track the potential sites of virion clearance. Detectable levels of SIV RNA were found in lymph nodes, spleen, lungs, and liver, but not in other tissues examined. However, only ~1 to 10% or less of the infused virions were accounted for by the thorough tissue sampling, indicating that the vast majority of the infused particles must have been degraded over a short period of time. Should the rapid clearance of virions described here be applicable to infected patients, then HIV-1 production and thus the number of productively infected CD4+ T lymphocytes or the viral burst size must be proportionally higher than previous minimal estimates.  相似文献   

2.
In addition to the viral envelope (Env) proteins, host cell-derived proteins have been reported to be present in human immunodeficiency virus and simian immunodeficiency virus (SIV) envelopes, and it has been postulated that they may play a role in infection. We investigated whether the incorporation of host cell proteins is affected by the structure and level of incorporation of viral Env proteins. To compare the cellular components incorporated into SIV particles and how this is influenced by the structure of the cytoplasmic domain, we compared SIV virions with full-length and truncated Env proteins. The levels of HLA-I and HLA-II molecules were found to be significantly (15- to 25-fold) higher in virions with full-length Env than in those with a truncated Env. Virions with a truncated Env were also found to be less susceptible to neutralization by specific antibodies against HLA-I or HLA-II proteins. We also compared the level of incorporation into SIV virions of a coexpressed heterologous viral glycoprotein, the influenza virus hemagglutinin (HA) protein. We found that SIV infection of cells expressing influenza virus HA resulted in the production of phenotypically mixed SIV virions containing influenza virus HA as well as SIV envelope proteins. The HA proteins were more effectively incorporated into virions with full-length Env than in virions with truncated Env. The phenotypically mixed particles with full-length Env, containing higher levels of HA, were sensitive to neutralization with anti-HA antibody, whereas virions with truncated Env proteins and containing lower levels of HA were more resistant to neutralization by anti-HA antibody. In contrast, SIV virions with truncated Env proteins were found to be highly sensitive to neutralization by antisera to SIV, whereas virions with full-length Env proteins were relatively resistant to neutralization. These results indicate that the cytoplasmic domain of SIV Env affects the incorporation of cellular as well as heterologous viral membrane proteins into the SIV envelope and may be an important determinant of the sensitivity of the virus to neutralizing antibodies.  相似文献   

3.
Vif is a primate lentiviral accessory protein that is crucial for viral infectivity. Vif counteracts the antiviral activity of host deaminases such as APOBEC3G and APOBEC3F. We now report a novel function of African green monkey simian immunodeficiency virus (SIVagm) Vif that promotes replication of SIVagm in human cells lacking detectable deaminase activity. We found that cyclophilin A (CypA) was excluded from wild-type SIV particles but was efficiently packaged into vif-deficient SIVagm virions. The presence of CypA in vif-defective SIVagm was correlated with reduced viral replication. Infection of CypA knockout Jurkat cells or treatment of Jurkat cells with cyclosporine A eliminated the Vif-sensitive inhibition and resulted in replication profiles that were similar for wild-type and vif-deficient SIVagm. Importantly, the inhibitory effect of CypA was restricted to virus-producing cells and was TRIM5alpha independent. The abilities of SIVagm Vif to inhibit encapsidation of CypA and to increase viral infectivity were shared by rhesus macaque SIV Vif and thus seem to be general properties of SIV Vif proteins. Exclusion of CypA from SIVagm particles was not associated with intracellular degradation, suggesting a mode of Vif action distinct from that proposed for APOBEC3G. This is the first report of a novel vif-sensitive antiviral activity of human CypA that may limit zoonotic transmission of SIV and the first demonstration of CypA encapsidation into a virus other than human immunodeficiency virus type 1.  相似文献   

4.
5.
Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) particles typically contain small amounts of the surface envelope protein (SU), and this is widely believed to be due to shedding of SU from mature virions. We purified proteins from HIV-1 and SIV isolates using procedures which allow quantitative measurements of viral protein content and determination of the ratios of gag- and env-encoded proteins in virions. All of the HIV-1 and most of the SIV isolates examined contained low levels of envelope proteins, with Gag:Env ratios of approximately 60:1. Based on an estimate of 1,200 to 2,500 Gag molecules per virion, this corresponds to an average of between 21 and 42 SU molecules, or between 7 and 14 trimers, per particle. In contrast, some SIV isolates contained levels of SU at least 10-fold greater than SU from HIV-1 isolates. Quantification of relative amounts of SU and transmembrane envelope protein (TM) provides a means to assess the impact of SU shedding on virion SU content, since such shedding would be expected to result in a molar excess of TM over SU on virions that had shed SU. With one exception, viruses with sufficient SU and TM to allow quantification were found to have approximately equivalent molar amounts of SU and TM. The quantity of SU associated with virions and the SU:TM ratios were not significantly changed during multiple freeze-thaw cycles or purification through sucrose gradients. Exposure of purified HIV-1 and SIV to temperatures of 55 degrees C or greater for 1 h resulted in loss of most of the SU from the virus but retention of TM. Incubation of purified virus with soluble CD4 at 37 degrees C resulted in no appreciable loss of SU from either SIV or HIV-1. These results indicate that the association of SU and TM on the purified virions studied is quite stable. These findings suggest that incorporation of SU-TM complexes into the viral membrane may be the primary factor determining the quantity of SU associated with SIV and HIV-1 virions, rather than shedding of SU from mature virions.  相似文献   

6.
Viral protein R (Vpr) of human immunodeficiency virus type 1 (HIV-1) is a small accessory protein involved in the nuclear import of viral DNA and the growth arrest of host cells. Several studies have demonstrated that a significant amount of Vpr is incorporated into the virus particle via interaction with the p6 domain of Gag, and it is generally assumed that Vpr is packaged in equimolar ratio to Gag. We have quantitated the relative amount of Vpr in purified virions following [(35)S]cysteine labeling of infected MT-4 cells, as well as by quantitative immunoblotting and found that Vpr is present in a molar ratio of approximately 1:7 compared to capsid. Analysis of isolated core particles showed that Vpr is associated with the mature viral core, despite quantitative loss of p6 from core preparations. Metabolic labeling of infected cells with ortho[(32)P]phosphate revealed that a small fraction of Vpr is phosphorylated in virions and infected cells.  相似文献   

7.
The lentiviral Gag polyprotein (Pr55(Gag)) is cleaved by the viral protease during the late stages of the virus life cycle. Proteolytic cleavage of Pr55(Gag) is necessary for virion maturation, a structural rearrangement required for infectivity that occurs in budded virions. In this study, we investigate the relationship between phosphorylation of capsid (CA) domains in Pr55(Gag) and its cleavage intermediates and their cleavage by the viral protease in simian immunodeficiency virus (SIV). First, we demonstrate that phosphorylated forms of Pr55(Gag), several CA-containing cleavage intermediates of Pr55(Gag), and the free CA protein are detectable in SIV virions but not in virus-producing cells, indicating that phosphorylation of these CA-containing Gag proteins may require an environment that is unique to the virion. Second, we show that the CA domain of Pr55(Gag) can be phosphorylated in budded virus and that this phosphorylation does not require the presence of an active viral protease. Further, we provide evidence that CA domains (i.e., incompletely cleaved CA) are phosphorylated to a greater extent than free (completely cleaved) CA and that CA-containing Gag proteins can be cleaved by the viral protease in SIV virions. Finally, we demonstrate that Pr55(Gag) and several of its intermediates, but not free CA, are actively phosphorylated in budded virus. Taken together, these data indicate that, in SIV virions, phosphorylation of CA domains in Pr55(Gag) and several of its cleavage intermediates likely precedes the cleavage of these domains by the viral protease.  相似文献   

8.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infect and productively replicate in macrophages and T lymphocytes. Here, we show that SIV virions derived from macrophages have higher levels of infectivity than those derived from T cells. The lower infectivity of T-cell-derived viruses is influenced by the quantity or type of mannose residues on the virion. Our results demonstrate that the cellular origin of a virus is a major factor in viral infectivity. Cell-type-specific factors in viral infectivity, and organ-specific or disease stage-specific differences in cellular derivation of virions, can be critical in the pathogenesis of HIV and AIDS.  相似文献   

9.
Molecular clones were constructed that express nucleocapsid (NC) deletion mutant simian immunodeficiency viruses (SIVs) that are replication defective but capable of completing virtually all of the steps of a single viral infection cycle. These steps include production of particles that are viral RNA deficient yet contain a full complement of processed viral proteins. The mutant particles are ultrastructurally indistinguishable from wild-type virus. Similar to a live attenuated vaccine, this approach should allow immunological presentation of a full range of viral epitopes, without the safety risks of replicating virus. A total of 11 Macaca nemestrina macaques were inoculated with NC mutant SIV expressing DNA, intramuscularly (i.m.) in one study and i.m. and subcutaneously in another study. Six control animals received vector DNA lacking SIV sequences. Only modest and inconsistent humoral responses and no cellular immune responses were observed prior to challenge. Following intravenous challenge with 20 animal infectious doses of the pathogenic SIV(Mne) in a long-term study, all control animals became infected and three of four animals developed progressive SIV disease leading to death. All 11 NC mutant SIV DNA-immunized animals became infected following challenge but typically showed decreased initial peak plasma SIV RNA levels compared to those of control animals (P = 0.0007). In the long-term study, most of the immunized animals had low or undetectable postacute levels of plasma SIV RNA, and no CD4(+) T-cell depletion or clinical evidence of progressive disease, over more than 2 years of observation. Although a subset of immunized and control animals were boosted with SIV(Mne) proteins, no apparent protective benefit was observed. Immunization of macaques with DNA that codes for replication-defective but structurally complete virions appears to protect from or at least delay the onset of AIDS after infection with a pathogenic immunodeficiency virus. With further optimization, this may be a promising approach for vaccine development.  相似文献   

10.
Vesicular stomatitis virus propagated in and released from Aedes albopictus cells had the normal complement of viral proteins; the glycoprotein contained carbohydrate but no sialic acid. These virions had markedly reduced hemagglutinating activity and exhibited a very high ratio of physical particles to infectious virus. In vitro sialylation of vesicular stomatitis virions grown in mosquito cells resulted in a 100-fold increase in both infectivity and hemagglutination titers to levels approaching those of virus grown in BHK-21 cells. These experiments provide an example of host-controlled modification of viral infectivity.  相似文献   

11.
Viral protein U (Vpu) is a type 1 membrane-associated accessory protein that is unique to human immunodeficiency virus type 1 (HIV-1) and a subset of related simian immunodeficiency virus (SIV). The Vpu protein encoded by HIV-1 is associated with two primary functions during the viral life cycle. First, it contributes to HIV-1-induced CD4 receptor downregulation by mediating the proteasomal degradation of newly synthesized CD4 molecules in the endoplasmic reticulum (ER). Second, it enhances the release of progeny virions from infected cells by antagonizing Tetherin, an interferon (IFN)-regulated host restriction factor that directly cross-links virions on host cell-surface. This review will mostly focus on recent advances on the role of Vpu in CD4 downregulation and Tetherin antagonism and will discuss how these two functions may have impacted primate immunodeficiency virus cross-species transmission and the emergence of pandemic strain of HIV-1.  相似文献   

12.
Among Old World monkeys, pig-tailed macaques (Pt) are uniquely susceptible to human immunodeficiency virus type 1 (HIV-1), although the infection does not persist. We demonstrate that the susceptibility of Pt T cells to HIV-1 infection is due to the absence of postentry inhibition by a TRIM5 isoform. Notably, substitution of the viral infectivity factor protein, Vif, with that from pathogenic SIVmne enabled replication of HIV-1 in Pt T cells in vitro. When inoculated into juvenile pig-tailed macaques, the Pt-tropic HIV-1 persistently replicated for more than 1.5 to 2 years, producing low but measurable plasma viral loads and persistent proviral DNA in peripheral blood mononuclear cells. It also elicited strong antibody responses. However, there was no decline in CD4(+) T cells or evidence of disease. Surprisingly, the Pt-tropic HIV-1 was rapidly controlled when inoculated into newborn Pt macaques, although it transiently rebounded after 6 months. We identified two notable differences between the Pt-tropic HIV-1 and SIVmne. First, SIV Vif does not associate with Pt-tropic HIV-1 viral particles. Second, while Pt-tropic HIV-1 degrades both Pt APOBEC3G and APOBEC3F, it prevents their inclusion in virions to a lesser extent than pathogenic SIVmne. Thus, while SIV Vif is necessary for persistent infection by Pt-tropic HIV-1, improved expression and inhibition of APOBEC3 proteins may be required for robust viral replication in vivo. Additional adaptation of the virus may also be necessary to enhance viral replication. Nevertheless, our data suggest the potential for the pig-tailed macaque to be developed as an animal model of HIV-1 infection and disease.  相似文献   

13.
14.
The effect of temperature shiftdown on the assembly of ts3 virions was investigated by both scanning (SEM) and transmission (TEM) electron microscopy. Ts3 is a spontaneous temperature-sensitive mutant of Moloney murine leukemia virus (Mo-MuLV) which previous studies indicated to be defective in assembly or release of the virions. In the present study, both SEM and TEM revealed the following: (i) there were more cell-associated virions in ts3-infected cells grown at the nonpermissive temperature (39 degrees C) than either in cells grown at the permissive temperature (34 degrees C) or in wild-type MuLV-infected cells grown at 39 degrees C; (ii) there were more normal single particles than multiploids (virions with two or more pieces of genomic RNA) in ts3-infected cells grown at the nonpermissive temperature; (iii) there were more multiploids in ts3-infected cells grown at the nonpermissive temperature than either in cells grown at the permissive temperature or in wild-type MuLV-infected cells grown at the nonpermissive temperature; (iv) upon temperature shift from 39 to 34 degrees C, about 90% of the cell-associated virions dissociated from the cell surface. TEM studies also indicated that upon temperature shiftdown, virion assembly rapidly occurred. The above observations suggest that faulty assembly, which results in the production of multiploids, may not be the reason why ts3 virions accumulate on the cell surface at the nonpermissive temperature. The relatively higher proportion of multiploids found in ts3-infected cells grown at 39 degrees C compared with those grown at 34 degrees C may be due to the higher density of budding virions at the cell surface at the nonpermissive temperature, which increases the possibility of two or more particles assembling close to one another. The accumulation of ts3 virions in all stages of assembly at the nonpermissive temperature, together with the fact that rapid assembly and release of ts3 virions occurred on temperature shiftdown, indicates that virion assembly is restricted after it has been initiated. The probable role of altered glycoprotein(s) in restricting virion assembly is discussed.  相似文献   

15.
H Liu  X Wu  M Newman  G M Shaw  B H Hahn    J C Kappes 《Journal of virology》1995,69(12):7630-7638
The vif gene of human and simian immunodeficiency viruses (HIV and SIV) encodes a late gene product that is essential for viral infectivity in natural target cells. Virions produced in the absence of Vif are abnormal in their ultrastructural morphology and are severely impaired in the ability to complete proviral DNA synthesis upon entry into new target cells. Because previous studies failed to detect Vif protein in virus particles, Vif is believed to influence virus infectivity indirectly, by affecting virion assembly, release, and/or maturation. In this report, we reexamined the possibility that Vif is a virion-associated protein. Utilizing high-titer Vif-specific antibodies, a sensitive immunoblot technique, and highly concentrated virus preparations, we detected a 23-kDa Vif-reactive protein in wild-type HIV type 1 (HIV-1) and a 27-kDa Vif-reactive protein in wild-type SIVSM virions. Neither protein was present in virions derived from vif-deficient HIV-1 and SIVSM proviral constructs. Vif protein content was similar among different strains of HIV-1 and was independent of the cell type (permissive or nonpermissive) used to produce the virus. To determine the subvirion localization of Vif, HIV-1 virions were treated with proteinase K or Triton X-100 to remove virion surface proteins and the viral membrane, respectively, purified through sucrose, and analyzed by immunoblot analysis. Vif protein content was not affected by the removal of external surface proteins or by the removal of the viral membrane and submembrane p17Gag matrix protein. Instead, Vif colocalized with viral core structures which sedimented at a density of 1.25 g/ml on linear sucrose gradients (enveloped HIV-1 particles sediment at a density of 1.17 g/ml). Finally, the amount of Vif protein packaged into virions was estimated to be on the order of 1 molecule of Vif for every 20 to 30 molecules of p24Gag, or between 60 and 100 molecules of Vif per particle. These results indicate that Vif represents an integral component of HIV and SIV particles and raise the possibility that it plays a direct role in early replication events.  相似文献   

16.
Sulfated components of enveloped viruses.   总被引:13,自引:13,他引:0       下载免费PDF全文
The glycoproteins of several enveloped viruses, grown in a variety of cell types, are labeled with 35SO4(-2), whereas the nonglycosylated proteins are not. This was shown for the HN and F glycoproteins of SV5 and Sendai virus, the E1 and E2 glycoproteins of Sindbis virus, and for the major glycoprotein, gp69, as well as for a minor glycoprotein, gp52, of Rauscher leukemia virus. The minor glycoprotein of Rauscher leukemia virus is more highly sulfated, with a ratio of 35SO4- [3H]glucosamine about threefold greater than that of gp69. The G protein of vesicular stomatitis virus was labeled when virions were grown in the MDBK line of bovine kidney cells, although no significant incorporation of 35SO4(-2) into this protein was observed in virions grown in BHK21-F line of baby hamster kidney cells. In addition to the viral glycoproteins, sulfate was also incorporated into a heterogenous component with an electrophoretic mobility lower than that of any labeled with 35SO4(-2) and [3H]leucine, this component had a much greater 35S-3H ratio than any of the viral polypeptides and thus could not represent aggregated viral proteins. This material is believed to be a cell-derived mucopolysaccharide and can be removed from virions by treatment with hyaluronidase without affecting the amount of sulfate present on the glycoproteins.  相似文献   

17.
As potential targets for human immunodeficiency virus type 1 and simian immunodeficiency virus (HIV-1 and SIV), dendritic cells (DCs) likely play a significant role in the onset and spread of infection as well as in the induction of antiviral immunity. Using the SIV-macaque system to study the very early events in DC-virus interactions, we compared chemically inactivated SIV having conformationally and functionally intact envelope glycoproteins (2,2'-dithiodipyridine [AT-2] SIV) to infectious and heat-treated SIV. Both human and macaque DCs interact similarly with SIV without detectable effects on DC viability, phenotype, or endocytic function. As assessed by measuring cell-associated viral RNA, considerable amounts of virus are captured by the DCs and this is reduced when the virus is heat treated or derived from a strain that expresses low levels of envelope glycoprotein. Immunostaining for SIV proteins and electron microscopy indicated that few intact virus particles are retained at the periphery of the endocytically active, immature DCs. This contrasts with a perinuclear localization of numerous virions in large vesicular compartments deeper within mature DCs (in which macropinocytosis is down-regulated). Both immature and mature DCs are capable of clathrin-coated pit-mediated uptake of SIV, supporting the notion that the receptor-mediated uptake of virus can occur readily in mature DCs. While large numbers of whole viruses were preferentially found in mature DCs, both immature and mature DCs contained similar amounts of viral RNA, suggesting that different uptake/virus entry mechanisms are active in immature and mature DCs. These findings have significant implications for cell-to-cell transmission of HIV-1 and SIV and support the use of AT-2 SIV, an authentic but noninfectious form of virus, as a useful tool for studies of processing and presentation of AT-2 SIV antigens by DCs.  相似文献   

18.
We have constructed a series of simian immunodeficiency virus (SIV) mutants containing deletions within a 97-nucleotide (nt) region of the leader sequence. Deletions in this region markedly decreased the replication capacity in tissue culture, i.e., in both the C8166 and CEMx174 cell lines, as well as in rhesus macaque peripheral blood mononuclear cells. In addition, these deletions adversely affected the packaging of viral genomic RNA into virions, the processing of Gag precursor proteins, and patterns of viral proteins in virions, as assessed by biochemical labeling and polyacrylamide gel electrophoresis. Different levels of attenuation were achieved by varying the size and position of deletions within this 97-nt region, and among a series of constructs that were generated, it was possible to rank in vitro virulence relative to that of wild-type virus. In all of these cases, the most severe impact on viral replication was observed when the deletions that were made were located at the 3' rather than 5' end of the leader region. The potential of viral reversion over protracted periods was investigated by repeated viral passage in CEMx174 cells. The results showed that several of these constructs showed no signs of reversion after more than 6 months in tissue culture. Thus, a series of novel, attenuated SIV constructs have been developed that are significantly impaired in replication capacity yet retain all viral genes. One of these viruses, termed SD4, may be appropriate for study with rhesus macaques, in order to determine whether reversions will occur in vivo and to further study this virus as a candidate for attenuated vaccination.  相似文献   

19.
20.
Transport of the viral genome into the nucleus required phosphorylation of components in the preintegration complex by virion-associated host cellular kinases. In this study, we showed that ERK-2/MAPK is associated with simian immunodeficiency virus (SIV) virions and regulated the nuclear transport of Vpx and virus replication in non-proliferating target cells by phosphorylating Vpx. Suppression of the virion-associated ERK-2 activity by MAPK pathway inhibitors impaired both Vpx nuclear import and viral infectivity without affecting virus particle maturation and release. In addition, mutation analysis indicated that the inactivation of Vpx phosphorylation precluded nuclear import and reduced virus replication in macrophage cultures, even when functional integrase and Gag matrix proteins implicated in viral preintegration complex nuclear import are present. In this study, we also showed that co-localization of Vpx with Gag precursor in the cytoplasm is a prerequisite for Vpx incorporation into virus particles. Substitution of hydrophobic Leu-74 and Ile-75 with serines in the helical domain abrogated Vpx nuclear import, and its incorporation into virus particles, despite its localization in the cytoplasm, suggested that the structural integrity of helical domains is critical for Vpx functions. Taken together, these studies demonstrated that the host cell MAPK signal transduction pathway regulated an early step in SIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号