首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the ADP-ribosylation factor (ARF) family of small guanosine triphosphate-binding proteins play an essential role in membrane trafficking which subserves constitutive protein transport along exocytic and endocytic pathways within eukaryotic cell bodies. In growing neurons, membrane trafficking within motile growth cones distant from the cell body underlies the rapid plasmalemmal expansion which subserves axon elongation. We report here that ARF is a constituent of axonal growth cones, and that application of brefeldin A to neurons in culture produces a rapid arrest of axon extension that can be ascribed to inhibition of ARF function in growth cones. Our findings demonstrate a role for ARF in growth cones that is coupled tightly to the rapid growth of neuronal processes characteristic of developmental and regenerative axon elongation, and indicate that ARF participates not only in constitutive membrane traffic within the cell body, but also in membrane dynamics within growing axon endings.  相似文献   

2.
Actin filament maintenance is critical for both normal cell homeostasis and events associated with malignant transformation. The ADP-ribosylation factor GTPase-activating protein ASAP1 regulates the dynamics of filamentous actin-based structures, including stress fibers, focal adhesions, and circular dorsal ruffles. Here, we have examined the molecular basis for ASAP1 association with actin. Using a combination of structural modeling, mutagenesis, and in vitro and cell-based assays, we identify a putative-binding interface between the N-Bin-Amphiphysin-Rvs (BAR) domain of ASAP1 and actin filaments. We found that neutralization of charges and charge reversal at positions 75, 76, and 79 of ASAP1 reduced the binding of ASAP1 BAR-pleckstrin homology tandem to actin filaments and abrogated actin bundle formation in vitro. In addition, overexpression of actin-binding defective ASAP1 BAR-pleckstrin homology [K75, K76, K79] mutants prevented cellular actin remodeling in U2OS cells. Exogenous expression of [K75E, K76E, K79E] mutant of full-length ASAP1 did not rescue the reduction of cellular actin fibers consequent to knockdown of endogenous ASAP1. Taken together, our results support the hypothesis that the lysine-rich cluster in the N-BAR domain of ASAP1 is important for regulating actin filament organization.  相似文献   

3.
Eukaryotic elongation factor 2 can undergo ADP-ribosylation in the absence of diphtheria toxin under the action of an endogenous transferase. The investigation which aimed to gain insight into the nature of endogenous ADP-ribosylation revealed that this reaction may be, in some cases, due to covalent binding of free ADP-ribose to elongation factor 2. Binding of free ADP-ribose, and NAD- and endogenous transferase-dependent ADP-ribosylation were suggested to be distinct reactions by different findings. Free ADP-ribose could bind to elongation factor 2 previously subjected to ADP-ribosylation by diphtheria toxin or endogenous transferase. The binding of free ADP-ribose was inhibited by neutral NH2OH, L-lysine and picrylsulfonate, whereas endogenous ADP-ribosyltransferase was inhibited by NAD glycohydrolase inhibitors and L-arginine. The ADP-ribosyl-elongation factor 2 adduct which formed upon binding of free ADP-ribose was resistant to neutral NH2OH, but decomposed almost completely upon treatment with NaOH. The product of endogenous transferase-dependent ADP- ribosylation was partially resistant to NH2OH and NaOH treatment. Moreover, this reaction was reversed in the presence of diphtheria toxin and nicotinamide. Both types of endogenous ADP-ribosylation gave rise to inhibition of polyphenylalanine synthesis. This study thus provides evidence for the presence of two different types of endogenous ADP-ribosylation of eukaryotic elongation factor 2. The respective sites involved in these reactions are distinct from one another as well as from diphthamide, the site of attack by diphtheria toxin.  相似文献   

4.
Arf (ADP‐ribosylation factor) family small G proteins are crucial regulators of intracellular transport. The active GTP‐bound form of Arf interacts with a set of proteins—effectors—which mediate the downstream signalling events of Arf activation. A well‐studied class of Arf1 effectors comprises the coat complexes, such as the cis‐Golgi‐localized COPI (coat protein complex I) coat, and trans‐Golgi network‐endosomal clathrin coats. At least five different coats require Arf1‐GTP to localize to organelle membranes. How a single Arf protein recruits different coat complexes to distinct membrane sites raises the question of how specificity is achieved. Here, we propose a molecular mechanism of this specificity for the COPI coat by showing a direct and specific interaction between a COPI subunit and a cis‐Golgi localized subfamily of Arf guanine nucleotide exchange factors (GEFs) that takes place independently of Arf1 activation. In this way, a specific output on Arf1 activation can be programmed before the exchange reaction by the GEF itself.  相似文献   

5.
β-amyloid peptide (Aβ) deposition derived from sequential cleavage of the amyloid precursor protein (APP) through the amyloidogenic pathway is an important characteristic feature of Alzheimer's disease (AD). During this process, cellular trafficking plays a crucial role. A large Sec7-domain containing ADP-ribosylation factor guanine nucleotide exchange factor (ARF-GEF), Golgi brefeldin A resistance factor 1 (GBF1) has been reported to initiate the ADP-ribosylation factor (Arf) activation cascade at trans-Golgi network, which plays a crucial function at the endoplasmic reticulum-Golgi interface. In this study, we investigated the role of GBF1 in APP transmembrane transport and Aβ formation. Using APP/PS1 (presenilin 1) overexpressing transgenic mice, we demonstrate that GBF1 has upregulated the expression of APP, indicating a role for GBF1 in APP physiological process. Knocking down of GBF1 using small interfering has significantly increased the intracellular but not the surface expression of APP. In contrast, overexpression of wild-type (WT) and guanine nucleotide exchange factor (GEF) in the activated form but not the GEF deficient mutation induced continuous activation of GBF1, which subsequently increased the surface level of APP. Interestingly, inhibition of GBF1 by c(BFA) also impaired APP trafficking and induced endoplasmic reticulum (ER) stress in SH-SY5Y cells. Our results thus for identified the role of GBF1 in APP trafficking and cleavage, and provide evidence for GBF1 as a possible therapeutic target in AD.  相似文献   

6.
Hypersecretion is the major symptom of functional neuroendocrine tumours. The mechanisms that contribute to this excessive secretion of hormones are still elusive. A key event in secretion is the exit of secretory products from the Golgi apparatus. ADP‐ribosylation factor (Arf) GTPases are known to control vesicle budding and trafficking, and have a leading function in the regulation of formation of secretory granula at the Golgi. Here, we show that Arf1 is the predominant Arf protein family member expressed in the neuroendocrine pancreatic tumour cell lines BON and QGP‐1. In BON cells Arf1 colocalizes with Golgi markers as well as chromogranin A, and shows significant basal activity. The inhibition of Arf1 activity or expression significantly impaired secretion of chromogranin A. Furthermore, we show that the insulin‐like growth factor 1 (IGF‐1), a major regulator of growth and secretion in BON cells, induces Arf1 activity. We found that activation of Arf1 upon IGF‐1 receptor stimulation is mediated by MEK/ERK signalling pathway in BON and QGP‐1 cells. Moreover, the activity of Arf1 in BON cells is mediated by autocrinely secreted IGF‐1, and concomitantly, autocrine IGF1 secretion is maintained by Arf1 activity. In summary, our data indicate an important regulatory role for Arf1 at the Golgi in hypersecretion in neuroendocrine cancer cells.  相似文献   

7.
NADPH oxidases are important for neuronal function but detailed subcellular localization studies have not been performed. Here, we provide the first evidence for the presence of functional NADPH oxidase 2 (NOX2)‐type complex in neuronal growth cones and its bidirectional relationship with the actin cytoskeleton. NADPH oxidase inhibition resulted in reduced F‐actin content, retrograde F‐actin flow, and neurite outgrowth. Stimulation of NADPH oxidase via protein kinase C activation increased levels of hydrogen peroxide in the growth cone periphery. The main enzymatic NADPH oxidase subunit NOX2/gp91phox localized to the growth cone plasma membrane and showed little overlap with the regulatory subunit p40phox. p40phox itself exhibited colocalization with filopodial actin bundles. Differential subcellular fractionation revealed preferential association of NOX2/gp91phox and p40phox with the membrane and the cytoskeletal fraction, respectively. When neurite growth was evoked with beads coated with the cell adhesion molecule apCAM, we observed a significant increase in colocalization of p40phox with NOX2/gp91phox at apCAM adhesion sites. Together, these findings suggest a bidirectional functional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones, which contributes to the control of neurite outgrowth.

  相似文献   


8.
We have found that the brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) interacts with the beta subunits of the gamma-aminobutyric acid type-A receptor (GABA(A)R). BIG2 is a Sec7 domain-containing guanine nucleotide exchange factor known to be involved in vesicular and protein trafficking. The interaction between the 110 amino acid C-terminal fragment of BIG2 and the large intracellular loop of the GABA(A)R beta subunits was revealed with a yeast two-hybrid assay. The native BIG2 and GABA(A)Rs interact in the brain since both coprecipitated from detergent extracts with either anti-GABA(A)R or anti-BIG2 antibodies. In transfected human embryonic kidney cell line 293 cells, BIG2 promotes the exit of GABA(A)Rs from endoplasmic reticulum. Double label immunofluorescence of cultured hippocampal neurons and electron microscopy immunocytochemistry of rat brain tissue show that BIG2 concentrates in the trans-Golgi network. BIG2 is also present in vesicle-like structures in the dendritic cytoplasm, sometimes colocalizing with GABA(A)Rs. BIG2 is present in both inhibitory GABAergic synapses that contain GABA(A)Rs and in asymmetric excitatory synapses. The results are consistent with the hypotheses that the interaction of BIG2 with the GABA(A)R beta subunits plays a role in the exocytosis and trafficking of assembled GABA(A)R to the cell surface.  相似文献   

9.
Gangliosides are a large group of sialylated glycosphingolipids widely expressed in mammalian tissues. We have shown previously that the expression of 9‐O‐acetyl GD3 is highly correlated with periods of neurite outgrowth in the developing nervous system, and that the advance of dorsal root ganglia growth cones on laminin was halted in presence of an antibody specific for 9‐O‐acetyl GD3. In this work, we examined by immunocytochemistry and confocal microscopy whether this ganglioside is localized in point contacts in neuronal growth cones. We identified point contacts by immunoreactions with proteins, such as vinculin and β1 integrin, known to be associated with these structures in growth cones. Our observations indicate that 9‐O‐acetyl GD3 is specifically associated with vinculin and β1 integrin in point contacts of growth cones, suggesting a possible role for this particular ganglioside in the modulation of these contacts during neurite outgrowth. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 31–37, 2003  相似文献   

10.
This article focuses on the role of PAPP‐A in mammalian aging. It introduces PAPP‐A and a little of its history, briefly discusses the function of PAPP‐A in the insulin‐like growth factor (IGF) system and the regulators of PAPP‐A expression, and then reviews data concerning PAPP‐A in aging and age‐related diseases especially in regard to the PAPP‐A knockout (KO) mouse. The PAPP‐A KO mouse is a valuable new model to test hypotheses concerning the control of the tissue availability of IGF, independent from systemic levels, on healthspan as well as lifespan.  相似文献   

11.
The role of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine) in modulation of vascular cell proliferation is believed to be mediated, in part, by its ability to regulate the activity of certain growth factors through direct binding. In this study, we demonstrate that SPARC does not bind to basic fibroblast growth factor (bFGF/FGF-2) or interfere with complex formation between FGF-2 and its high-affinity FGF receptor-1 (FGFR1), yet both native SPARC and a peptide derived from the C-terminal high-affinity Ca(2+)-binding region of protein significantly inhibit ligand-induced autophosphorylation of FGFR1 (>80%), activation of mitogen-activated protein kinases (MAPKs) (>75%), and DNA synthesis in human microvascular endothelial cells (HMVEC) stimulated by FGF-2 (>80%). We also report that in the presence of FGF-2, a factor which otherwise stimulates myoblast proliferation and the repression of terminal differentiation, both native SPARC and the Ca(2+)-binding SPARC peptide significantly promote (>60%) the differentiation of the MM14 murine myoblast cell line that expresses FGFR1 almost exclusively. Moreover, using heparan sulfate proteoglycan (HSPG)-deficient myeloid cells and porcine aortic endothelial cells (PAECs) expressing chimeric FGFR1, we show that antagonism of FGFR1-mediated DNA synthesis and MAPK activation by SPARC does not require the presence of cell-surface, low-affinity FGF-2 receptors, but can be mediated by an intracellular mechanism that is independent of an interaction with the extracellular ligand-binding domain of FGFR1. We also report that the inhibitory effect of SPARC on DNA synthesis and MAPK activation in endothelial cells is mediated in part (>50%) by activation of protein kinase A (PKA), a known regulator of Raf-MAPK pathway. SPARC thus modulates the mitogenic effect of FGF-2 downstream from FGFR1 by selective regulation of the MAPK signaling cascade.  相似文献   

12.
Insulin‐like growth factor binding protein 4 (IGFBP‐4) was reported to trigger cellular senescence and reduce cell growth of bone marrow mesenchymal stem cells (BMSCs), but its contribution to neurogenic differentiation of BMSCs remains unknown. In the present study, BMSCs were isolated from the femur and tibia of young rats to investigate effects of IGFBP‐4 on BMSC proliferation and growth of neurospheres derived from BMSCs. Bone marrow mesenchymal stem cell proliferation was assessed using CCK‐8 after treatment with IGFBP‐4 or blockers of IGF‐IR and β‐catenin. Phosphorylation levels of Akt, Erk, and p38 in BMSCs were analysed by Western blotting. Bone marrow mesenchymal stem cells were induced into neural lineages in NeuroCult medium; the number and the size of BMSC‐derived neurospheres were counted after treatment with IGFBP‐4 or the blockers. It was shown that addition of IGFBP‐4 inhibited BMSC proliferation and immunodepletion of IGFBP‐4 increased the proliferation. The blockade of IGF‐IR with AG1024 increased BMSC proliferation and reversed IGFBP‐4‐induced proliferation inhibition; however, blocking of β‐catenin with FH535 did not. p‐Erk was significantly decreased in IGFBP‐4‐treated BMSCs. IGFBP‐4 promoted the growth of neurospheres derived from BMSCs, as manifested by the increases in the number and the size of the derived neurospheres. Both AG1024 and FH535 inhibited the formation of NeuroCult‐induced neurospheres, but FH535 significantly inhibited the growth of neurospheres in NeuroCult medium with EGF, bFGF, and IGFBP‐4. The data suggested that IGFBP‐4 inhibits BMSC proliferation through IGF‐IR pathway and promotes growth of BMSC‐derived neurospheres via stabilizing β‐catenin.  相似文献   

13.
14.
In the mammalian cortex, the initial formation of synaptic connections is followed by a prolonged period during which synaptic circuits are functional, but retain an elevated capacity for activity‐dependent remodeling and functional plasticity. During this period, synaptic terminals appear fully mature, morphologically and physiologically. We show here, however, that synaptic terminals during this period are distinguished by their simultaneous accumulation of multiple growth‐associated proteins at levels characteristic of axonal growth cones, and proteins involved in synaptic transmitter release at levels characteristic of adult synapses. We show further that newly formed synapses undergo a switch in the dynamic S‐palmitoylation of proteins early in the critical period, which includes a large and specific decrease in the palmitoylation of GAP‐43 and other major substrates characteristic of growth cones. Previous studies have shown that a similar reduction in ongoing palmitoylation of growth cone proteins is sufficient to stop advancing axons in vitro, suggesting that a developmental switch in protein S‐palmitoylation serves to disengage the molecular machinery for axon extension in the absence of local triggers for remodeling during the critical period. Only much later does a decline in the availability of major growth cone components mark the molecular maturation of cortical synapses at the close of the critical period. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 423–437, 1999  相似文献   

15.
The somatotropic axis, which includes growth hormone, insulin‐like growth factor (IGF)‐I, and IGF binding proteins (IGFBP), is involved in the regulation of growth and metabolism. Measures of the somatotropic axis can be predictive of nutritional status and growth rate that can be utilized to identify nutritional status of individual animals. Before the somatotropic axis can be a predictive tool, concentrations of hormones of the somatotropic axis need to be established in healthy individuals. To begin to establish these data, we quantified IGF‐I, IGFBP‐2, and IGFBP‐3 in males and females of eight threatened hoofstock species at various ages. Opportunistic blood samples were collected from Bos javanicus (Java banteng), Tragelaphus eurycerus isaaci (bongo), Gazella dama ruficollis (addra gazelle), Taurotragus derbianus gigas (giant eland), Kobus megaceros (Nile lechwe), Hippotragus equines cottoni (roan antelope), Ceratotherium simum simum (white rhinoceros), and Elephas maximus (Asian elephant). Serum IGF‐I and IGFBPs were determined by radioimmunoassay and ligand blot, respectively. Generally, IGF‐I and IGFBP‐3 were greater in males, and IGFBP‐2 was greater in females. In banteng (P = 0.08) and male Nile lechwe (P<0.05), IGF‐I increased with age, but decreased in rhinoceros (P = 0.07) and female Nile lechwe (P<0.05). In banteng, IGFBP‐3 was greater (P<0.01) in males. In elephants (P<0.05) and antelope (P = 0.08), IGFBP‐2 were greater in females. Determination of concentrations of hormones in the somatotropic axis in healthy animals makes it possible to develop models that can identify the nutritional status of these threatened hoofstock species. Zoo Biol 30:275–284, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Neuronal network consists of many types of neuron and glial cells. This diversity is guaranteed by the constant cell proliferation of neuronal stem cells following stop cell cycle re‐entry, which leads to differentiation during development. Neuronal differentiation occurs mainly at the specific cell cycle phase, the G1 phase. Therefore, cell cycle exit at the G1 phase is quite an important issue in understanding the process of neuronal cell development. Recent studies have revealed that aberrant S phase re‐entry from the G1 phase often links cellular survival. In this review we discuss the different types of G1 arrest on the process of neuronal development in Drosophila. We also describe the issue that aberrant S phase entry often causes apoptosis, and the same mechanism might contribute to sensory organ defects, such as deafness.  相似文献   

17.
Retinitis Pigmentosa involves a hereditary degeneration of photoreceptors by as yet unresolved mechanisms. The secretable protein α‐Klotho has a function related to ageing processes, and α‐Klotho‐deficient mice have reduced lifespan and declining functions in several tissues. Here, we studied Klotho in connection with inherited photoreceptor degeneration. Increased nuclear immunostaining for α‐Klotho protein was seen in degenerating photoreceptors in four different Retinitis Pigmentosa models (rd1, rd2 mice; P23H, S334ter rhodopsin mutant rats). Correspondingly, in rd1 retina α‐Klotho mRNA expression was significantly up‐regulated. Moreover, immunostaining for another Klotho family protein, β‐Klotho, also co‐localized with degenerating rd1 photoreceptors. The rd1 retina displayed reduced levels of fibroblast growth factor 15, a member of the fibroblast growth factor subfamily for which Klotho acts as a co‐receptor. Exogenous α‐Klotho protein added to retinal explant cultures did not affect cell death in rd1 retinae, but caused a severe layer disordering in wild‐type retinae. Our study suggests Klotho as a novel player in the retina, with a clear connection to photoreceptor cell death as well as with an influence on retinal organization.  相似文献   

18.
The classic mode of G protein‐coupled receptor (GPCR)‐mediated transactivation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR) transactivation occurs via matrix metalloprotease (MMP)‐mediated cleavage of plasma membrane‐anchored EGFR ligands. Herein, we show that the Gαs‐activating GPCR ligands vasoactive intestinal peptide (VIP) and prostaglandin E2 (PGE2) transactivate EGFR through increased cell‐surface delivery of the EGFR ligand transforming growth factor‐α (TGFα) in polarizing madin‐darby canine kidney (MDCK) and Caco‐2 cells. This is achieved by PKA‐mediated phosphorylation of naked cuticle homolog 2 (NKD2), previously shown to bind TGFα and direct delivery of TGFα‐containing vesicles to the basolateral surface of polarized epithelial cells. VIP and PGE2 rapidly activate protein kinase A (PKA) that then phosphorylates NKD2 at Ser‐223, a process that is facilitated by the molecular scaffold A‐kinase anchoring protein 12 (AKAP12). This phosphorylation stabilized NKD2, ensuring efficient cell‐surface delivery of TGFα and increased EGFR activation. Thus, GPCR‐triggered, PKA/AKAP12/NKD2‐regulated targeting of TGFα to the cell surface represents a new mode of EGFR transactivation that occurs proximal to ligand cleavage by MMPs.   相似文献   

19.
Doublecortin‐like kinase 1 (DCLK1) is a member of the neuronal microtubule‐associated doublecortin (DCX) family and functions in multiple stages of neural development including radial migration and axon growth of cortical neurons. DCLK1 is suggested to play the roles in part through its protein kinase activity, yet the kinase substrates of DCLK1 remain largely unknown. Here we have identified MAP7D1 (microtubule‐associated protein 7 domain containing 1) as a novel substrate of DCLK1 by using proteomic analysis. MAP7D1 is expressed in developing cortical neurons, and knockdown of MAP7D1 in layer 2/3 cortical neurons results in a significant impairment of callosal axon elongation, but not of radial migration, in corticogenesis. We have further defined the serine 315 (Ser 315) of MAP7D1 as a DCLK1‐induced phosphorylation site and shown that overexpression of a phosphomimetic MAP7D1 mutant in which Ser 315 is substituted with glutamic acid (MAP7D1 S315E), but not wild‐type MAP7D1, fully rescues the axon elongation defects in Dclk1 knockdown neurons. These data demonstrate that DCLK1 phosphorylates MAP7D1 on Ser 315 to facilitate axon elongation of cortical neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419–437, 2017  相似文献   

20.
The eukaryotic mRNA 3′ poly(A) tail and the 5′ cap cooperate to synergistically enhance translation. This interaction is mediated by a ribonucleoprotein network that contains, at a minimum, the poly(A) binding protein (PABP), the cap-binding protein eIF4E, and a scaffolding protein, eIF4G. eIF4G, in turn, contains binding sites for eIF4A and eIF3, a 40S ribosome-associated initiation factor. The combined cooperative interactions within this “closed loop” mRNA among other effects enhance the affinity of eIF4E for the 5′ cap, by lowering its dissociation rate and, ultimately, facilitate the formation of 48S and 80S ribosome initiation complexes. The PABP-poly(A) interaction also stimulates initiation driven by picornavirus’ internal ribosomal entry sites (IRESs), a process that requires eIF4G but not eIF4E. PABP, therefore, should be considered a canonical initiation factor, integral to the formation of the initiation complex. Poly(A)-mediated translation is subjected to regulation by the PABP-interacting proteins Paip1 and Paip2. Paip1 acts as a translational enhancer. In contrast, Paip2 strongly inhibits translation by promoting dissociation of PABP from poly(A) and by competing with eIF4G for binding to PABP. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 684–693. The article is published in the original.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号