首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) diffuses as short-lived messenger through the plasma membrane and serves, among many other functions, as an activator of the cGMP synthesizing enzyme soluble guanylyl cyclase (sGC). In view of recent genetic investigations that postulated a retrograde signal from the larval muscle fibers to the presynaptic terminals, we looked for the presence of an NO/cGMP signaling system at the neuromuscular junction (NMJ) of Drosophila melanogaster larvae. Application of NO donors induced cGMP immunoreactivity in the presynaptic terminals but not the postsynaptic muscle fibers at an identified NMJ. The NO-induced cGMP immunoreactivity was sensitive to a specific inhibitor (ODQ) of the sGC. Since presynaptic terminals which were surgically isolated from the central nervous system are capable of synthesizing cGMP, we suggest that an NO-sensitive guanylyl cyclase is present in the terminal arborizations. Using a fluorescent dye that is known to stain recycling synaptic vesicles, we demonstrate that NO donors and membrane permeant cGMP analogues cause vesicle release at the NMJ. Moreover, the NO-induced release could be blocked by the specific inhibitor of the sGC. A destaining of synaptic terminals after NO exposure in Ca2+-free solution in the presence of cobalt chloride as a channel blocker suggested that NO stimulates Ca2+-independent vesicle release at the NMJ. The combined immunocytochemical and exocytosis imaging experiments imply the involvement of cGMP and NO in the regulation of vesicle release at the NMJ of Drosophila larvae.  相似文献   

2.
Recently, it has become possible to directly detect changes in neuropeptide vesicle dynamics in nerve terminals in vivo and to measure the release of neuropeptides induced experimentally or evoked by normal behavior. These results were obtained with the use of transgenic fruit flies that express a neuropeptide tagged with green fluorescent protein. Here, we describe how vesicle movement and neuropeptide release can be studied in the larval Drosophila neuromuscular junction using fluorescence microscopy. Analysis methods are described for quantifying movement based on time lapse and fluorescence recovery after photobleaching data. Specific approaches that can be applied to nerve terminals include single particle tracking, correlation and Fourier analysis. Utilization of these methods led to the first detection of vesicle mobilization in nerve terminals and the discoveries of activity-dependent capture of transiting vesicles and post-tetanic potentiation of neuropeptide release. Overall, this protocol can be carried out in an hour with ready Drosophila.  相似文献   

3.
Cholesterol is highly enriched in the brain, and plays a key role in synapse formation and function. The brain does not derive cholesterol from the circulation; instead, the majority of cholesterol is made in glia and secreted in form of lipoproteins. Neurons can synthesize cholesterol, but the extent of neuronal cholesterol biosynthesis in the adult brain is unknown. Cholesterol biosynthesis inhibitors of the statin family are widely used to lower circulating cholesterol and cardiovascular risk. Lipophilic statins can cross the blood brain barrier and inhibit brain cholesterol biosynthesis with possible consequences for synaptic cholesterol homeostasis. We have investigated the effects of lovastatin on synapse maturation and synaptic vesicle release. Treatment of primary hippocampal neurons with low levels of lovastatin for one week reduced synapse density and impaired synaptic vesicle release. Neither lipoproteins nor geranylgeraniol fully counteracted the lovastatin-induced decrease of synaptic vesicle exocytosis, even when cholesterol depletion was prevented. In contrast, restoration of neuronal cholesterol synthesis with mevalonate prevented defects in vesicle exocytosis without fully normalizing neuronal cholesterol content. These results raise the possibility that chronic exposure of neurons to lipophilic statins may affect synaptic transmission, and indicate that hippocampal neurons need a certain level of endogenous cholesterol biosynthesis.  相似文献   

4.
Mitochondria are the primary source of ATP needed for the steps of the synaptic vesicle cycle. Dynamin-related protein (DRP) is involved in the fission of mitochondria and peroxisomes. To assess the role of mitochondria in synaptic function, we characterized a Drosophila DRP mutant combination that shows an acute temperature-sensitive paralysis. Sequencing of the mutant reveals a single amino acid change in the guanosine triphosphate hydrolysing domain (GTPase domain) of DRP. The synaptic mitochondria in these mutants are remarkably elongated, suggesting a role for DRP in mitochondrial fission in Drosophila. There is a loss of neuronal transmission at restrictive temperatures in electroretinogram (ERG) recordings. Like stress-sensitive B (sesB), a mitochondrial adenosine triphosphate (ATP) translocase mutant we studied earlier for its effects on synaptic vesicle recycling, an allele-specific reduction in the temperature of paralysis of Drosophila synaptic vesicle recycling mutant shibire was seen in the DRP mutant background. These data, in addition to depletion of vesicles observed in electron microscopic sections of photoreceptor synapses at restrictive temperatures, suggest a block in synaptic vesicle recycling due to reduced mitochondrial function.  相似文献   

5.
Agrin released from motor nerve terminals directs differentiation of the vertebrate neuromuscular junction (NMJ). Activity of nitric oxide synthase (NOS), guanylate cyclase (GC), and cyclic GMP-dependent protein kinase (PKG) contributes to agrin signaling in embryonic frog and chick muscle cells. Stimulation of the NO/cyclic GMP (cGMP) pathway in embryos potentiates agrin's ability to aggregate acetylcholine receptors (AChRs) at NMJs. Here we investigated the timing and mechanism of NO and cGMP action. Agrin increased NO levels in mouse C2C12 myotubes. NO donors potentiated agrin-induced AChR aggregation during the first 20 min of agrin treatment, but overnight treatment with NO donors inhibited agrin activity. Adenoviruses encoding siRNAs against each of three NOS isoforms reduced agrin activity, indicating that these isoforms all contribute to agrin signaling. Inhibitors of NOS, GC, or PKG reduced agrin-induced AChR aggregation in mouse muscle cells by ∼ 50%. However, increased activation of the GTPase Rac1, an early step in agrin signaling, was dependent on NOS activity and was mimicked by NO donors and a cGMP analog. Our results indicate that stimulation of the NO/cGMP pathway is important during the first few minutes of agrin signaling and is required for agrin-induced Rac1 activation, a key step leading to reorganization of the actin cytoskeleton and subsequent aggregation of AChRs on the surface of skeletal muscle cells.  相似文献   

6.
Abstract.  Drosophila larval muscles are commonly used for developmental assessment in regard to various mutations of synaptically relevant molecules. In addition, the molecular sequence of the glutamate receptors on the muscle fibre have been described; however, the pharmacological profiles to known agonists and antagonists have yet to be reported. Here, the responses of N -methyl- d -aspartic acid, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA), l -glutamate, kainate, quisqualic acid, NBQX, AP5 and DNQX are characterized with regard to synaptic transmission and direct effects on the muscle fibres. The muscle fibres depolarize to application of glutamate or quisqualate and the excitatory postsynaptic potential (EPSP) amplitudes are diminished. Kainate does not alter the muscle membrane potential but does reduce the EPSP amplitude. The known antagonists NBQX, AP5 and DNQX have no substantial effect on synaptic transmission at 1 m m , nor do they block the response of quisqualate. Kainate may be acting as a postsynaptic antagonist or via autoreceptors presynaptically to reduce evoked transmission.  相似文献   

7.
Ouabain is a cardiotonic glycoside that inhibits the sodium potassium ATPase pump leading to sodium accumulation in nerve terminals. At the frog neuromuscular junction, ouabain induces acetylcholine release and a rapid depletion of synaptic vesicles. In the present work, we used FM1–43 vital labeling to dissect the effect of ouabain on synaptic vesicles recycling. We first examined images of nerve-muscle preparations that were stained with FM1–43 by electrical stimulation of the nerve and destained with ouabain. We observed that ouabain induced exocytosis of synaptic vesicles independently of extracellular calcium, implying a mechanism of exocytosis that can bypass the requirement for extracellular calcium. We therefore tested the hypothesis that ouabain induces exocytosis by mobilizing intracellular calcium and we report that calcium release from endoplasmic reticulum through ryanodine receptors is necessary for ouabain-evoked exocytosis. In addition, the ouabain-evoked exocytosis was dependent on calcium released from mitochondria. We also investigated if exocytosis evoked by ouabain is followed by compensatory endocytosis. We observed that muscles incubated with FM1–43 in the presence of ouabain did not present significant staining. In conclusion, our data demonstrate that exocytosis evoked by ouabain is independent on extracellular calcium but dependent on calcium release from endoplasmic reticulum and mitochondrial stores. In addition, we suggest that ouabain can be used as a pharmacological tool to uncouple synaptic vesicles exocytosis from endocytosis at the neuromuscular junction.  相似文献   

8.
During formation of the neuromuscular junction (NMJ), agrin secreted by motor axons signals the embryonic muscle cells to organize a postsynaptic apparatus including a dense aggregate of acetylcholine receptors (AChRs). Agrin signaling at the embryonic NMJ requires the activity of nitric oxide synthase (NOS). Common downstream effectors of NOS are guanylate cyclase (GC), which synthesizes cyclic GMP, and cyclic GMP-dependent protein kinase (PKG). Here we show that GC and PKG are important for agrin signaling at the embryonic NMJ of the frog, Xenopus laevis. Inhibitors of both GC and PKG reduced endogenous AChR aggregation in embryonic muscles by 50-85%, and blocked agrin-induced AChR aggregation in cultured embryonic muscle cells. A cyclic GMP analog, 8-bromo-cyclic GMP, increased endogenous AChR aggregation in embryonic muscles to 3- to 4-fold control levels. Overexpression of either GC or PKG in embryos increased AChR aggregate area by 60-170%, whereas expression of a dominant negative form of GC inhibited endogenous aggregation by 50%. These results indicate that agrin signaling in embryonic muscle cells requires the activity of GC and PKG as well as NOS.  相似文献   

9.
The Akt family of serine‐threonine kinases integrates a myriad of signals governing cell proliferation, apoptosis, glucose metabolism, and cytoskeletal organization. Akt affects neuronal morphology and function, influencing dendrite growth and the expression of ion channels. Akt is also an integral element of PI3Kinase‐target of rapamycin (TOR)‐Rheb signaling, a pathway that affects synapse assembly in both vertebrates and Drosophila. Our recent findings demonstrated that disruption of this pathway in Drosophila is responsible for a number of neurodevelopmental deficits that may also affect phenotypes associated with tuberous sclerosis complex, a disorder resulting from mutations compromising the TSC1/TSC2 complex, an inhibitor of TOR (Dimitroff et al., 2012). Therefore, we examined the role of Akt in the assembly and physiological function of the Drosophila neuromuscular junction (NMJ), a glutamatergic synapse that displays developmental and activity‐dependent plasticity. The single Drosophila Akt family member, Akt1 selectively altered the postsynaptic targeting of one glutamate receptor subunit, GluRIIA, and was required for the expansion of a specialized postsynaptic membrane compartment, the subsynaptic reticulum (SSR). Several lines of evidence indicated that Akt1 influences SSR assembly by regulation of Gtaxin, a Drosophila t‐SNARE protein (Gorczyca et al., 2007) in a manner independent of the mislocalization of GluRIIA. Our findings show that Akt1 governs two critical elements of synapse development, neurotransmitter receptor localization, and postsynaptic membrane elaboration. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 73: 723–743, 2013  相似文献   

10.
11.
12.
Activation of phosphatidylinositol (PI) 3-kinase, protein kinase A (PKA) and protein kinase C (PKC) is associated with the survival effect elicited by PDGF-AB and TGF-beta1 against the apoptotic inducer 2-deoxy-D-ribose (dRib) in the fat body cell line, IPLB-LdFB, from the insect Lymantria dispar. dRib induces apoptosis and provokes mitochondrial membrane depolarization (MMD). The antioxidant N -acetyl-L-cysteine annuls only the first effect. These findings suggest that apoptosis and MMD are provoked by two different mechanisms, and that dRib induces apoptosis by oxidative stress.  相似文献   

13.
14.
Phototropin (phot) is a blue-light receptor protein that triggers phototropic responses, chloroplast relocation, and stomata opening to maximize the efficiency of photosynthesis in higher plants. Phot is composed of three functional domains. The N-terminal half folds into two light-oxygen-voltage-sensing domains called LOV1 and LOV2, each binding a flavin mononucleotide to absorb blue light. The C-terminal half is a serine/threonine kinase domain that causes light-dependent autophosphorylation leading to cellular signaling cascades. LOV2 domain is primarily responsible for activation of the kinase, and LOV1 domain is thought to act as a dimerization site and to regulate sensitivity to activation by blue light. Here we show the crystal structures of LOV1 domains of Arabidopsis phot1 and phot2 in the dark at resolutions of 2.1 Å and 2.0 Å, respectively. Either LOV1 domain forms a dimer through face-to-face association of β-scaffolds in the crystallographic asymmetric unit. Three types of interactions stabilizing the dimer structures found are as follows: contacts of side chains in their β-scaffolds, hydrophobic interactions of a short helix found in the N-terminus of a subunit with the β-scaffolds of both subunits, and hydrogen bonds mediated by hydration water molecules filling the dimer interface. The critical residues for dimerization are Cys261, forming a disulfide bridge between subunits in phot1-LOV1 domain, and Thr217 and Met232 in phot2-LOV1. The topology in homodimeric associations of the LOV1 domains is discussed when referring to those of homodimers or heterodimers of light-oxygen-voltage-sensing or Per-ARNT-Sim domains. The present results also provide clues to understanding structural basis in dimeric interactions of Per-ARNT-Sim protein modules in cellular signaling.  相似文献   

15.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

16.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号