首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycogen content of white and red skeletal muscles, cardiac muscle, and liver was investigated in conditions where changes in plasma levels of non‐esterified fatty acids (NEFA) occur. The experiments were performed in fed and 12 and 48 h‐fasted rats. The animals were also submitted to swimming for 10 and 30 min. Glycogen content was also investigated in both pharmacologically induced low plasma NEFA levels fasted rats and pharmacologically induced high plasma NEFA levels fed rats. The participation of Akt and glycogen synthase kinase‐3 (GSK‐3) in the changes observed was investigated. Plasma levels of NEFA, glucose, and insulin were determined in all conditions. Fasting increased plasma NEFA levels and reduced glycogen content in the liver and skeletal muscles. However, an increase of glycogen content was observed in the heart under this condition. Akt and GSK‐3 phosphorylation was reduced during fasting in the liver and skeletal muscles but it remained unchanged in the heart. Our results suggest that in conditions of increased plasma NEFA levels, changes in insulin‐stimulated phosphorylation of Akt and GSK‐3 and glycogen content vary differently in liver, skeletal muscles, and heart. Akt and GSK‐3 phosphorylation and glycogen content are decreased in liver and skeletal muscles, but in the heart it remain unchanged (Akt and GSK‐3 phosphorylation) or increased (glycogen content) due to consistent increase of plasma NEFA levels. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Prolonged fasting is characterized by lipid mobilization (Phase 2), followed by protein breakdown (Phase 3). Knowing that body lipids are not exhausted in Phase 3, we investigated whether changes in the metabolic status of prolonged fasted rats are associated with differences in the expression of epididymal adipose tissue proteins involved in lipid mobilization. The final body mass, body lipid content, locomotor activity and metabolite and hormone plasma levels differed between groups. Compared with fed rats, adiposity and epididymal fat mass decreased in Phase 2 (approximately two- to threefold) and Phase 3 (∼4.5-14-fold). Plasma nonesterified fatty acids (NEFA) concentrations were increased in Phase 2 (approximately twofold) and decreased in Phase 3 (approximately twofold). Daily locomotor activity was markedly increased in Phase 3 (∼11-fold). Compared with the fed state, expressions of adipose triglyceride lipase (ATGL; mRNA and protein), hormone-sensitive lipase (HSL; mRNA) and phosphorylated HSL at residue Ser660 (HSL Ser660) were increased during Phase 2 (∼1.5-2-fold). HSL (mRNA and protein) and HSL Ser660 levels were lowered during Phase 3 (∼3-12-fold). Unlike HSL and HSL Ser660, ATGL expression did not correlate with circulating NEFA, mostly due to data from animals in Phase 3. At this stage, ATGL could play an essential role for maintaining a low mobilization rate of NEFA, possibly to sustain muscle performance and hence increased locomotor activity. We conclude that ATGL and HSL are not coordinately regulated in response to changes in fuel partitioning during prolonged food deprivation, ATGL appearing as the major lipase in late fasting.  相似文献   

3.
The dynamics of Plasmodium vivax infection is characterized by reactivation of hypnozoites at varying time intervals. The relative contribution of new P. vivax infection and reactivation of dormant liver stage hypnozoites to initiation of blood stage infection is unclear. In this study, we investigate the contribution of new inoculations of P. vivax sporozoites to primary infection versus reactivation of hypnozoites by modeling the dynamics of P. vivax infection in Thailand in patients receiving treatment for either blood stage infection alone (chloroquine), or the blood and liver stages of infection (chloroquine + primaquine). In addition, we also analysed rates of infection in a study in Papua New Guinea (PNG) where patients were treated with either artesunate, or artesunate + primaquine. Our results show that up to 96% of the P. vivax infection is due to hypnozoite reactivation in individuals living in endemic areas in Thailand. Similar analysis revealed the around 70% of infections in the PNG cohort were due to hypnozoite reactivation. We show how the age of the cohort, primaquine drug failure, and seasonality may affect estimates of the ratio of primary P. vivax infection to hypnozoite reactivation. Modeling of P. vivax primary infection and hypnozoite reactivation provides important insights into infection dynamics, and suggests that 90–96% of blood stage infections arise from hypnozoite reactivation. Major differences in infection kinetics between Thailand and PNG suggest the likelihood of drug failure in PNG.  相似文献   

4.
Three populations composed of different variable antigen types were derived from a clone of the recently isolated mouse-infective Trypanosoma vivax stock Zaria Y486. The antigenic composition of the trypanosome populations which appeared following infection of mice and goats with these populations was compared using the immune lysis test. Significant differences were observed in the antigenic composition of both the initial and relapse populations obtained from goats and mice. These observations suggest that there may be selective growth of different variable antigen types in different hosts with the result that the antigenic composition of a goat-derived population may be greatly altered following subinoculation into normal mice. This can be somewhat reduced however if goat derived populations are subinoculated into lethally irradiated mice. Two antigenically different T. vivax populations were also cyclically transmitted to individual goats in a preliminary study of the effect of tsetse transmission on the antigenic composition of the ingested populations. It was observed that the composition of the first detectable populations in the infected goats was similar but different from that ingested by the tsetse flies.  相似文献   

5.
Most athletic horses are fed a high-starch diet despite the risk of health problems. Replacing starch concentrate with high-energy forage would alleviate these health problems, but could result in a shift in major substrates for muscle energy supply from glucose to short-chain fatty acids (SCFA) due to more hindgut fermentation of fibre. Dietary fat inclusion has previously been shown to promote aerobic energy supply during exercise, but the contribution of SCFA to exercise metabolism has received little attention. This study compared metabolic response with exercise and lactate threshold (VLa4) in horses fed a forage-only diet (F) and a more traditional high-starch, low-energy forage diet (forage–concentrate diet - FC). The hypothesis was that diet F would increase plasma acetate concentration and increase VLa4 compared with diet FC. Six Standardbred geldings in race training were used in a 29-day change-over experiment. Plasma acetate, non-esterified fatty acids (NEFA), lactate, glucose and insulin concentrations and venous pH were measured in samples collected before, during and after a treadmill exercise test (ET, day 25) and muscle glycogen concentrations before and after ET. Plasma acetate concentration was higher before and after exercise in horses on diet F compared with diet FC, and there was a tendency (P = 0.09) for increased VLa4 on diet F. Venous pH and plasma glucose concentrations during exercise were higher in horses on diet F than diet FC, as was plasma NEFA on the day after ET. Plasma insulin and muscle glycogen concentrations were lower for diet F, but glycogen utilisation was similar for the two diets. The results show that a high-energy, forage-only diet alters the metabolic response to exercise and, with the exception of lowered glycogen stores, appears to have positive rather than negative effects on performance traits.  相似文献   

6.
Metabolic adaptation includes an array of concerted metabolic and endocrine events that enable dairy cows bridging the period of energy deficit at the onset of lactation. The present study evaluated metabolic, endocrine and reticuloruminal pH changes in 30 (25 Holstein and five Simmental) periparturient dairy cows experiencing variable lipolysis early postpartum. Cows were fed the same close-up and fresh lactation diets and kept in the same management conditions. Blood samples were collected at day 14, and day 4, relative to expected parturition, and at day 2, and day 21 postpartum, and serum metabolites and hormones related to glucose and lipid metabolism, as well as concentrations of several liver enzymes and acute phase proteins were determined. Additionally, reticuloruminal pH was monitored every 10 min over the last 3 days of the observation period. BW and milk yields were recorded and balances of energy and protein were assessed. Based on serum concentration of non-esterified fatty acids (NEFA) postpartum, cows were retrospectively classified into low (n=8), medium (n=11), and high (n=11) lipolysis groups, with NEFA levels of <0.4 mmol/l, between 0.4 and 0.7 mmol/l, and >0.7 mmol/l, respectively. Overall, elevated NEFA concentrations in the High group went along with a higher ratio of NEFA to cholesterol and reduced insulin sensitivity. While serum glucose, energy deficit and BW loss did not differ, cows of the High group exhibited increased lactate concentrations in the serum, compared with the Medium group. No differences in liver enzymes and acute phase proteins were evidenced among fat mobilization groups, whereas concentration of serum billirubin was lowest in the Low group after parturition. Data of milk yield and milk energy output showed no differences among groups, despite divergences in calculated energy balance and BW change postpartum. Cows of the Low group tended to increase dry matter intake but also showed longer time duration of pH below 6.0 in the reticulorumen (on average 299 min/day compared with 99 and 91 min/day for Medium and High groups, respectively). Differences in metabolic, endocrine and reticuloruminal pH responses indicate diverse metabolic adaptation strategies of early-lactation cows to cope with energy deficit postpartum.  相似文献   

7.
This study examines the effects of diets supplemented with various lipids selected to induce divergent milk fat content responses (including a milk fat depression) between dairy cows and goats on plasma lipid composition. The objective was to better understand the mechanisms behind the regulation of milk fat secretion in these two ruminant species. Twelve Holstein cows and 12 Alpine goats were fed a basal diet not supplemented (CTL) or supplemented with corn oil plus wheat starch (COS, 5% DM intake (DMI)), marine algae powder of Schizochytrium sp. (MAP, 1.5% DMI), or hydrogenated palm oil (HPO, 3% DMI), in a replicated 4 × 4 Latin square design, during 28 days. On day 27, blood samples were collected for lipid analysis. Plasma lipid classes were quantified by high-performance thin-layer chromatography, with triacylglycerol (TAG) and free fatty acid (FFA) fractions analysed for FA composition by GLC. Plasma molecular species of TAG and ceramides were determined by HPLC–high-resolution MS and by liquid chromatography–triple quadrupole, respectively. Irrespective of diet, plasma total lipid content was higher in cows than goats (+61%), and TAG concentration was higher in goats than cows (+157%). In cows, conversely to goats, COS increased the trans-10 C18:1 proportion in the free FA (+248%) and the TAG (+195%) fractions. In cows and goats, MAP induced increases in cholesterol esters, cholesterol and phospholipids compared to CTL and changes in the plasma free FA and FA of TAG profiles. In both ruminant species, the concentrations of the lipid fractions were unchanged by HPO compared to CTL. Our results point to species specificities and different diet effects in plasma concentrations and compositions of lipid fractions in cows and goats. These new data highlight how diets, that induce large variations in milk fat secretions, affect the plasma lipid classes available for milk fat synthesis.  相似文献   

8.

Background

Where P. vivax and P. falciparum occur in the same population, the peak burden of P. vivax infection and illness is often concentrated in younger age groups. Experiences from malaria therapy patients indicate that immunity is acquired faster to P. vivax than to P. falciparum challenge. There is however little prospective data on the comparative risk of infection and disease from both species in young children living in co-endemic areas.

Methodology/Principal Findings

A cohort of 264 Papua New Guinean children aged 1-3 years (at enrolment) were actively followed-up for Plasmodium infection and febrile illness for 16 months. Infection status was determined by light microscopy and PCR every 8 weeks and at each febrile episode. A generalised estimating equation (GEE) approach was used to analyse both prevalence of infection and incidence of clinical episodes. A more pronounced rise in prevalence of P. falciparum compared to P. vivax infection was evident with increasing age. Although the overall incidence of clinical episodes was comparable (P. falciparum: 2.56, P. vivax 2.46 episodes / child / yr), P. falciparum and P. vivax infectious episodes showed strong but opposing age trends: P. falciparum incidence increased until the age of 30 months with little change thereafter, but incidence of P. vivax decreased significantly with age throughout the entire age range. For P. falciparum, both prevalence and incidence of P. falciparum showed marked seasonality, whereas only P. vivax incidence but not prevalence decreased in the dry season.

Conclusions/Significance

Under high, perennial exposure, children in PNG begin acquiring significant clinical immunity, characterized by an increasing ability to control parasite densities below the pyrogenic threshold to P. vivax, but not to P. falciparum, in the 2nd and 3rd year of life. The ability to relapse from long-lasting liver-stages restricts the seasonal variation in prevalence of P. vivax infections.  相似文献   

9.
Plasmodium vivax malaria causes significant morbidity and mortality worldwide, and only one drug is in clinical use that can kill the hypnozoites that cause P. vivax relapses. HIV and P. vivax malaria geographically overlap in many areas of the world, including South America and Asia. Despite the increasing body of knowledge regarding HIV protease inhibitors (HIV PIs) on P. falciparum malaria, there are no data regarding the effects of these treatments on P. vivax''s hypnozoite form and clinical relapses of malaria. We have previously shown that the HIV protease inhibitor lopinavir-ritonavir (LPV-RTV) and the antibiotic trimethoprim sulfamethoxazole (TMP-SMX) inhibit Plasmodium actively dividing liver stages in rodent malarias and in vitro in P. falciparum, but effect against Plasmodium dormant hypnozoite forms remains untested. Separately, although other antifolates have been tested against hypnozoites, the antibiotic trimethoprim sulfamethoxazole, commonly used in HIV infection and exposure management, has not been evaluated for hypnozoite-killing activity. Since Plasmodium cynomolgi is an established animal model for the study of liver stages of malaria as a surrogate for P. vivax infection, we investigated the antimalarial activity of these drugs on Plasmodium cynomolgi relapsing malaria in rhesus macaques. Herein, we demonstrate that neither TMP-SMX nor LPV-RTV kills hypnozoite parasite liver stage forms at the doses tested. Because HIV and malaria geographically overlap, and more patients are being managed for HIV infection and exposure, understanding HIV drug impact on malaria infection is important.  相似文献   

10.
BackgroundPlasmodium vivax has been proposed to infect and replicate in the human spleen and bone marrow. Compared to Plasmodium falciparum, which is known to undergo microvascular tissue sequestration, little is known about the behavior of P. vivax outside of the circulating compartment. This may be due in part to difficulties in studying parasite location and activity in life.Methods and findingsTo identify organ-specific changes during the early stages of P. vivax infection, we performed 18-F fluorodeoxyglucose (FDG) positron emission tomography/magnetic resonance imaging (PET/MRI) at baseline and just prior to onset of clinical illness in P. vivax experimentally induced blood-stage malaria (IBSM) and compared findings to P. falciparum IBSM. Seven healthy, malaria-naive participants were enrolled from 3 IBSM trials: NCT02867059, ACTRN12616000174482, and ACTRN12619001085167. Imaging took place between 2016 and 2019 at the Herston Imaging Research Facility, Australia. Postinoculation imaging was performed after a median of 9 days in both species (n = 3 P. vivax; n = 4 P. falciparum). All participants were aged between 19 and 23 years, and 6/7 were male. Splenic volume (P. vivax: +28.8% [confidence interval (CI) +10.3% to +57.3%], P. falciparum: +22.9 [CI −15.3% to +61.1%]) and radiotracer uptake (P. vivax: +15.5% [CI −0.7% to +31.7%], P. falciparum: +5.5% [CI +1.4% to +9.6%]) increased following infection with each species, but more so in P. vivax infection (volume: p = 0.72, radiotracer uptake: p = 0.036). There was no change in FDG uptake in the bone marrow (P. vivax: +4.6% [CI −15.9% to +25.0%], P. falciparum: +3.2% [CI −3.2% to +9.6%]) or liver (P. vivax: +6.2% [CI −8.7% to +21.1%], P. falciparum: −1.4% [CI −4.6% to +1.8%]) following infection with either species. In participants with P. vivax, hemoglobin, hematocrit, and platelet count decreased from baseline at the time of postinoculation imaging. Decrements in hemoglobin and hematocrit were significantly greater in participants with P. vivax infection compared to P. falciparum. The main limitations of this study are the small sample size and the inability of this tracer to differentiate between host and parasite metabolic activity.ConclusionsPET/MRI indicated greater splenic tropism and metabolic activity in early P. vivax infection compared to P. falciparum, supporting the hypothesis of splenic accumulation of P. vivax very early in infection. The absence of uptake in the bone marrow and liver suggests that, at least in early infection, these tissues do not harbor a large parasite biomass or do not provoke a prominent metabolic response. PET/MRI is a safe and noninvasive method to evaluate infection-associated organ changes in morphology and glucose metabolism.

John Woodford and co-authors use positron emission tomography/magnetic resonance imaging (PET/MRI) to describe unique splenic morphology and metabolism in early P. vivax infection.  相似文献   

11.
Malaria is one of the most widespread infectious diseases of tropical countries with an estimated 207 million cases globally. In India, there are endemic pockets of this disease, including Aligarh. Hundreds of Plasmodium falciparum and P. vivax cases with severe pathological conditions are recorded every year in this district. The aim of this study is to find out changes in liver enzymes and kidney markers. Specific diagnosis for P. falciparum and P. vivax was made by microscopic examination of Giemsa stained slides. Clinical symptoms were observed in both of these infections. Liver enzymes, such as AST, ALT, and ALP, and kidney function markers, such as creatinine and urea, were estimated by standard biochemical techniques. In Aligarh district, P. vivax, P. falciparum, and mixed infections were 64%, 34%, and 2%, respectively. In case of P. falciparum infection, the incidences of anemia, splenomegaly, renal failure, jaundice, and neurological sequelae were higher compared to those in P. vivax infection. Recrudescence and relapse rates were 18% and 20% in P. falciparum and P. vivax infections, respectively. Liver dysfunctions and renal failures were more common in P. falciparum patients, particularly in elderly patients. Artesunate derivatives must, therefore, be introduced for the treatment of P. falciparum as they resist to chloroquine as well as sulfadoxine-pyrimethamine combinations.  相似文献   

12.
We compared liver glycogen stores and glucose mobilization during freezing among winters in chorus frogs, Pseudacris triseriata, where populations varied in freezing survival. We also characterized tissue glycogen levels across the annual cycle. Frogs with low liver glycogen stores mobilized low amounts of glucose during freezing, and these were correlated with population variation in freezing survival. Moreover, liver glycogen stores were significantly and positively related to body mass. These data suggest that chorus frogs store liver glycogen in preparation for hibernation and that body size and glycogen stores must reach threshold levels for successful survival of freezing bouts during the winter.  相似文献   

13.
The aim of this study was to examine the metabolic response to feed deprivation up to 48 h in low and high yielding lamb genotypes. It was hypothesised that Terminal sired lambs would have decreased plasma glucose and increased plasma non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHOB) concentrations in response to feed deprivation compared to Merino sired lambs. In addition, it was hypothesised that the metabolic changes due to feed deprivation would also be greater in progeny of sires with breeding values for greater growth, muscling and leanness. Eighty nine lambs (45 ewes, 44 wethers) from Merino dams with Merino or Terminal sires with a range in Australian Sheep Breeding Values (ASBVs) for post-weaning weight (PWT), post-weaning eye muscle depth and post-weaning fat depth (PFAT) were used in this experiment. Blood samples were collected via jugular cannulas every 6 h from time 0 to 48 h of feed deprivation for the determination of plasma glucose, NEFA, BHOB and lactate concentration. From 12 to 48 h of feed deprivation plasma glucose concentration decreased (P < 0.05) by 25% from 4.04 ± 0.032 mmol/l to 3.04 ± 0.032 mmol/l. From 6 h NEFA concentration increased (P < 0.05) from 0.15 ± 0.021 mmol/l by almost 10-fold to 1.34 ± 0.021 mmol/l at 48 h of feed deprivation. Feed deprivation also influenced BHOB concentrations and from 12 to 48 h it increased (P < 0.05) from 0.15 ± 0.010 mmol/l to 0.52 ± 0.010 mmol/l. Merino sired lambs had a 8% greater reduction in glucose and 29% and 10% higher NEFA and BHOB response, respectively, compared to Terminal sired lambs (P < 0.05). In Merino sired lambs, increasing PWT was also associated with an increase in glucose and decline in NEFA and BHOB concentration (P < 0.05). In Terminal sired lambs, increasing PFAT was associated with an increase in glucose and decline in NEFA concentration (P < 0.05). Contrary to the hypothesis, Merino sired lambs showed the greatest metabolic response to fasting especially in regards to fat metabolism.  相似文献   

14.
15.
Increased plasma levels of non-esterified fatty acids (NEFA) may lead to several physiological changes e.g. increased insulin secretion with a concomitant reduction of blood glucose, decreased glucose utilization in heart and skeletal musculature and increased blood acetone levels. High NEFA levels also cause fat infiltration in various organs especially the liver. Recently Akgün & Rudman (1969) showed that ACTH induced NEFA mobilization in rabbits was followed by hypocalcemia. Serum calcium decreased about 30 %, while the calcium content in adipose tissue increased up to 1000 %. This finding could also be verified in vitro. When adipose tissue was incubated in serum containing lipolytic hormones, lipolysis was stimulated and there was a shift of calcium from serum to tissue. A negative correlation between serum calcium and NEFA in hypocalcemic cows was reported earlier (Luthman & Jonson 1969). The purpose of the present investigation was to study the effect of increased NEFA levels on serum calcium in sheep. The animals used were ewes in late pregnancy. Lipolysis was stimulated by norepinephrine (Norexadrin, Astra). The animals were given a continuous intravenous infusion during 8 hrs. at a rate of 1 μg/kg/min. The methods of analysis were the same as described before (Luthman & Jonson).  相似文献   

16.

Background

There is an increasing body of literature reporting treatment failure of the currently recommended radical treatment of Plasmodium vivax infections. As P. vivax is the main malaria species outside the African continent, emerging tolerance to its radical treatment regime could have major consequences in countries like Peru, where 80% of malaria cases are due to P. vivax. Here we describe the results of a 1-year longitudinal follow up of 51 confirmed P. vivax patients living around Iquitos, Peruvian Amazon, and treated according to the Peruvian national guidelines.

Methodology

Each month a blood sample for microscopy and later genotyping was systematically collected. Recent exposure to infection was estimated by detecting antibodies against the P. vivax circumsporozoite protein (CSP) and all PCR confirmed P. vivax infections were genotyped with 16 polymorphic microsatellites.

Results

During a 1-year period, 84 recurrent infections, 22 positive also by microscopy, were identified, with a median survival time to first recurrent infection of 203 days. Most of them (71%) were asymptomatic; in 13 patients the infection persisted undetected by microscopy for several consecutive months. The genotype of mostly recurrent infections differed from that at day 0 while fewer differences were seen between the recurrent infections. The average expected heterozygosity was 0.56. There was strong linkage disequilibrium (IAs = 0.29, p<1.10−4) that remained also when analyzing only the unique haplotypes, suggesting common inbreeding.

Conclusion

In Peru, the P. vivax recurrent infections were common and displayed a high turnover of parasite genotypes compared to day 0. Plasmodium vivax patients, even when treated according to the national guidelines, may still represent an important parasite reservoir that can maintain transmission. Any elimination effort should consider such a hidden reservoir.  相似文献   

17.
Immunity to malaria is widely believed to wane in the absence of reinfection, but direct evidence for the presence or absence of durable immunological memory to malaria is limited. Here, we characterized the profile of circulating naïve and memory (including central and effector) CD4+ T cells responses of individuals naturally infected by Plasmodium vivax. In the current study, we demonstrated that acute P. vivax infection induces a significant increase in the absolute number of both naïve and memory cells, which were responsible for the production of anti-inflammatory (IL-10) and pro-inflammatory (IFN-γ) cytokines. Finally, we described the profile of memory cell subtypes (TCM-CD45ROhighCCR7+ and TEM-CD45ROhighCCR7), as well as the pattern of cell migration based on CD62L selectin expression, demonstrating that P. vivax-infected donors presented with a predominantly central memory cell profile. Our results indicate that the expansion of both naïve and memory T cells, responsible for the production of both pro-inflammatory and regulatory cytokines, which might also contribute to the modulation of immune responses during P. vivax infection.  相似文献   

18.
19.
《Small Ruminant Research》2010,91(1-3):120-126
Two diets were tested on Baladi lactating goats during mid-lactation in order to determine their adaptive capacities facing feed restrictions: a low nutritive value pasture (LP) and a high nutritive value pasture (HP). During early lactation on natural pastures, goats’ body condition (BCS) degraded, as initially fat goats lost more weight (BW) and were subject to a greater body reserves mobilization (BCS and NEFA) than lean ones. An intense compensation for all goats followed their transfer to the HP whereas the mobilization continued in LP, but only for fat goats. The lean goats managed to maintain their body condition by increasing their feed intake. When moved to mixed agricultural pastures at late lactation, all goats showed a full reconstitution of body reserves, particularly intense for those coming from LP, showing their strong capacities to recover their body reserves at this period. In parallel, milk production decreased for all goats on natural pastures, as the milk fat and milk proteins content. After transfer to HP, the high lactation rebound (+36%) showed the good reactivity of the Baladi goat in response to a feed improvement. Another rebound appeared in groups coming from LP after being transferred to a better feeding condition. However, during the reproduction phase, the milk yields decrease showing the highest priority given to the body reserves recovery.  相似文献   

20.
Insulin resistance, altered lipid metabolism and mitochondrial dysfunction in skeletal muscle would play a major role in type 2 diabetes mellitus (T2DM) development, but the causal relationships between these events remain conflicting. To clarify this issue, gastrocnemius muscle function and energetics were investigated throughout a multidisciplinary approach combining in vivo and in vitro measurements in Goto-Kakizaki (GK) rats, a non-obese T2DM model developing peripheral insulin resistant without abnormal level of plasma non-esterified fatty acids (NEFA). Wistar rats were used as controls. Mechanical performance and energy metabolism were assessed strictly non-invasively using magnetic resonance (MR) imaging and 31-phosphorus MR spectroscopy (31P-MRS). Compared with control group, plasma insulin and glucose were respectively lower and higher in GK rats, but plasma NEFA level was normal. In resting GK muscle, phosphocreatine content was reduced whereas glucose content and intracellular pH were both higher. However, there were not differences between both groups for basal oxidative ATP synthesis rate, citrate synthase activity, and intramyocellular contents for lipids, glycogen, ATP and ADP (an important in vivo mitochondrial regulator). During a standardized fatiguing protocol (6 min of maximal repeated isometric contractions electrically induced at a frequency of 1.7 Hz), mechanical performance and glycolytic ATP production rate were reduced in diabetic animals whereas oxidative ATP production rate, maximal mitochondrial capacity and ATP cost of contraction were not changed. These findings provide in vivo evidence that insulin resistance is not caused by an impairment of mitochondrial function in this diabetic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号