首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundLike many countries from the Americas, Cuba is threatened by Aedes aegypti-associated arboviruses such as dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) viruses. Curiously, when CHIKV was actively circulating in the region in 2013–2014, no autochthonous transmission of this virus was detected in Havana, Cuba, despite the importation of chikungunya cases into this city. To investigate if the transmission ability of local mosquito populations could explain this epidemiological scenario, we evaluated for the first time the vector competence of two Ae. aegypti populations (Pasteur and Párraga) collected from Havana for dengue virus type 1 (DENV-1), CHIKV, and ZIKV.Methodology/Principal findingsMosquito populations were fed separately using blood containing ZIKV, DENV-1, or CHIKV. Infection, dissemination, and transmission rates, were estimated at 3 (exclusively for CHIKV), 7, and 14 days post exposure (dpe) for each Ae. aegypti population-virus combination. Both mosquito populations were susceptible to DENV-1 and ZIKV, with viral infection and dissemination rates ranging from 24–97% and 6–67% respectively. In addition, CHIKV disseminated in both populations and was subsequently transmitted. Transmission rates were low (<30%) regardless of the mosquito population/virus combination and no ZIKV was detected in saliva of females from the Pasteur population at any dpe.Conclusions/SignificanceOur study demonstrated the ability of Ae. aegypti from Cuba to transmit DENV, ZIKV, and CHIKV. These results, along with the widespread distribution and high abundance of this species in the urban settings throughout the island, highlight the importance of Ae. aegypti control and arbovirus surveillance to prevent future outbreaks.  相似文献   

2.
BackgroundAs the three major arthropod-borne viruses, dengue virus (DENV), chikungunya virus (CHIKV), and zika virus (ZIKV) are posing a growing threat to global public health and socioeconomic development. Our study aimed to systematically review the global seroprevalences of these arboviruses from existing publications.MethodsArticles published between Jan 01, 2000 and Dec 31, 2019 in the databases of Embase, Pubmed and Web of Science were searched and collected. Countries or areas with known local presence of Aedes vector mosquitoes were included. Random effects model was utilized to estimate the pooled seroprevalences and the proportion of inapparent infection.ResultsOut of 1375, a total of 133 articles involving 176,001 subjects were included for our analysis. The pooled seroprevalences of DENV, CHIKV and ZIKV were 38%, 25% and 18%, respectively; and their corresponding proportions of inapparent infections were 80%, 40% and 50%. The South-East Asia Region had the highest seroprevalences of DENV and CHIKV, while the Region of the Americas had the highest seroprevalence of ZIKV. The seroprevalences of DENV and CHIKV were similar when comparing developed and developing countries, urban and rural areas, or among different populations. In addition, we observed a decreased global seroprevalences in the new decade (2010–2019) comparing to the decade before (2000–2009) for CHIKV. For ZIKV, the positive rates tested with the nucleic acid detection method were lower than those tested with the antibody detection method. Lastly, numerous cases of dual seropositivity for CHIKV and DENV were reported.ConclusionsOur results revealed a varied prevalence of arbovirus infections in different geographical regions and countries, and the inapparent infection accounted an unneglected portion of infections that requires more attention. This study will shed lights on our understanding of the true burden of arbovirus infections and promote appropriate vaccination in the future.  相似文献   

3.
BackgroundIn addition to their direct pathogenic effects, arthropod-borne (arboviruses) have been hypothesized to indirectly contribute to hospitalizations and death through decompensation of pre-existing comorbidities. Using nationwide data routinely collected from 1 January 2014 to 31 December 2019 in Brazil, we investigated whether local increases in arbovirus notifications were associated with excess hospitalization.MethodsWe estimated the relative risks for the association between municipality- and state-level increases in arboviral case notifications and age-standardized hospitalization rates (i.e., classified as direct or indirect based on ICD-10 codes) using Bayesian multilevel models with random effects accounting for temporal and geographic correlations. For municipality-level analyses, we excluded municipalities with <200 notifications of a given arbovirus and further adjusted the models for the local Gini Index, Human Development Index, and Family Healthcare Strategy (Estratégia de Saúde da Família) coverage. Models for dengue, Zika, and chikungunya were performed separately.ResultsFrom 2014 to 2019, Brazil registered 7,566,330 confirmed dengue cases, 159,029 confirmed ZIKV cases, and 433,887 confirmed CHIKV cases. Dengue notifications have an endemic and seasonal pattern, with cases present in 5334 of the 5570 (95.8%) Brazilian municipalities and most (69.5%) registered between February and May. Chikungunya notifications followed a similar seasonal pattern to DENV but with a smaller incidence and were restricted to 4390 (78.8%) municipalities. ZIKV was only notified in 2581 (46.3%) municipalities. Increases in dengue and chikungunya notifications were associated with small increases in age-standardized arbovirus-related hospitalizations, but no consistent association was found with all-cause or other specific indirect causes of hospitalization. Zika was associated to increases in hospitalizations by neurological diseases.ConclusionsAlthough we found no clear association between increased incidence of the three arboviruses and excess risks of all-cause or indirect hospitalizations at the municipality- and state-levels, follow-up investigations at the individual-level are warranted to define any potential role of acute arbovirus infection in exacerbating risks of hospitalization from underlying conditions.  相似文献   

4.
5.
IntroductionDengue, Zika and Chikungunya are RNA Arboviruses present in some areas of Mexico, mainly in the endemic state of Chiapas that is characterized by presence of the vector that transmit them and an ecology that favors high transmission. According to the national epidemiological surveillance system, Dengue has intensified since 2018 and outbreaks continue in various states while for Zika and Chikungunya a decrease in cases has been reported in recent years. The main objective of this study was to determine the incidence of Dengue, Zika and Chikungunya infections during pregnancy in the state of Chiapas.Principal findingsThe presence of previous and current infections and coinfections diagnosed by molecular (RT-PCR) and immunological (ELISA for IgG determination) techniques indicates a wide circulation of viruses in asymptomatic people, specifically in pregnant women showing that silent infections in dry season contributes to the preservation of viruses.ConclusionsFrom 136 studied samples, 27.7% tested positive for DENV, 8% for ZIKV and 24.1% for CHIKV by RTPCR and the values of IgG in sera show that 83.9% were positive for IgG antibodies against DENV, 65% against ZIKV and 59.1% against CHIKV. Results demonstrated presence of ZIKV and CHIKV, not detected by the epidemiological surveillance system, so the importance of establishing proactive epidemiological systems more strict, especially because these infections in pregnant women can cause severe health problems for newborn children.  相似文献   

6.
Usutu (USUV) and Zika (ZIKV) viruses are emerging arboviruses of significant medical and veterinary importance. These viruses have not been studied as well as other medically important arboviruses such as West Nile (WNV), dengue (DENV), or chikungunya (CHIKV) viruses. As such, information regarding the behavior of ZIKV and USUV viruses in the laboratory is dated. Usutu virus re-emerged in Austria in 2001 and has since spread throughout the European and Asian continents causing significant mortality among birds. Zika virus has recently appeared in the Western Hemisphere and has exhibited high rates of birth defects and sexual transmission. Information about the characteristics of USUV and ZIKV viruses are needed to better understand the transmission, dispersal, and adaptation of these viruses in new environments. Since their initial characterization in the middle of last century, technologies and reagents have been developed that could enhance our abilities to study these pathogens. Currently, standard laboratory methods for these viruses are limited to 2–3 cell lines and many assays take several days to generate meaningful data. The goal of this study was to characterize these viruses in cells from multiple diverse species. Cell lines from 17 species were permissive to both ZIKV and USUV. These viruses were able to replicate to significant titers in most of the cell lines tested. Moreover, cytopathic effects were observed in 8 of the cell lines tested. These data indicate that a variety of cell lines can be used to study ZIKV and USUV infection and may provide an updated foundation for the study of host-pathogen interactions, model development, and the development of therapeutics.  相似文献   

7.
BackgroundSerological diagnosis of Zika virus (ZIKV) infection is challenging because of the antibody cross-reactivity among flaviviruses. At the same time, the role of Nucleic Acid Testing (NAT) is limited by the low proportion of symptomatic infections and the low average viral load. Here, we compared the diagnostic performance of commercially available IgM, IgAM, and IgG ELISAs in sequential samples during the ZIKV and chikungunya (CHIKV) epidemics and co-circulation of dengue virus (DENV) in Brazil and Venezuela.Methodology/Principal findingsAcute (day of illness 1–5) and follow-up (day of illness ≥ 6) blood samples were collected from nine hundred and seven symptomatic patients enrolled in a prospective multicenter study between June 2012 and August 2016. Acute samples were tested by RT-PCR for ZIKV, DENV, and CHIKV. Acute and follow-up samples were tested for IgM, IgAM, and IgG antibodies to ZIKV using commercially available ELISAs. Among follow-up samples with a RT-PCR confirmed ZIKV infection, anti-ZIKV IgAM sensitivity was 93.5% (43/46), while IgM and IgG exhibited sensitivities of 30.3% (10/33) and 72% (18/25), respectively. An additional 24% (26/109) of ZIKV infections were detected via IgAM seroconversion in ZIKV/DENV/CHIKV RT-PCR negative patients. The specificity of anti-ZIKV IgM was estimated at 93% and that of IgAM at 85%.Conclusions/SignificanceOur findings exemplify the challenges of the assessment of test performance for ZIKV serological tests in the real-world setting, during co-circulation of DENV, ZIKV, and CHIKV. However, we can also demonstrate that the IgAM immunoassay exhibits superior sensitivity to detect ZIKV RT-PCR confirmed infections compared to IgG and IgM immunoassays. The IgAM assay also proves to be promising for detection of anti-ZIKV seroconversions in sequential samples, both in ZIKV PCR-positive as well as PCR-negative patients, making this a candidate assay for serological monitoring of pregnant women in future ZIKV outbreaks.  相似文献   

8.
In portions of South Asia, vectors and patients co-infected with dengue (DENV) and chikungunya (CHIKV) are on the rise, with the potential for this occurrence in other regions of the world, for example the United States. Therefore, we engineered an antiviral approach that suppresses the replication of both arboviruses in mosquito cells using a single antiviral group I intron. We devised unique configurations of internal, external, and guide sequences that permit homologous recognition and splicing with conserved target sequences in the genomes of both viruses using a single trans-splicing Group I intron, and examined their effectiveness to suppress infections of DENV and CHIKV in mosquito cells when coupled with a proapoptotic 3'' exon, ΔN Bax. RT-PCR demonstrated the utility of these introns in trans-splicing the ΔN Bax sequence downstream of either the DENV or CHIKV target site in transformed Aedes albopictus C6/36 cells, independent of the order in which the virus specific targeting sequences were inserted into the construct. This trans-splicing reaction forms DENV or CHIKV ΔN Bax RNA fusions that led to apoptotic cell death as evidenced by annexin V staining, caspase, and DNA fragmentation assays. TCID50-IFA analyses demonstrate effective suppression of DENV and CHIKV infections by our anti-arbovirus group I intron approach. This represents the first report of a dual-acting Group I intron, and demonstrates that we can target DENV and CHIKV RNAs in a sequence specific manner with a single, uniquely configured CHIKV/DENV dual targeting group I intron, leading to replication suppression of both arboviruses, and thus providing a promising single antiviral for the transgenic suppression of multiple arboviruses.  相似文献   

9.
Chikungunya fever is a vector-borne viral disease transmitted to humans by chikungunya virus(CHIKV)-infected mosquitoes. There have been many outbreaks of CHIKV infection worldwide, and the virus poses ongoing risks to global health. To prevent and control CHIKV infection, it is important to improve the current CHIKV diagnostic approaches to allow for the detection of low CHIKV concentrations and to correctly distinguish CHIKV infections from those due to other mosquito-transmitted viruses, including dengue virus(DENV), Japanese encephalitis virus(JEV), and Zika virus(ZIKV). Here, we produced monoclonal antibodies(mAbs) against the CHIKV envelope 2 protein(CHIKV-E2) and compared their sensitivity and specificity with commercially available m Abs using enzyme-linked immunosorbent assays(ELISA). Two anti-CHIKV-E2 mAbs, 19-1 and 21-1, showed higher binding affinities to CHIKV-E2 protein than the commercial mAbs did. In particular, the 19-1 m Ab had the strongest binding affinity to inactivated CHIKV. Moreover, the 19-1 mAb had very little cross-reactivity with other mosquito-borne viruses, such as ZIKV, JEV, and DENV. These results suggest that the newly produced anti-CHIKV-E2 mAb, 19-1, could be used for CHIKV diagnostic approaches.  相似文献   

10.
BackgroundEpidemic arbovirus transmission occurs among humans by mosquito bites and the sylvatic transmission cycles involving non-human primates (NHPs) still exists. However, limited data are available on the extent in NHPs infections and their role. In this study, we have developed and validated a high-throughput serological screening tool to study the circulation of multiple arboviruses that represent a significant threat to human health, in NHPs in Central Africa.Methodology/Principal findingsRecombinant proteins NS1, envelope domain-3 (DIII) for the dengue (DENV), yellow fever (YFV), usutu (USUV), west nile (WNV) and zika (ZIKV) and envelope 2 for the chikungunya (CHIKV) and o''nyong-nyong (ONNV) were coupled to Luminex beads to detect IgG directed against these viruses. Evaluation of test performance was made using 161 human sera of known arboviral status (66 negative and 95 positive). The sensitivity and specificity of each antigen were determined by statistical methods and ROC curves (except for ONNV and USUV). All NS1 antigens (except NS1-YFV), CHIKV-E2 and WNV-DIII had sensitivities and specificities > 95%. For the other DIII antigens, the sensitivity was low, limiting the interest of their use for seroprevalence studies. Few simultaneous reactions were observed between the CHIKV+ samples and the NS1 antigens to the non-CHIKV arboviruses. On the other hand, the DENV+ samples crossed-reacted with NS1 of all the DENV serotypes (1 to 4), as well as with ZIKV, USUV and to a lesser extent with YFV. A total of 3,518 samples of 29 species of NHPs from Cameroon and the Democratic Republic of Congo (DRC) were tested against NS1 (except YFV), E2 (CHIKV/ONNV) and DIII (WNV) antigens. In monkeys (n = 2,100), the global prevalence varied between 2 and 5% for the ten antigens tested. When we stratified by monkey’s biotope, the arboreal species showed the highest reactivity. In monkeys from Cameroon, the highest IgG prevalence were observed against ONNV-E2 and DENV2-NS1 with 3.95% and 3.40% respectively and in DRC, ONNV-E2 (6.63%) and WNV-NS1 (4.42%). Overall prevalence was low in apes (n = 1,418): ranging from 0% for USUV-NS1 to 2.6% for CHIKV-E2. However, a very large disparity was observed among collection site and ape species, e.g. 18% (9/40) and 8.2% (4/49) of gorillas were reactive with CHIKV-E2 or WNV-NS1, respectively in two different sites in Cameroon.Conclusions/SignificanceWe have developed a serological assay based on Luminex technology, with high specificity and sensitivity for simultaneous detection of antibodies to 10 antigens from 6 different arboviruses. This is the first study that evaluated on a large scale the presence of antibodies to arboviruses in NHPs to evaluate their role in sylvatic cycles. The overall low prevalence (<5%) in more than 3,500 NHPs samples from Cameroon and the DRC does not allow us to affirm that NHP are reservoirs, but rather, intermediate hosts of these viruses.  相似文献   

11.
BackgroundSince its emergence in 2007 in Micronesia and Polynesia, the arthropod-borne flavivirus Zika virus (ZIKV) has spread in the Americas and the Caribbean, following first detection in Brazil in May 2015. The risk of ZIKV emergence in Europe increases as imported cases are repeatedly reported. Together with chikungunya virus (CHIKV) and dengue virus (DENV), ZIKV is transmitted by Aedes mosquitoes. Any countries where these mosquitoes are present could be potential sites for future ZIKV outbreak. We assessed the vector competence of European Aedes mosquitoes (Aedes aegypti and Aedes albopictus) for the currently circulating Asian genotype of ZIKV.Conclusions/SignificanceIn combination with the restricted distribution of European Ae. albopictus, our results on vector competence corroborate the low risk for ZIKV to expand into most parts of Europe with the possible exception of the warmest regions bordering the Mediterranean coastline.  相似文献   

12.
Dengue and chikungunya are acute viral infections with overlapping clinical symptoms. Both diseases are transmitted by common mosquito vectors resulting in their co‐circulation in a region. Molecular and serological tests specific for both dengue and chikungunya infections were performed on 87 acute phase blood samples collected from patients with suspected dengue/chikungunya infections in Delhi from September to December, 2011. RT‐PCR and IgM ELISA were performed to detect dengue virus (DENV) and chikungunya virus (CHIKV). NS1 and IgG ELISA were also performed to detect DENV specific antigen and secondary DENV infection. DENV infection was detected in 49%, CHIKV infection in 29% and co‐infection with DENV and CHIKV in 10% of the samples by RT‐PCR. DENV serotypes 1, 2 and 3 were detected in this study. Nine DENV‐1 strains, six DENV‐2 strains and 20 CHIKV strains were characterized by DNA sequencing and phylogenetic analysis of their respective envelope protein genes. DENV‐1 strains grouped in the American African genotype, DENV‐2 strains in the Cosmopolitan genotype and CHIKV strains in the East Central South African genotype by phylogenetic analysis. This is one of the few studies reporting the phylogeny of two dengue virus serotypes (DENV‐1 and DENV‐2) and CHIKV. Surveillance and monitoring of DENV and CHIKV strains are important for design of strategies to control impending epidemics.  相似文献   

13.
Arthropod-borne viruses are a group of the most important emerging pathogens. They cause a range of diseases in vertebrate hosts and threaten human health (Gan and Leo, 2014). The global distribution of arboviruses is associated with the vector which is strongly affected by changes in environmental conditions. Dengue virus (DENV) and Chikungunya virus (CHIKV), which cause high annual infected cases and have an increasing geographic distribution, are transmitted by Aedes spp. mosquitoes, in particular Ae. albopictus and Ae. Aegypti (Presti et al., 2014; Higuera and Ramírez, 2018). Although, the main vector of dengue virus, Ae. aegypti, was not detected in Iran, other possible important vectors such as Ae. Albopictus and Ae. unilineatus were recorded (Doosti et al., 2016; Yaghoobi-Ershadi et al., 2017). West Nile virus (WNV), a member of the genus Flaviviruses, is one of the most widespread arboviruses (Chancey et al., 2015). The epidemiological evidence of WNV in different hosts in Iran was found (Bagheri et al., 2015), and the circulation of WNV in the main vector, Culex pipiens s.l. and Cx. pipiens, has been proved (Shahhosseini et al., 2017). Due to limited information on the situation of CHIKV, DENV and WNV in Iran, we performed a wide geographical investigation to determine the prevalence of IgG specific antibodies in human samples as well as the genome of WNV, CHIKV and DENV in mosquitoes.  相似文献   

14.
Zika virus (ZIKV) and chikungunya virus (CHIKV) were recently introduced into the Americas resulting in significant disease burdens. Understanding their spatial and temporal dynamics at the subnational level is key to informing surveillance and preparedness for future epidemics. We analyzed anonymized line list data on approximately 105,000 Zika virus disease and 412,000 chikungunya fever suspected and laboratory-confirmed cases during the 2014–2017 epidemics. We first determined the week of invasion in each city. Out of 1,122, 288 cities met criteria for epidemic invasion by ZIKV and 338 cities by CHIKV. We analyzed risk factors for invasion using linear and logistic regression models. We also estimated that the geographic origin of both epidemics was located in Barranquilla, north Colombia. We assessed the spatial and temporal invasion dynamics of both viruses to analyze transmission between cities using a suite of (i) gravity models, (ii) Stouffer’s rank models, and (iii) radiation models with two types of distance metrics, geographic distance and travel time between cities. Invasion risk was best captured by a gravity model when accounting for geographic distance and intermediate levels of density dependence; Stouffer’s rank model with geographic distance performed similarly well. Although a few long-distance invasion events occurred at the beginning of the epidemics, an estimated distance power of 1.7 (95% CrI: 1.5–2.0) from the gravity models suggests that spatial spread was primarily driven by short-distance transmission. Similarities between the epidemics were highlighted by jointly fitted models, which were preferred over individual models when the transmission intensity was allowed to vary across arboviruses. However, ZIKV spread considerably faster than CHIKV.  相似文献   

15.
16.
Dengue has become endemic in Pakistan with annual recurrence. A sudden increase in the dengue cases was reported from Rawalpindi in 2016, while an outbreak occurred for the first time in Peshawar in 2017. Therefore, a multi-center study was carried out to determine the circulating dengue virus (DENV) serotypes and Chikungunya virus (CHIKV) co-infection in Lahore, Rawalpindi, and Peshawar cities in 2016–18. A hospital-based cross-sectional study was carried out in Lahore and Rawalpindi in 2016–18, while a community-based study was carried out in Peshawar in 2017. The study participants were tested for dengue NS1 antigen using an immunochromatographic device while anti-dengue IgM/IgG antibodies were detected by indirect ELISA. All NS1 positive samples were used for DENV serotyping using multiplex real-time PCR assay. Additionally, dengue samples were tested for CHIKV co-infection using IgM/IgG ELISA. A total of 6291 samples were collected among which 8.11% were NS1 positive while 2.5% were PCR positive. DENV-2 was the most common serotype (75.5%) detected, followed by DENV-1 in 16.1%, DENV-3 in 3.9% and DENV-4 in 0.7% while DENV-1 and DENV-4 concurrent infections were detected in 3.9% samples. DENV-1 was the predominant serotype (62.5%) detected from Lahore and Rawalpindi, while DENV-2 was the only serotype detected from Peshawar. Comorbidities resulted in a significant increase (p-value<0.001) in the duration of hospital stay of the patients. Type 2 diabetes mellitus substantially (p-value = 0.004) contributed to the severity of the disease. Among a total of 590 dengue positive samples, 11.8% were also positive for CHIKV co-infection. Co-circulation of multiple DENV serotypes and CHIKV infection in Pakistan is a worrisome situation demanding the urgent attention of the public health experts to strengthen vector surveillance.  相似文献   

17.

Background

First described in humans in 1964, reports of co-infections with dengue (DENV) and chikungunya (CHIKV) viruses are increasing, particularly after the emergence of chikungunya (CHIK) in the Indian Ocean in 2005–2006 due to a new variant highly transmitted by Aedes albopictus. In this geographic area, a dengue (DEN) outbreak transmitted by Ae. albopictus took place shortly before the emergence of CHIK and co-infections were reported in patients. A co-infection in humans can occur following the bite of two mosquitoes infected with one virus or to the bite of a mosquito infected with two viruses. Co-infections in mosquitoes have never been demonstrated in the field or in the laboratory. Thus, we question about the ability of a mosquito to deliver infectious particles of two different viruses through the female saliva.

Methodology/Principal Findings

We orally exposed Ae. albopictus from La Reunion Island with DENV-1 and CHIKV isolated respectively during the 2004–2005 and the 2005–2006 outbreaks on this same island. We were able to show that Ae. albopictus could disseminate both viruses and deliver both infectious viral particles concomitantly in its saliva. We also succeeded in inducing a secondary infection with CHIKV in mosquitoes previously inoculated with DENV-1.

Conclusions/Significance

In this study, we underline the ability of Ae. albopictus to be orally co-infected with two different arboviruses and furthermore, its capacity to deliver concomitantly infectious particles of CHIKV and DENV in saliva. This finding is of particular concern as Ae. albopictus is still expanding its geographical range in the tropical as well as in the temperate regions. Further studies are needed to try to elucidate the molecular/cellular basis of this phenomenon.  相似文献   

18.
In Puerto Rico, the first records of the transmission of Chikungunya (CHIKV) and Zika (ZIKV) viruses were confirmed in May 2014 and December 2015, respectively. Transmission of CHIKV peaked in September 2014, whereas that of ZIKV peaked in August 2016. The emergence of these mosquito‐transmitted arboviruses in the context of a lack of human population immunity allowed observations of whether the outbreaks were associated with Aedes aegypti (Diptera: Culicidae) densities and weather. Mosquito density was monitored weekly in four communities using sentinel autocidal gravid ovitraps (AGO traps) during 2016 in order to provide data to be compared with the findings of a previous study carried out during the 2014 CHIKV epidemic. Findings in two communities protected against Ae. aegypti using mass AGO trapping (three traps per house in most houses) were compared with those in two nearby communities without vector control. Mosquito pools were collected to detect viral RNA of ZIKV, CHIKV and dengue virus. In areas without vector control, mosquito densities and rates of ZIKV detection in 2016 were significantly higher, similarly to those observed for CHIKV in 2014. The density of Ae. aegypti in treated sites was less than two females/trap/week, which is similar to the putative adult female threshold for CHIKV transmission. No significant differences in mosquito density or infection rates with ZIKV and CHIKV at the same sites between years were observed. Although 2016 was significantly wetter, mosquito densities were similar.  相似文献   

19.
BackgroundThe transmission patterns and genetic diversity of dengue virus (DENV) circulating in Africa remain poorly understood. Circulation of the DENV serotype 1 (DENV1) in Angola was detected in 2013, while DENV serotype 2 (DENV2) was detected in 2018. Here, we report results from molecular and genomic investigations conducted at the Ministry of Health national reference laboratory (INIS) in Angola on suspected dengue cases detected between January 2017 and February 2019.MethodsA total of 401 serum samples from dengue suspected cases were collected in 13 of the 18 provinces in Angola. Of those, 351 samples had complete data for demographic and epidemiological analysis, including age, gender, province, type of residence, clinical symptoms, as well as dates of onset of symptoms and sample collection. RNA was extracted from residual samples and tested for DENV-RNA using two distinct real time RT-PCR protocols. On-site whole genome nanopore sequencing was performed on RT-PCR+ samples. Bayesian coalescent models were used to estimate date and origin of outbreak emergence, as well as population growth rates.ResultsMolecular screening showed that 66 out of 351 (19%) suspected cases were DENV-RNA positive across 5 provinces in Angola. DENV RT-PCR+ cases were detected more frequently in urban sites compared to rural sites. Of the DENV RT-PCR+ cases most were collected within 6 days of symptom onset. 93% of infections were confirmed by serotype-specific RT-PCR as DENV2 and 1 case (1.4%) was confirmed as DENV1. Six CHIKV RT-PCR+ cases were also detected during the study period, including 1 co-infection of CHIKV with DENV1. Most cases (87%) were detected in Luanda during the rainy season between April and October. Symptoms associated with severe dengue were observed in 11 patients, including 2 with a fatal outcome. On-site nanopore genome sequencing followed by genetic analysis revealed an introduction of DENV2 Cosmopolitan genotype (also known as DENV2-II genotype) possibly from India in or around October 2015, at least 1 year before its detection in the country. Coalescent models suggest relatively moderately rapid epidemic growth rates and doubling times, and a moderate expansion of DENV2 in Angola during the studied period.ConclusionThis study describes genomic, epidemiological and demographic characteristic of predominately urban transmission of DENV2 in Angola. We also find co-circulation of DENV2 with DENV1 and CHIKV and report several RT-PCR confirmed severe dengue cases in the country. Increasing dengue awareness in healthcare professional, expanding the monitorization of arboviral epidemics across the country, identifying most common mosquito breeding sites in urban settings, implementing innovative vector control interventions and dengue vaccination campaigns could help to reduce vector presence and DENV transmission in Angola.  相似文献   

20.
Dengue, Zika and chikungunya are diseases of global health significance caused by arboviruses and transmitted by the mosquito Aedes aegypti, which is of worldwide circulation. The arrival of the Zika and chikungunya viruses to South America increased the complexity of transmission and morbidity caused by these viruses co-circulating in the same vector mosquito species. Here we present an integrated analysis of the reported arbovirus cases between 2007 and 2017 and local climate and socio-economic profiles of three distinct Colombian municipalities (Bello, Cúcuta and Moniquirá). These locations were confirmed as three different ecosystems given their contrasted geographic, climatic and socio-economic profiles. Correlational analyses were conducted with both generalised linear models and generalised additive models for the geographical data. Average temperature, minimum temperature and wind speed were strongly correlated with disease incidence. The transmission of Zika during the 2016 epidemic appeared to decrease circulation of dengue in Cúcuta, an area of sustained high incidence of dengue. Socio-economic factors such as barriers to health and childhood services, inadequate sanitation and poor water supply suggested an unfavourable impact on the transmission of dengue, Zika and chikungunya in all three ecosystems. Socio-demographic influencers were also discussed including the influx of people to Cúcuta, fleeing political and economic instability from neighbouring Venezuela. Aedes aegypti is expanding its range and increasing the global threat of these diseases. It is therefore vital that we learn from the epidemiology of these arboviruses and translate it into an actionable local knowledge base. This is even more acute given the recent historical high of dengue cases in the Americas in 2019, preceding the COVID-19 pandemic, which is itself hampering mosquito control efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号