首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Malignant Mesothelioma (MM) is a very aggressive cancer with low survival rates and often diagnosed at an advanced stage. Several players have been implicated in the development of this cancer, such as asbestos, erionite and the simian virus 40 (SV40). Here, we have reviewed the involvement of erionite, SV40, as well as, the role of several genes (p16INK4a, p14ARF, NF2, LATS2, SAV, CTNNB1 and among others), the pathways (RAS, PI3K, Wnt, BCL and Hippo), and their respective roles in the development of MM.  相似文献   

2.
Malignant mesothelioma (MM) is a therapy‐resistant cancer arising primarily from the lining of the pleural and peritoneal cavities. The most frequently altered genes in human MM are cyclin‐dependent kinase inhibitor 2A (CDKN2A), which encodes components of the p53 (p14ARF) and RB (p16INK4A) pathways, BRCA1‐associated protein 1 (BAP1), and neurofibromatosis 2 (NF2). Furthermore, the p53 gene (TP53) itself is mutated in ~15% of MMs. In many MMs, the PI3K–PTEN–AKT–mTOR signaling node is hyperactivated, which contributes to tumor cell survival and therapeutic resistance. Here, we demonstrate that the inactivation of both Tp53 and Pten in the mouse mesothelium is sufficient to rapidly drive aggressive MMs. PtenL/L;Tp53L/L mice injected intraperitoneally or intrapleurally with adenovirus‐expressing Cre recombinase developed high rates of peritoneal and pleural MMs (92% of mice with a median latency of 9.4 weeks and 56% of mice with a median latency of 19.3 weeks, respectively). MM cells from these mice showed consistent activation of Akt–mTor signaling, chromosome breakage or aneuploidy, and upregulation of Myc; occasional downregulation of Bap1 was also observed. Collectively, these findings suggest that when Pten and Tp53 are lost in combination in mesothelial cells, DNA damage is not adequately repaired and genomic instability is widespread, whereas the activation of Akt due to Pten loss protects genomically damaged cells from apoptosis, thereby increasing the likelihood of tumor formation. Additionally, the mining of an online dataset (The Cancer Genome Atlas) revealed codeletions of PTEN and TP53 and/or CDKN2A/p14ARF in ~25% of human MMs, indicating that cooperative losses of these genes contribute to the development of a significant proportion of these aggressive neoplasms and suggesting key target pathways for therapeutic intervention.  相似文献   

3.
Cellular and molecular parameters of mesothelioma   总被引:4,自引:0,他引:4  
Malignant mesotheliomas (MM) are neoplasms arising from mesothelial cells that line the body cavities, most commonly the pleural and peritoneal cavities. Although traditionally recognized as associated with occupational asbestos exposures, MMs can appear in individuals with no documented exposures to asbestos fibers, and emerging data suggest that genetic susceptibility and simian virus 40 (SV40) infections also facilitate the development of MMs. Both asbestos exposure and transfection of human mesothelial cells with SV40 large and small antigens (Tag, tag) cause genetic modifications and cell signaling events, most notably the induction of cell survival pathways and activation of receptors, and other proteins that favor the growth and establishment of MMs as well as their resistance to chemotherapy. Recent advances in high-throughput technologies documenting gene and protein expression in patients and animal models of MMs can now be validated in human MM tissue arrays. These have revealed expression profiles that allow more accurate diagnosis and prognosis of MMs. More importantly, serum proteomics has revealed two new candidates (osteopontin and serum mesothelin-related protein or SMRP) potentially useful in screening individuals for MMs. These mechanistic approaches offer new hope for early detection and treatment of these devastating tumors.  相似文献   

4.
The CDKN2A/ARF locus encompasses overlapping tumor suppressor genes p16(INK4A) and p14(ARF), which are frequently co-deleted in human malignant mesothelioma (MM). The importance of p16(INK4A) loss in human cancer is well established, but the relative significance of p14(ARF) loss has been debated. The tumor predisposition of mice singly deficient for either Ink4a or Arf, due to targeting of exons 1α or 1β, respectively, supports the idea that both play significant and nonredundant roles in suppressing spontaneous tumors. To further test this notion, we exposed Ink4a(+/-) and Arf(+/-) mice to asbestos, the major cause of MM. Asbestos-treated Ink4a(+/-) and Arf(+/-) mice showed increased incidence and shorter latency of MM relative to wild-type littermates. MMs from Ink4a(+/-) mice exhibited biallelic inactivation of Ink4a, loss of Arf or p53 expression and frequent loss of p15(Ink4b). In contrast, MMs from Arf(+/-) mice exhibited loss of Arf expression, but did not require loss of Ink4a or Ink4b. Mice doubly deficient for Ink4a and Arf, due to deletion of Cdkn2a/Arf exon 2, showed accelerated asbestos-induced MM formation relative to mice deficient for Ink4a or Arf alone, and MMs exhibited biallelic loss of both tumor suppressor genes. The tumor suppressor function of Arf in MM was p53-independent, since MMs with loss of Arf retained functional p53. Collectively, these in vivo data indicate that both CDKN2A/ARF gene products suppress asbestos carcinogenicity. Furthermore, while inactivation of Arf appears to be crucial for MM pathogenesis, the inactivation of both p16(Ink4a) and p19(Arf) cooperate to accelerate asbestos-induced tumorigenesis.  相似文献   

5.
The aim of this study was to locate the candidate tumor suppressor genes (TSGs) loci in the chromosomal 4p15-16, 4q22-23 and 4q34-35 regions associated with the development of uterine cervical carcinoma (CA-CX). Deletion mapping of the regions by microsatellite markers identified six discrete areas with high frequency of deletions, viz. 4p16.2 (D1: 40%), 4p15.31 (D2: 35–38%), 4p15.2 (D3: 37–40%), 4q22.2 (D4: 34%), 4q34.2-34.3 (D5: 37–59%) and 4q35.1 (D6: 40–50%). Significant correlation was noted among the deleted regions D1, D2 and D3. The deletions in D1, D2, D5 and D6 regions are suggested to be associated with the cervical intraepithelial neoplasia (CIN), and deletions in the D2, D3, D5 and D6 regions seems to be associated with progression of CA-CX. The deletions in the D2 and D6 regions showed significant prognostic implications (P = 0.001; 0.02). The expression of the candidate TSG SLIT2 mapped to D2 region gradually reduced from normal cervix uteri →CIN → CA-CX. SLIT2 promoter hypermethylation was seen in 28% CIN samples and significantly increased with tumor progression (P = 0.04). Significant correlation was seen between SLIT2 deletion and its promoter methylation (P = 0.001), indicating that both these phenomena could occur simultaneously to inactivate this gene. Immunohistochemical analysis showed reduced expression of SLIT2 in cervical lesions and CA-CX cell lines. Although no mutation was detected in the SLIT2 promoter region (−432 to + 55 bp), CC and AA haplotypes were seen in −227 and −195 positions, respectively. Thus, it indicates that inactivation of SLIT2-ROBO1 signaling pathway may have an important role in CA-CX development.  相似文献   

6.
Malignant mesotheliomas (MMs) are pleural‐, pericardial‐, or peritoneal‐based neoplasms usually associated with asbestos exposure. Mesothelial cells are biphasic and may give rise to epithelial and sarcomatous MMs. In addition, benign or atypical proliferations of mesothelial cells may occur in response to many stimuli. There have been recent reports of simian virus 40 (SV40) DNA large T antigen (Tag) sequences in pleural MMs. To further understand the relationship between SV40, MMs, and mesothelial proliferations, we studied 118 MMs from multiple sites in Germany and North America, including 93 epithelial pleural, 14 sarcomatous or mixed pleural MMs, and 11 peritoneal MMs. In 12 pleural MMs, adjacent noninvasive tumor foci were identified and studied separately. Information about asbestos exposure (detailed history and/or microscopic examination for asbestos bodies) was available from 43 German patients. In addition, 13 examples of reactive mesothelium and 20 lung cancers from the United States were tested. DNA was extracted from frozen tumor and adjacent nontumorous tissues or after microdissection of archival formalin‐fixed, paraffin‐embedded microslides. Two rounds of PCR were performed with primers SVFor 3 and SVRev, which amplify a 105 bp region specific for SV40 Tag. The specificity of the PCR product was confirmed in some cases by sequencing. Our major findings were: 1) Specific SV40 viral sequences were present in 57% of epithelial invasive MMs, of both pleural and peritoneal origin. No significant geographic differences were found, and frozen and paraffin‐embedded tissues were equally suitable for analysis. 2) There was no apparent relationship between the presence of SV40 sequences and asbestos exposure. 3) SV40 sequences were present in the surface (noninvasive) components of epithelial MMs. 4) SV40 sequences were not detected in MMs of sarcomatous or mixed histologies. 5) Viral sequences were present in two of 13 samples (15%) of reactive mesothelium. 6) Lung cancers lacked SV40 sequences, as did non‐malignant tissues adjacent to MMs. Our findings demonstrate the presence of SV40 sequences in epithelial MMs of pleural and peritoneal origin and their absence in tumors with a sarcomatous component. Viral sequences may be present in reactive and malignant mesothelial cells, but they are absent in adjacent tissues and lung cancers. J. Cell. Biochem. 76:181–188, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
Multiplex methylation-sensitive (MSe-PCR) and methylation-specific (MSp-PCR) PCRs were used to detect aberrant methylation of CpG islands in the promoter regions and first exons of p16/CDKN2A and p14/ARF in non-small cell lung cancer (NSCLC, 54 specimens) and B-cell acute lymphoblastic leukemia (B-ALL, 61 specimens). A difference in CpG methylation was observed for individual specimens and for the two malignancies. A high methylation frequency of the first exon of p16/CDKN2A was detected both in NSCLC (68%) and in B-ALL (55%). The CpG island of the p14/ARF first exon proved to be nonmethylated in both malignancies. Particular CpG-rich fragments were examined in the p16/CDKN2A and p14/ARF promoters. It was shown that methylation frequency can differ between the 5 regions of one promoter. The sensitivity was compared for MSe-PCR and MSp-PCR, which are commonly employed in methylation analysis.  相似文献   

8.
The Ink4a/Arf ( CDKN2a) locus encodes two proteins that regulate distinct important tumor suppressor pathways represented by p53 and Rb. Loss of either p16INK4a or p19ARF was recently reported to reduce the ability of mouse cells to repair UV-induced DNA damage and to induce a UV-mutator phenotype. This observation was independent of cell cycle effects incurred by either p16INK4a and/or p19ARF loss, as it was demonstrable in unirradiated cells using UV-treated DNA. We suggest that this might explain why germ line mutations of INK4a/ARF predispose mainly to malignant melanoma, a UV-induced skin cancer, and provides a molecular explanation for the link between melanoma-genesis and impaired DNA repair. It also further demonstrates that regulation of cell cycle check points and DNA repair in response to genomic insults, such as ultraviolet irradiation are intricately interwoven processes. Differences in the apoptotic response to ultraviolet light between melanocytes and keratinocytes might explain why INK4a/ARF mutations predispose to malignant melanoma, but not to keratinocyte-derived skin cancers.  相似文献   

9.
INK4a/ARF基因位于人染色体9p21,是人类肿瘤中最常见的基因失活位点之一.INK4a/ARF基因有两套各自独立的启动子,通过可变阅读框,能够编码两种蛋白质:p16INK4a和p14ARF(ARF在鼠细胞中为p19ARF).p16作为CDK4/6的抑制因子,能够阻断pRb磷酸化,将细胞周期阻断在G1期;而ARF可结合原癌蛋白MDM2,稳定p53,将细胞周期阻断在G1期和G2/M转换期,或诱导细胞凋亡.因此ARF蛋白和p16一样也是一种肿瘤抑制因子.  相似文献   

10.
The status of tumor suppressor genes (TSGs) relevant to human malignant mesothelioma (HMM) pathogenesis was examined in cultures of mesothelioma cells from tumoral ascites developed in mice exposed to asbestos (asb) fibers. The status of the respective hortologous human genes was also investigated in 12 HMM cell cultures. Eleven primary cultures from mice hemizygous for N?2 (asb-Nf2KO3/+) and 4 wild type counterparts (asb-Nf2+/+) were analyzed for mutations in Nf2, p16/Cdkn2a, p19/Arf and Trp53 genes and protein expression of p15/Cdkn2b and Cdk4. TSG alterations in both mouse and human mesothelioma cells consisted in frequent inactivation of p16/Cdkn2a, p19/Arf (or P14/ARF) and p15/Cdkn2b, co-inactivation of p16/Cdkn2a and p15/Cdkn2b and low rate of Trp53 mutations in both asb-Nf2KO3/+ and asb-Nf2+/+ mesothelioma cells. In both mouse and human mesothelioma cells, inactivation of the hortologous genes p16/Cdkn2a or P16/CDKN2A was due to deletions at the Ink4/Arf locus encompassing p19/Arf or P14/ARF, respectively. Loss of heterozygosity at the Nf2 locus was detected in 10 of 11 asb-Nf2KO3/+ cultures and Nf2 gene rearrangement in one asb-Nf2+/+ culture. These data show that the profile of TSG alterations in asbestos-induced mesothelioma is similar in mice and humans. Thus, the mouse mesothelioma model could be useful for human risk assessment, taking into account interindividual variations in genetic sensitivity to carcinogens.  相似文献   

11.
Conventional cytogenetic analyses and comparative genomic hybridization have revealed a complex and even chaotic nature of chromosomal aberrations in pleural malignant mesothelioma (MM). We set out to describe the complex gene copy number changes and screen for novel genetic aberrations using a high-density oligonucleotide microarray platform for comparative genomic hybridization (aCGH) of a series of 26 well-characterized MM tumor samples. The number of copy number changes varied from zero to 40 per sample. Gene copy number losses predominated over gains, and the most frequent region of loss was 9p21.3 (17/26 cases), the locus of CDKN2A and CDKN2B, both known to be commonly lost in MM. The most recurrent minimal regions of losses were 1p31.1--> p13.2, 3p22.1-->p14.2, 6q22.1, 9p21.3, 13cen-->q14.12, 14q22.1-->qter, and 22qcen-->q12.3. Previously unreported gains included 9p13.3, 7p22.3-->p22.2, 12q13.3, and 17q21.32-->qter. The results suggest that gene copy number losses are a major mechanism of MM carcinogenesis and reveal a recurrent pattern of copy number changes in MM.  相似文献   

12.
13.
Single-nucleotide polymorphisms (SNPs) in the 9p21.3 locus have recently been demonstrated to be strongly associated with atherosclerosis. However, the pathophysiology of this locus is insufficiently studied. Here, the methylation profile of the nearest mapped genes for cyclin-dependent kinase inhibitors CDKN2A (p16INK4a, p14ARF) and CDKN2B (p15INK4b) in the tissues of the carotid artery in patients with atherosclerosis was evaluated for the first time. Aberrant DNA methylation of the analyzed loci was not established in either the atherosclerotic plaques or in the tissues from the macroscopically intact vascular wall in the same patients.  相似文献   

14.

Background

Asbestos-induced mesothelial inflammatory processes are thought to be the basic mechanisms underlying Malignant Mesothelioma (MM) development. Detection of MM often occurs at late stage due to the long and unpredictable latent period and the low incidence in asbestos exposed individuals. The aim of this study was to investigate early immunological biomarkers to characterize the prognostic profile of a possible asbestos-induced disease, in subjects from a MM hyperendemic area.

Methods

The Luminex Multiplex Panel Technology was used for the simultaneous measurement of serum levels of a large panel of 47 analytes, including cytokines and growth factors, from workers previously exposed to asbestos (Asb-workers), asbestos-induced MM patients and healthy subjects. In addition, to explore the influence on serum cytokines profile exerted by SV40 infection, a cofactor in MM development, a quantitative real time PCR was performed for sequences detection in the N-terminal and intronic regions of the SV40 Tag gene. Statistical analysis was done by means of the Mann-Whitney test and the Kruskall-Wallis test for variance analysis.

Results

A variety of 25 cytokines linked to pulmonary inflammation and tumor development were found significantly associated with Asb-workers and MM patients compared with healthy controls. A specific pattern of cytokines were found highly expressed in Asb-workers: IFN-alpha (p<0.05), EOTAXIN (p<0.01), RANTES (p<0.001), and in MM patients: IL-12(p40), IL-3, IL-1 alpha, MCP-3, beta-NGF, TNF-beta, RANTES (p<0.001). Notably, the chemokine RANTES measured the highest serum level showing an increased gradient of concentration from healthy subjects to Asb-workers and MM patients (p<0.001), independently of SV40 infection.

Conclusion

This study shows that, in subjects from an hyperendemic area for MM, the C-C chemokine RANTES is associated with the exposure to asbestos fibres. If validated in larger samples, this factor could have the potential to be a critical biomarker for MM prognosis as recently reported for breast tumor.  相似文献   

15.
p14ARF对人黑色素瘤细胞增殖的影响及其作用机理的初探   总被引:2,自引:0,他引:2  
ARF(alternative reading frame)作为INK4a/ARF的β转录产物,能够稳定p53, 诱导细胞周期阻断或凋亡.利用高表达p14ARF的人黑色素瘤细胞模型,探讨了ARF抑制细胞增殖的分子作用机理.研究发现p14ARF高表达能将细胞周期阻断在G1和G2期, p53, p21cip1和p27kip1蛋白水平明显增强, 而p-ERK1/2,CyclinD1和CyclinE蛋白水平下降, 明显抑制细胞生长. 提示p14ARF能通过ERK(extracellular signal-regulated kinase)信号通路相互协调作用抑制A375细胞增殖.  相似文献   

16.
17.
18.
《Genomics》1995,29(3)
Progression through the G1 phase of the cell cycle is dependent on the activity of holoenzymes formed between D-type cyclins and their catalytic partners, the cyclin-dependent kinases cdk4 and cdk6. p16INK4a,p15INK4b, and p18INK4c, a group of structurally related proteins, function as specific inhibitors of the cyclin D-dependent kinases and are likely to play physiologic roles as specific regulators of these kinasesin vivo.A new member of the INK4 gene family, murineINK4d,has recently been identified. Here we report the isolation of humanINK4d(gene symbolCDKN2D), which is 86% identical at the amino acid level to the murine clone and 44% identical to each of the other human INK4 family members. TheINK4dgene is ubiquitously expressed as a single 1.4-kb mRNA with the highest levels detected in thymus, spleen, peripheral blood leukocytes, fetal liver, brain, and testes. The abundance ofINK4dmRNA oscillates in a cell-cycle-dependent manner with expression lowest at mid G1 and maximal during S phase. Using a P1-phage genomic clone ofINK4dfor fluorescencein situhybridization analysis, the location of this gene was mapped to chromosome 19p13. No rearrangements or deletions of theINK4dgene were observed in Southern blot analysis of selected cases of pediatric acute lymphoblastic leukemia (ALL) containing a variant (1;19)(q23′3) translocation that lacks rearrangement of eitherE2AorPBX1, or in ALL cases containing homozygous or hemizygous deletions of the related genes,INK4aandINK4b.  相似文献   

19.
Pemetrexed and platinum (PP) combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM). However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions). We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found.  相似文献   

20.
Malignant mesothelioma (MM) is an aggressive asbestos-related cancer of the serous membranes. Despite intensive treatment regimens, MM is still a fatal disease, mainly due to the intrinsic resistance to current therapies and the lack of predictive markers and new valuable molecular targets. Protein arginine methyltransferase 5 (PRMT5) inhibition has recently emerged as a potential therapy against methylthioadenosine phosphorylase (MTAP)-deficient cancers, in which the accumulation of the substrate 5'-methylthioadenosine (MTA) inhibits PRMT5 activity, thus sensitizing the cells to further PRMT5 inhibition. Considering that the MTAP gene is frequently codeleted with the adjacent cyclin-dependent kinase inhibitor 2A (CDKN2A) locus in MM, we assessed whether PRMT5 could represent a therapeutic target also for this cancer type. We evaluated PRMT5 expression, the MTAP status and MTA content in normal mesothelial and MM cell lines. We found that both administration of exogenous MTA and stable PRMT5 knock-down, by short hairpin RNAs (shRNAs), selectively reduced the growth of MTAP-deleted MM cells. We also observed that PRMT5 knock-down in MTAP-deficient MM cells reduced the expression of E2F1 target genes involved in cell cycle progression and of factors implicated in epithelial-to-mesenchymal transition. Therefore, PRMT5 targeting could represent a promising new therapeutic strategy against MTAP-deleted MMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号