首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Marine mammals exhibit multi-level adaptations, from cellular biochemistry to behavior, that maximize aerobic dive duration. A dive response during aerobic dives enables the efficient use of blood and muscle oxygen stores, but it is exercise modulated to maximize the aerobic dive limit at different levels of exertion. Blood volume and concentrations of blood hemoglobin and muscle myoglobin are elevated and serve as a significant oxygen store that increases aerobic dive duration. However, myoglobin is not homogeneously distributed in the locomotory muscles and is highest in areas that produce greater force and consume more oxygen during aerobic swimming. Muscle fibers are primarily fast and slow twitch oxidative with elevated mitochondrial volume densities and enhanced oxidative enzyme activities that are highest in areas that produce more force generation. Most of the muscle mitochondria are interfibriller and homogeneously distributed. This reduces the diffusion distance between mitochondria and helps maintain aerobic metabolism under hypoxic conditions. Mitochondrial volume densities and oxidative enzyme activities are also elevated in certain organs such as liver, kidneys, and stomach. Hepatic and renal function along with digestion and assimilation continue during aerobic dives to maintain physiological homeostasis. Most ATP production comes from aerobic fat metabolism in carnivorous marine mammals. Glucose is derived mostly from gluconeogenesis and is conserved for tissues such as red blood cells and the central nervous system. Marine mammals minimize the energetic cost of swimming and diving through body streamlining, efficient, lift-based propulsive appendages, and cost-efficient modes of locomotion that reduce drag and take advantage of changes in buoyancy with depth. Most dives are within the animal’s aerobic dive limit, which maximizes time underwater and minimizes recovery time at the surface. The result of these adaptations is increased breath-hold duration and enhanced foraging ability that maximizes energy intake and minimizes energy output while making aerobic dives to depth. These adaptations are the long, evolutionary legacy of an aquatic lifestyle that directly affects the fitness of marine mammal species for different diving abilities and environments.  相似文献   

2.
Predicted changes in global temperature are expected to increase extinction risk for ectotherms, primarily through increased metabolic rates. Higher metabolic rates generate increased maintenance energy costs which are a major component of energy budgets. Organisms often employ plastic or evolutionary (e.g., local adaptation) mechanisms to optimize metabolic rate with respect to their environment. We examined relationships between temperature and standard metabolic rate across four populations of a widespread amphibian species to determine if populations vary in metabolic response and if their metabolic rates are plastic to seasonal thermal cues. Populations from warmer climates lowered metabolic rates when acclimating to summer temperatures as compared to spring temperatures. This may act as an energy saving mechanism during the warmest time of the year. No such plasticity was evident in populations from cooler climates. Both juvenile and adult salamanders exhibited metabolic plasticity. Although some populations responded to historic climate thermal cues, no populations showed plastic metabolic rate responses to future climate temperatures, indicating there are constraints on plastic responses. We postulate that impacts of warming will likely impact the energy budgets of salamanders, potentially affecting key demographic rates, such as individual growth and investment in reproduction.  相似文献   

3.
There is a general consensus that today’s deep-sea biodiversity has largely resulted from recurrent invasions and speciations occurring through homogenous waters during periods of the Phanerozoic eon. Migrations likely continue today, primarily via isothermal water columns, such as those typical of Polar Regions, but the necessary ecological and physiological adaptations behind them are poorly understood. In an evolutionary context, understanding the adaptations, which allow for colonisation to high-pressure environments, may enable us to predict future events. In this investigation, we examine pressure tolerance during development, in the shallow-water neogastropod Buccinum undatum using thermally acclimated egg masses from temperate and sub-polar regions across the species range. Fossil records indicate neogastropods to have a deep-water origin, suggesting shallow-water species may be likely candidates for re-emergence into the deep sea. Our results show population level differences in physiological thresholds, which indicate low temperature acclimation to increase pressure tolerance. These findings imply this species is capable of deep-sea penetration through isothermal water columns prevailing at high latitudes. This study gives new insight into the fundamentals behind past and future colonisation events. Such knowledge is instrumental to understand better how changes in climate envelopes affect the distribution and radiation of species along latitudinal as well as bathymetric temperature gradients.  相似文献   

4.
1. Adaptive trade-offs are fundamental to the evolution of diversity and the coexistence of similar taxa and occur when complimentary combinations of traits maximize efficiency of resource exploitation or survival at different points on environmental gradients. 2. Standard metabolic rate (SMR) is a key physiological trait that reflects adaptations to baseline metabolic performance, whereas active metabolism reflects adaptations to variable metabolic output associated with performance related to foraging, predator avoidance, aggressive interactions or migratory movements. Benefits of high SMR and active metabolism may change along a resource (productivity) gradient, indicating that a trade-off exists among active metabolism, resting metabolism and energy intake. 3. We measured and compared SMR, maximal metabolic rate (MMR), aerobic scope (AS), swim performance (UCrit) and growth of juvenile hatchery and wild steelhead and coho salmon held on high- and low-food rations in order to better understand the potential significance of variation in SMR to growth, differentiation between species, and patterns of habitat use along a productivity gradient. 4. We found that differences in SMR, MMR, AS, swim performance and growth rate between steelhead trout and coho salmon were reduced in hatchery-reared fish compared with wild fish. Wild steelhead had a higher MMR, AS, swim performance and growth rate than wild coho, but adaptations between species do not appear to involve differences in SMR or to trade-off increased growth rate against lower swim performance, as commonly observed for high-growth strains. Instead, we hypothesize that wild steelhead may be trading off higher growth rate for lower food consumption efficiency, similar to strategies adopted by anadromous vs. resident brook trout and Atlantic salmon vs. brook trout. This highlights potential differences in food consumption and digestion strategies as cryptic adaptations ecologically differentiating salmonid species. 5. We hypothesize that divergent digestive strategies, which are common and well documented among terrestrial vertebrates, may be an important but overlooked aspect of adaptive strategies of juvenile salmonids, and fish in general.  相似文献   

5.
The evolutionary origins of genetic robustness are still under debate: it may arise as a consequence of requirements imposed by varying environmental conditions, due to intrinsic factors such as metabolic requirements, or directly due to an adaptive selection in favor of genes that allow a species to endure genetic perturbations. Stratifying the individual effects of each origin requires one to study the pertaining evolutionary forces across many species under diverse conditions. Here we conduct the first large-scale computational study charting the level of robustness of metabolic networks of hundreds of bacterial species across many simulated growth environments. We provide evidence that variations among species in their level of robustness reflect ecological adaptations. We decouple metabolic robustness into two components and quantify the extents of each: the first, environmental-dependent, is responsible for at least 20% of the non-essential reactions and its extent is associated with the species'' lifestyle (specialized/generalist); the second, environmental-independent, is associated (correlation = ∼0.6) with the intrinsic metabolic capacities of a species—higher robustness is observed in fast growers or in organisms with an extensive production of secondary metabolites. Finally, we identify reactions that are uniquely susceptible to perturbations in human pathogens, potentially serving as novel drug-targets.  相似文献   

6.
Comparative aspects of cardiac and skeletal muscle sarcoplasmic reticulum.   总被引:1,自引:0,他引:1  
While differing in numerous physiological and biochemical parameters, mammalian cardiac and skeletal muscles exhibit many common ultrastructural characteristics. General subcellular organization is similar with longitudinal disposition and organization of the myofibrils as well as subcellular organelles such as mitochondria, sarcoplasmic reticulum and transverse tubules. Significant differences are more readily discerned in terms of degree, not only with respect to relative amounts of various organelles, but also in regard to membrane composition. It is these macromolecular variations in membrane components which may, at least in part, provide the basis for differences in overall functional characteristics in the muscles.In cardiac, as well as skeletal muscle, the concentration of Ca2+ ions at specific intracellular sites regulates the contractile state of the muscle. The differences in mechanism and sources of Ca2+ for contraction in cardiac and skeletal muscle are but a few of the unsolved areas which are now being addressed. We shall focus primarily on research advances involving cardiac and skeletal SR emphasizing the contrasting features related to their functional roles in control of contraction and metabolic events.  相似文献   

7.
Interactions between the structure of a metabolic network and its functional properties underlie its evolutionary diversification, but the mechanism by which such interactions arise remains elusive. Particularly unclear is whether metabolic fluxes that determine the concentrations of compounds produced by a metabolic network, are causally linked to a network's structure or emerge independently of it. A direct empirical study of populations where both structural and functional properties vary among individuals’ metabolic networks is required to establish whether changes in structure affect the distribution of metabolic flux. In a population of house finches (Haemorhous mexicanus), we reconstructed full carotenoid metabolic networks for 442 individuals and uncovered 11 structural variants of this network with different compounds and reactions. We examined the consequences of this structural diversity for the concentrations of plumage‐bound carotenoids produced by flux in these networks. We found that concentrations of metabolically derived, but not dietary carotenoids, depended on network structure. Flux was partitioned similarly among compounds in individuals of the same network structure: within each network, compound concentrations were closely correlated. The highest among‐individual variation in flux occurred in networks with the strongest among‐compound correlations, suggesting that changes in the magnitude, but not the distribution of flux, underlie individual differences in compound concentrations on a static network structure. These findings indicate that the distribution of flux in carotenoid metabolism closely follows network structure. Thus, evolutionary diversification and local adaptations in carotenoid metabolism may depend more on the gain or loss of enzymatic reactions than on changes in flux within a network structure.  相似文献   

8.
Since humans and chimpanzees split from a common ancestor over 6 million years ago, human metabolism has changed dramatically. This change includes adaptations to a high-quality diet, the evolution of an energetically expensive brain, dramatic increases in endurance abilities, and capacity for energy storage in white adipose tissue. Human metabolism continues to evolve in modern human populations in response to local environmental and cultural selective forces. Understanding the nature of these selective forces and the physiological responses during human evolution is a compelling challenge for evolutionary biologists. The complex genetic architecture surrounding metabolic phenotypes indicates that selection probably altered allelic frequencies across many loci in populations experiencing adaptive metabolic change to fit their environment. A recent analysis supports this hypothesis, finding that classic selective sweeps at single loci were rare during the past 250 000 years of human evolution. Detection of selective signatures at multiple loci, as well as exploration of physiological adaptation to environment in humans, will require cross-disciplinary collaboration, including the incorporation of biological pathway analysis. This review explores the Thrifty Genotype Hypothesis, high-altitude adaptation, cold-resistance adaptation, and genetic evidence surrounding these proposed metabolic adaptations in an attempt to clarify current challenges and avenues for future progress.  相似文献   

9.
10.
I provide my retrospective and prospective views on adaptations of cave fishes. I emphasize the history of my insights into cave adaptation from 45 years of research using surface, cave-spring, and cave species of amblyopsid fishes. My approach has been to use natural experiments and to always consider multiple hypotheses. To clarify evolutionary adaptations, I show the importance of a broad comparative approach which includes studies of morphology, metabolic physiology, foraging behavior, life history, and ecology. And I show that the most important agents of selection, of darkness and attendant low food supply, are best understood in the context of rigor, variability, and predictability. I also present my insights from what I consider the most insightful contributions on deep-sea fishes. The contributions are those of Marshall in studies of morphology in relation to energy economy of pelagic and benthic species, Childress in studies of physiological and biochemical adaptations with depth for pelagic species, and Koslow in studies on population biology and life history of bathybenthic and benthic sea-mount species. Compared to caves, I suggest that the extremes of metabolic and life history adaptations of deep-sea fish are explained by a longer evolutionary history and a much greater habitat range, food supply, and predation risk. Finally, I take a retrospective view of what we have learned about cave fishes. I discuss possible evolutionary mechanisms that can explain the trends with increasing cave adaptation in amblyopsid fishes, especially progenesis and the pleiotropic effects of the stress resistance syndrome. Finally, based on insights from deep-sea fishes, and emerging new techniques, I suggest what cave fish biologists should do in the future.  相似文献   

11.
12.
To improve survival during winter, temperate species use a variety of behavioural and physiological adaptations. Among songbirds, the maintenance of lipid reserves is a widely‐used strategy to cope with the severity of winter; however, little is known regarding how multiple synchronously acting environmental mechanisms work together to drive these effects. In a context where temperate winter conditions are becoming more variable, it is important to widen our understanding regarding the flexible adaptations that may allow wintering species to adjust to projected climate change. Using a long‐term dataset collected across multiple wintering populations (7 years; 8 locations), we analyzed the effects of daily variation in weather (e.g. temperature, snowfall) on the variation in energy reserves (i.e. fat stores) of wintering snow buntings Plectrophenax nivalis. Our results support the prediction that birds carry more reserves to increase the safety margin against starvation when conditions are energy‐demanding and access to food is unpredictable (i.e. colder, snowier conditions). Birds responded to daily changes in weather by increasing their reserves as conditions deteriorated, with maximal temperatures and snow depth being the most important predictors of fattening decisions. We also found that females consistently exhibited higher fat reserves than males relative to their body size, suggesting that differential physiological adaptations among sexes or social dominance may play an additional role in explaining variation in energy reserves across individuals in this species. Overall, our findings increase knowledge on phenotypic adjustments used by species wintering in temperate zones to match variation in their environment.  相似文献   

13.
Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.  相似文献   

14.
Even though mRNA expression levels are commonly used as a proxy for estimating functional differences that occur at the protein level, the relation between mRNA and protein expression is not well established. Further, no study to date has tested whether the evolutionary differences in mRNA expression observed between species reflect those observed in protein expression. Since a large proportion of mRNA expression differences observed between mammalian species appears to have no functional consequences for the phenotype, it is conceivable that many or most mRNA expression differences are not reflected at the protein level. If this is true, then differences in protein expression may largely reflect functional adaptations observed in species phenotypes. In this paper, we present the first direct comparison of mRNA and protein expression differences seen between humans and chimpanzees. We reproducibly find a significant positive correlation between mRNA expression and protein expression differences. This correlation is comparable in magnitude to that found between mRNA and protein expression changes at different developmental stages or in different physiological conditions within one species. Noticeably, this correlation is mainly due to genes with large expression differences between species. Our study opens the door to a new level of understanding of regulatory evolution and poses many new questions that remain to be answered.  相似文献   

15.
Consistent between‐individual differences in movement are widely recognised across taxa. In addition, foraging plasticity at the within‐individual level suggests a behavioural dependency on the internal energy demand. Because behaviour co‐varies with fast‐slow life history (LH) strategies in an adaptive context, as theoretically predicted by the pace‐of‐life syndrome hypothesis, mass/energy fluxes should link behaviour and its plasticity with physiology at both between‐ and within‐individual levels. However, a mechanistic framework driving these links in a fluctuating ecological context is lacking. Focusing on home range behaviour, we propose a novel behavioural‐bioenergetics theoretical model to address such complexities at the individual level based on energy balance. We propose explicit mechanistic links between behaviour, physiology/metabolism and LH by merging two well‐founded theories, the movement ecology paradigm and the dynamic energetic budget theory. Overall, our behavioural‐bioenergetics model integrates the mechanisms explaining how (1) behavioural between‐ and within‐individual variabilities connect with internal state variable dynamics, (2) physiology and behaviour are explicitly interconnected by mass/energy fluxes, and (3) different LHs may arise from both behavioural and physiological variabilities in a given ecological context. Our novel theoretical model reveals encouraging opportunities for empiricists and theoreticians to delve into the eco‐evolutionary processes that favour or hinder the development of between‐individual differences in behaviour and the evolution of personality‐dependent movement syndromes.  相似文献   

16.
Alpha-keto acids have recently been identified as potent regulators of cellular adaptations to hypoxia. Their actual intracellular concentrations under such conditions are unknown. Here, we determined concentrations of alpha-ketobutyrate, alpha-ketoglutarate, alpha-ketoisocaproate, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, phenylpyruvate, and pyruvate by a recently developed ultra-sensitive fluorescence HPLC method in ventricular myocardium of mice exposed to hypobaric hypoxia for up to 3 weeks. We observed characteristic alterations of cardiac alpha-keto acid concentrations that are specific for individual alpha-keto acids, show significant side differences (right versus left ventricles), and are suited to trigger some of the cardiac metabolic and structural adaptations to chronic hypoxia.  相似文献   

17.
《Fungal biology》2022,126(8):498-510
Changes in the natural environment require an organism to make constant adaptations enabling efficient use of environmental resources and ensuring its success in competition with other organisms. Such adaptations are expressed through various life strategies, largely determined by the rate of consumption and use of available resources, affecting the life-history traits and the related trade-offs. Allocation of available resources must take into consideration the costs of cell maintenance as well as reproduction. Given that carbon metabolism plays a crucial role in resource allocation, yeast living in different ecological niches show various life-history traits. There are a lot of data about life-history strategies in yeast living in various ecological niches; however, the question is whether different life strategies will be noted for yeast strains growing under strictly controlled conditions. Our studies based on three laboratory yeast strains representing different genetic backgrounds show that each of these strains has specified life strategies which are mainly determined by the glucose uptake rate and its intracellular usage. These results suggest that specific life strategies and related differences in the physiological and metabolic parameters of the cell are the key aspects that may explain various features of cells from different yeast strains, either industrial or laboratory.  相似文献   

18.
During development the circulatory system of vertebrates typically starts operating earlier than any other organ. In these early stages, however, blood flow is not yet linked to metabolic requirements of tissues, as is well established for adults. While the autonomic nervous system becomes functional only quite late during development, in the early stages control of blood flow appears to be possible by blood-borne and/or local hormones. This study presents methods based on video-imaging techniques and fluorescence microscopy to visualize cardiac activity, as well as the vascular bed of developing lower vertebrates, and tests the idea that environmental factors, such as hypoxia, may modify cardiac activity, or even the early formation of blood vessels in embryos and larvae. In zebrafish larvae, adaptations of cardiovascular activity to chronic hypoxia become visible shortly after hatching, and the formation of some blood vessels is enhanced under chronic hypoxia. Exposure of early larval stages of zebrafish to a constant water current induces physiological adaptations, resulting in enhanced swimming efficiency and increased tolerance towards hypoxia. Furthermore, application of hormones such as NO can modify cardiac activity as well as peripheral resistance, and they can stimulate blood vessel formation. In consequence, even during early development of fish or amphibian larvae, the performance of cardiac muscle and of skeletal muscle can be modified by environmental influences and peripheral resistance can be adjusted. Even blood vessel formation can be stimulated by hypoxia, for example, or by the presence of specific hormones. Thus, at approximately the time of hatching the physiological performance of vertebrate larvae is already determined by the combined action of environmental influences and of genetic information.  相似文献   

19.
Across animals and plants, numerous metabolic and defensive adaptations are a direct consequence of symbiotic associations with beneficial microbes. Explaining how these partnerships are maintained through evolutionary time remains one of the central challenges within the field of symbiosis research. While genome erosion and co-cladogenesis with the host are well-established features of symbionts exhibiting intracellular localization and transmission, the ecological and evolutionary consequences of an extracellular lifestyle have received little attention, despite a demonstrated prevalence and functional importance across many host taxa. Using insect–bacteria symbioses as a model, we highlight the diverse routes of extracellular symbiont transfer. Extracellular transmission routes are unified by the common ability of the bacterial partners to survive outside their hosts, thereby imposing different genomic, metabolic and morphological constraints than would be expected from a strictly intracellular lifestyle. We emphasize that the evolutionary implications of symbiont transmission routes (intracellular versus extracellular) do not necessarily correspond to those of the transmission mode (vertical versus horizontal), a distinction of vital significance when addressing the genomic and physiological consequences for both host and symbiont.  相似文献   

20.
Mothers and fetuses are expected to be in some degree of conflict over the allocation of maternal resources to fetal growth in the intrauterine environment. Variation in placental structure and function may be one way a fetus can communicate need and quality to its mother, potentially manipulating maternal investment in its favor. Whereas common marmosets typically produce twin litters, they regularly give birth to triplet litters in captivity. The addition of another fetus is a potential drain on maternal resource availability and thus a source of elevated conflict over resource allocation. Marmoset littermates share a single placental mass, so that differences in the ratio of fetal to placental weight across litter categories suggest the presence of differential intrauterine strategies of resource allocation. The fetal/placental weight ratio was calculated for 26 marmoset pregnancies, representing both twin and triplet litters, to test the hypothesis that triplet fetuses respond to intrauterine conflict by soliciting placental overgrowth as a means of accessing maternal resources. In fact, relative to fetal mass, the triplet marmoset placenta is significantly undergrown, with individual triplets associated with less placental mass than their twin counterparts, suggesting that the triplet placenta is relatively more efficient in its support of fetal growth. There still may be an important role for maternal-fetal conflict in the programming of placental structure and function. Placental adaptations that solicit potential increases of maternal investment may occur at the microscopic or metabolic level, and thus may not be reflected in the size of the placenta as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号