首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electromyography (EMG) is used to understand muscle activity patterns in animals. Understanding how much variation exists in muscle activity patterns in homologous muscles across animal clades during similar behaviours is important for evaluating the evolution of muscle functions and neuromuscular control. We compared muscle activity across a range of archosaurian species and appendicular muscles, including how these EMG patterns varied across ontogeny and phylogeny, to reconstruct the evolutionary history of archosaurian muscle activation during locomotion. EMG electrodes were implanted into the muscles of turkeys, pheasants, quail, guineafowl, emus (three age classes), tinamous and juvenile Nile crocodiles across 13 different appendicular muscles. Subjects walked and ran at a range of speeds both overground and on treadmills during EMG recordings. Anatomically similar muscles such as the lateral gastrocnemius exhibited similar EMG patterns at similar relative speeds across all birds. In the crocodiles, the EMG signals closely matched previously published data for alligators. The timing of lateral gastrocnemius activation was relatively later within a stride cycle for crocodiles compared to birds. This difference may relate to the coordinated knee extension and ankle plantarflexion timing across the swing-stance transition in Crocodylia, unlike in birds where there is knee flexion and ankle dorsiflexion across swing-stance. No significant effects were found across the species for ontogeny, or between treadmill and overground locomotion. Our findings strengthen the inference that some muscle EMG patterns remained conservative throughout Archosauria: for example, digital flexors retained similar stance phase activity and M. pectoralis remained an ‘anti-gravity’ muscle. However, some avian hindlimb muscles evolved divergent activations in tandem with functional changes such as bipedalism and more crouched postures, especially M. iliotrochantericus caudalis switching from swing to stance phase activity and M. iliofibularis adding a novel stance phase burst of activity.  相似文献   

2.
Capuchin monkeys are known to use bipedalism when transporting food items and tools. The bipedal gait of two capuchin monkeys in the laboratory was studied with three-dimensional kinematics. Capuchins progress bipedally with a bent-hip, bent-knee gait. The knee collapses into flexion during stance and the hip drops in height. The knee is also highly flexed during swing to allow the foot which is plantarflexed to clear the ground. The forefoot makes first contact at touchdown. Stride frequency is high, and stride length and limb excursion low. Hind limb retraction is limited, presumably to reduce the pitch moment of the forward-leaning trunk. Unlike human bipedalism, the bipedal gait of capuchins is not a vaulting gait, and energy recovery from pendulum-like exchanges is unlikely. It extends into speeds at which humans and other animals run, but without a human-like gait transition. In this respect it resembles avian bipedal gaits. It remains to be tested whether energy is recovered through cyclic elastic storage and release as in bipedal birds at higher speeds. Capuchin bipedalism has many features in common with the facultative bipedalism of other primates which is further evidence for restrictions on a fully upright striding gait in primates that transition to bipedalism. It differs from the facultative bipedalism of other primates in the lack of an extended double-support phase and short aerial phases at higher speeds that make it a run by kinematic definition. This demonstrates that facultative bipedalism of quadrupedal primates need not necessarily be a walking gait.  相似文献   

3.
Hindlimb segmental kinematics and stride characteristics are quantified in several quail locomoting on a treadmill over a six-fold increase in speed. These data are used to describe the kinematics of a walking stride and to identify which limb elements are used to change stride features as speed increases. In quail, the femur does not move during locomotion and the tarsometatarsus-phalangeal joint is a major moving joint; thus, quail have lost the most proximal moving joint and added one distally. The tibiotarsus and tarsometatarsus act together as a fixed strut swinging from the knee during stance phase (the ankle angle remains constant at a given speed) and the tarsometatarsus-phalangeal joint appears to have a major role in increasing limb length during the propulsive phase of the stride. Speed is increased with greater knee extension and by lengthening the tibiotarsus/tarsometatarsus via increased ankle extension at greater speeds. Because the femur is not moved and three distal elements are, quail move the limb segments through a stride and increase speed in a way fundamentally different from other nonavian vertebrates. However, the three moving joints in quail (the knee, ankle, and tarsometatarsophangeal joint) have strikingly similar kinematics to the analogous moving joints (the hip, knee, and ankle) in other vertebrates. Comparisons to other vertebrates indicate that birds appear to have two modes of limb function (three- and four-segment modes) that vary with speed and locomotory habits.  相似文献   

4.
Gibbons are highly arboreal apes, and it is expected that their bipedal locomotion will show some particularities related to the arboreal environment. Previous research has shown that, during hylobatid bipedalism, unsupported phases are rare and stride frequencies are relatively low. This study confirms previous findings, and we suggest that low stride frequencies and the absence of unsupported phases are ways to reduce disadvantageous branch oscillations during arboreal travel. Despite these restrictions, gibbons are able to locomote at a wide range of speeds, implying that they likely exploit other mechanisms to modulate their locomotor speed. To investigate this possibility, we collected video images of a large number of spontaneous bipedal bouts of four untrained white-handed gibbons by using an instrumented walkway with four synchronized cameras. These video images were digitized to obtain a quantification of the 3D kinematics of hylobatid bipedalism. We defined a large number of spatiotemporal and kinematic gait variables, and the relationship between these gait variables and (dimensionless) speed was statistically tested. It was found that gibbons mainly increase stride length to increase their locomotor speed; the main speed-modulating mechanisms are hip and ankle excursion and coupled knee and ankle extension at toe-off. Although aerial phases are rare, gibbons generally adopt a bipedal bouncing gait at most speeds and a clear-cut gait transition, as seen in human locomotion, is absent. Comparison with human and bonobo bipedalism showed that the variability of the 3D joint angles of the hind limb are comparable during human and gibbon bipedalism, and much lower than during bonobo bipedalism. The low variability found in gibbons might be related to constraints imposed by the arboreal environment. These arboreal constraints clearly affect the bipedal gait characteristics of gibbons, but do not constrain the ability to adopt a bipedal bouncing gait during terrestrial locomotion.  相似文献   

5.
Head‐bobbing is the fore–aft movement of the head relative to the body during terrestrial locomotion in birds. It is considered to be a behaviour that helps to stabilize images on the retina during locomotion, yet some studies have suggested biomechanical links between the movements of the head and legs. This study analysed terrestrial locomotion and head‐bobbing in the Elegant‐crested Tinamou Eudromia elegans at a range of speeds by synchronously recording high‐speed video and ground reaction forces in a laboratory setting. The results indicate that the timing of head and leg movements are dissociated from one another. Nonetheless, head and neck movements do affect stance duration, ground reaction forces and body pitch and, as a result, the movement of the centre of mass in head‐bobbing birds. This study does not support the hypothesis that head‐bobbing is itself constrained by terrestrial locomotion. Instead, it suggests that visual cues are the primary trigger for head‐bobbing in birds, and locomotion is, in turn, constrained by a need for image stabilization and depth perception.  相似文献   

6.
Tufted capuchin monkeys are known to use both quadrupedalism and bipedalism in their natural environments. Although previous studies have investigated limb kinematics and metabolic costs, their ground reaction forces (GRFs) and center of mass (CoM) mechanics during two and four‐legged locomotion are unknown. Here, we determine the hind limb GRFs and CoM energy, work, and power during bipedalism and quadrupedalism over a range of speeds and gaits to investigate the effect of differential limb number on locomotor performance. Our results indicate that capuchin monkeys use a “grounded run” during bipedalism (0.83–1.43 ms?1) and primarily ambling and galloping gaits during quadrupedalism (0.91–6.0 ms?1). CoM energy recoveries are quite low during bipedalism (2–17%), and in general higher during quadrupedalism (4–72%). Consistent with this, hind limb vertical GRFs as well as CoM work, power, and collisional losses are higher in bipedalism than quadrupedalism. The positive CoM work is 2.04 ± 0.40 Jkg?1 m?1 (bipedalism) and 0.70 ± 0.29 Jkg?1 m?1 (quadrupedalism), which is within the range of published values for two and four‐legged terrestrial animals. The results of this study confirm that facultative bipedalism in capuchins and other nonhuman primates need not be restricted to a pendulum‐like walking gait, but rather can include running, albeit without an aerial phase. Based on these results and similar studies of other facultative bipeds, we suggest that important transitions in the evolution of hominin locomotor performance were the emergences of an obligate, pendulum‐like walking gait and a bouncy running gait that included a whole‐body aerial phase. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Although the hindlimb is widely considered to provide the propulsive force in lizard locomotion, no study to date has analysed kinematic patterns of hindlimb movements for more than one stride for a single individual and no study has considered limb and axial kinematics together. In this study, kinematic data from several individuals of the Sceloporus clarkii are used to describe the movement patterns of the axial skeleton and hindlimb at different speeds, to analyse how kinematics change with speed, and to compare and contrast these findings with the inferred effects of speed cited in the literature. Angular limb movements and axial bending patterns (standing wave with nodes on the girdles) did not change with speed. Only the relative speed of retracting the femur and flexing the knee during limb retraction changes with speed. Based on these data and similar results from a recent study of salamanders, it appears that, over a range of speeds involving a walking trot, sprawling vertebrates increase speed by simply retracting the femur relatively faster, thus this simple functional adjustment may be a general mechanism to increase speed in tetrapods. The demonstration that femoral retraction alone is the major speed effector in Sceloporus clarkii lends strong functional support to ecomorphological implications of limb length (and especially femur length and caudifemoralis size) in locomotory ecology and performance in phrynosomatid lizards. It also lends support to inferences about the caudifemoralis muscle as a preadaptation to terrestrial locomotion and as a key innovation in the evolution of bipedalism.  相似文献   

8.
We compared the kinetics of brachiation to bipedal walking and running. Gibbons use pectoral limbs in continuous contact with their overhead support at slow speeds, but exhibit aerial phases (or ricochetal brachiation) at faster speeds. This basic interaction between limb and support suggests some analogy to walking and running. We quantified the forces in three axes and torque about the vertical axis generated by a brachiating White-handed gibbon (Hylobates lar) and compared them with bipedal locomotion. Handholds oriented perpendicular to the direction of travel (as in ladder rungs) were spaced 0.80, 1.20, 1.60, 1.72, 1.95, and 2.25 m apart. The gibbon proportionally matched forward velocity to stride length. Handhold reaction forces resembled ground reaction forces of running humans except that the order of horizontal braking and propulsion were reversed. Peak vertical forces in brachiation increased with speed as in bipedal locomotion. In contrast to bipedalism, however, peak horizontal forces changed little with speed. Gait transition occurred within the same relative velocity range as the walk-run transition in bipeds (Froude number = 0.3-0.6). We oriented handholds parallel to the direction of travel (as in a continuous pole) at 0.80 and 1.60 m spacings. In ricochetal brachiation, the gibbon generated greater torque with handholds oriented perpendicular as opposed to parallel to the direction of travel. Handhold orientation did not affect peak forces. The similarities and differences between brachiation and bipedalism offer insight into the ubiquity of mechanical principles guiding all limbed locomotion and the distinctiveness of brachiation as a unique mode of locomotion.  相似文献   

9.
Spontaneously acquired bipedal locomotion of an untrained Japanese monkey (Macaca fuscata) is measured and compared with the elaborated bipedal locomotion of highly trained monkeys to assess the natural ability of a quadrupedal primate to walk bipedally. The subject acquired bipedalism by himself because of the loss of his forearms and hands due to congenital malformation. Two other subjects are performing monkeys that have been extensively trained for bipedal posture and locomotion. We videotaped their bipedal locomotion with two cameras in a lateral view and calculated joint angles (hip, knee, and ankle) and inertial angle of the trunk from the digitized joint positions. The results show that all joints are relatively more flexed in the untrained monkey. Moreover, it is noted that the ankle is less plantar flexed and the knee is more flexed in mid-to-late stance phase in the untrained monkey, suggesting that the trunk is not lifted up to store potential energy. In the trained monkeys, the joints are extended to bring the trunk as high as possible in the stance phase, and then stored potential energy is exchanged for kinetic energy to move forward. The efficient inverted pendulum mechanism seems to be absent in the untrained monkeys locomotion, implying that acquisition of such efficient bipedal locomotion is not a spontaneous ability for a Japanese monkey. Rather, it is probably a special skill that can only be acquired through artificial training for an inherently quadrupedal primate.This revised version was published online in April 2005 with corrections to the cover date of the issue.  相似文献   

10.
During terrestrial locomotion, limb muscles must generate mechanical work and stabilize joints against the ground reaction force. These demands can require high force production that imposes substantial loads on limb bones. To better understand how muscle contractile function influences patterns of bone loading in terrestrial locomotion, and refine force platform equilibrium models used to estimate limb bone safety factors, we correlated in vivo recordings of femoral strain with muscle activation and strain in a major propulsive hindlimb muscle, flexor tibialis internus (FTI), of a species with a published model of hindlimb force production (river cooter turtles, Pseudemys concinna). Electromyography (EMG) recordings indicate FTI activity prior to footfall that continues through approximately 50% of the stance phase. Large EMG bursts occur just after footfall when the muscle has reached its maximum length and is beginning to actively shorten, concurrent with increasing compressive strain on the anterior femur. The FTI muscle shortens through 35% of stance, with mean fascicle shortening strains reaching 14.0 ± 5.4% resting length (L0). At the time of peak compressive strains on the femur, the muscle fascicles remain active, but fascicles typically lengthen until mid‐stance as the knee extends. Influenced by the activity of the dorsal knee extensor femorotibialis, the FTI muscle continues to passively lengthen simultaneously with knee extension and a shift to tensile axial strain on the anterior femur at approximately 40% of stance. The near coincidence in timing of peak compressive bone strain and peak muscle shortening (5.4 ± 4.1% stance) indicates a close correlation between the action of the hip extensor/knee flexor, FTI, and femoral loading in the cooter hindlimb. In the context of equilibrium models of limb bone loading, these results may help explain differences in safety factor estimates observed between previous force platform and in vivo strain analyses in cooters. J. Morphol. 274:1060–1069, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Kinematics of swimming of penguins at the Detroit Zoo   总被引:2,自引:0,他引:2  
Brian D.  Clark  Willy  Bemis 《Journal of Zoology》1979,188(3):411-428
Kinematic parameters were examined in a study of the swimming abilities of seven species of penguins housed at the Detroit Zoo. Penguins produce thrust over both halves of the wing stroke cycle, as observed in fishes using the caudal or pectoral fins for locomotion, but not in other birds in level forward flight. Unpowered gliding phases between wing strokes were observed in all species at swimming speeds less than 1.25 m/sec, while Emperor, King and Adelie penguins interpose gliding phases over a broad range of speeds. Videotape records reveal that length-specific speed is correlated with increases in wingbeat frequency and, for most of the species examined, stride length. These findings are in contrast to those reported for other, flying birds, which maintain a relatively constant wingbeat frequency but vary stride length with forward speed, and for most fishes, which vary speed with tailbeat frequency but maintain a constant stride length. The results are somewhat comparable to those reported for Cymatogaster , a fish which uses the pectoral fins for locomotion. Drag coefficients of three gliding Emperor penguins were 2.1, 3.0 and 3.0 × 10-−3 at Reynolds numbers of 1.25, 1.62 and 1.76 × 106, respectively.  相似文献   

12.
We recorded locomotor performance of Reeves' butterfly lizards(Leiolepis reevesii) on a racetrack and to describe hindlimb kinematic patterns and to evaluate the effect of speed on hindlimb kinematics. The studied lizards predominantly used quadrupedal locomotion at relatively low speeds, but ran bipedally with a digitigrade posture at high speeds. Speed was positively correlated with both stride length and stride frequency, and was negatively correlated with duty factor. Lizards modulated speed probably by a combination of changing frequency and amplitude of limb movements. Within the range of standardized speeds from 50 to 150 cm/s, speed effects on 28 out of a total of 56 kinematic variables were significant. The hip height at footfall increased as speed increased, whereas the amplitude of vertical oscillations of the hip did not vary with speed. The total longitudinal and dorsoventral movements relative to the hip varied with speed for all parts of the limb that were distal to the knee, whereas the lateral movements did not. The knee and ankle angle at footfall varied with speed, but did not at the end of stance. The degree of pelvis rotation during the entire stride cycle did not vary with speed. Our results suggest that pelvic rotation and femoral protraction/retraction have a minor role in modulating speed in L. reevesii.  相似文献   

13.
Modulation of limb dynamics in the swing phase of locomotion   总被引:6,自引:0,他引:6  
A method was presented for quantifying cat (Felis catus) hind limb dynamics during swing phase of locomotion using a two-link rigid body model of leg and paw, which highlighted the dynamic interactions between segments. Comprehensive determination was made of cat segment parameters necessary for dynamic analysis, and regression equations were formulated to predict the inertial parameters of any comparable cat. Modulations in muscle and non-muscle components of knee and ankle joint moments were examined at two treadmill speeds using three gaits: (a) pace-like walk and trot-like walk, at 1.0 ms-1, and (b) gallop, at 2.1 ms-1. Results showed that muscle and segment interactive moments significantly effected limb trajectories during swing. Some moment components were greater in galloping than in walking, but net joint maxima were not significantly different between speeds. Moment magnitudes typically were greater for pace-like walking than for trot-like walking at the same speed. Generally, across gaits, the net and muscle moments were in phase with the direction of distal joint motion, and these same moments were out of phase with proximal joint motion. Intersegmental dynamics were not modulated exclusively by speed of locomotion, but interactive moments were also influenced significantly by gait mode.  相似文献   

14.
Metabolic costs of resting and locomotion have been used to gain novel insights into the behavioral ecology and evolution of a wide range of primates; however, most previous studies have not considered gait‐specific effects. Here, metabolic costs of ring‐tailed lemurs (Lemur catta) walking, cantering and galloping are used to test for gait‐specific effects and a potential correspondence between costs and preferred speeds. Metabolic costs, including the net cost of locomotion (COL) and net cost of transport (COT), change as a curvilinear function of walking speed and (at least provisionally) as a linear function of cantering and galloping speeds. The baseline quantity used to calculate net costs had a significant effect on the magnitude of speed‐specific estimates of COL and COT, especially for walking. This is because non‐locomotor metabolism constitutes a substantial fraction (41–61%, on average) of gross metabolic rate at slow speeds. The slope‐based estimate of the COT was 5.26 J kg?1 m?1 for all gaits and speeds, while the gait‐specific estimates differed between walking (0.5 m s?1: 6.69 J kg?1 m?1) and cantering/galloping (2.0 m s?1: 5.61 J kg?1 m?1). During laboratory‐based overground locomotion, ring‐tailed lemurs preferred to walk at ~0.5 m s?1 and canter/gallop at ~2.0 m s?1, with the preferred walking speed corresponding well to the COT minima. Compared with birds and other mammals, ring‐tailed lemurs are relatively economical in walking, cantering, and galloping. These results support the view that energetic optima are an important movement criterion for locomotion in ring‐tailed lemurs, and other terrestrial animals. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Terrestrial mammals are characterized by their digitigrade limb postures, which are proposed to increase effective limb length (ELL) to achieve preferred or higher locomotor speeds more efficiently. Accordingly, digitigrade postures are associated with cursorial locomotion. Unlike most medium‐ to large‐sized terrestrial mammals, terrestrial cercopithecine monkeys lack most cursorial adaptations, but still adopt digitigrade hand postures. This study investigates when and why terrestrial cercopithecine monkeys adopt digitigrade hand postures during quadrupedal locomotion. Three cercopithecine species (Papio anubis, Macaca mulatta, Erythrocebus patas) were videotaped moving unrestrained along a horizontal runway at a range of speeds (0.4–3.4 m/s). Three‐dimensional forelimb kinematic data were recorded during forelimb support. Hand posture was measured as the angle between the metacarpal segments and the ground (MGA). As predicted, a larger MGA was correlated with a longer ELL. At slower speeds, subjects used digitigrade postures (larger MGA), however, contrary to expectations, all subjects used more palmigrade hand postures (smaller MGA) at faster speeds. Digitigrade postures at slower speeds may lower cost of transport by increasing ELL and step lengths. At higher speeds, palmigrade postures may be better suited to spread out high ground reaction forces across a larger portion of the hand thereby potentially decreasing stresses in hand bones. It is concluded that a digitigrade forelimb posture in primates is not an adaptation for high speed locomotion. Accordingly, digitigrady may have evolved for different reasons in primates compared to other mammalian lineages. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Many children with cerebral palsy walk with diminished knee extension during terminal swing, at speeds much slower than unimpaired children. Treatment of these gait abnormalities is challenging because the factors that extend the knee during normal walking, over a range of speeds, are not well understood. This study analyzed a series of three-dimensional, muscle-driven dynamic simulations to determine whether the relative contributions of individual muscles and other factors to angular motions of the swing-limb knee vary with walking speed. Simulations were developed that reproduced the measured gait dynamics of seven unimpaired children walking at self-selected, fast, slow, and very slow speeds (7 subjects×4 speeds=28 simulations). In mid-swing, muscles on the stance limb made the largest net contribution to extension of the swing-limb knee at all speeds examined. The stance-limb hip abductors, in particular, accelerated the pelvis upward, inducing reaction forces at the swing-limb hip that powerfully extended the knee. Velocity-related forces (i.e., Coriolis and centrifugal forces) also contributed to knee extension in mid-swing, though these contributions were diminished at slower speeds. In terminal swing, the hip flexors and other muscles on the swing-limb decelerated knee extension at the subjects’ self-selected, slow, and very slow speeds, but had only a minimal net effect on knee motions at the fastest speeds. Muscles on the stance limb helped brake knee extension at the subjects’ fastest speeds, but induced a net knee extension acceleration at the slowest speeds. These data—which show that the contributions of muscular and velocity-related forces to terminal-swing knee motions vary systematically with walking speed—emphasize the need for speed-matched control subjects when attempting to determine the causes of a patient's abnormal gait.  相似文献   

17.
18.
The origin of flight in birds and theropod dinosaurs is a many-sided and debatable problem. We develop a new approach to the resolution of this problem, combining terrestrial and arboreal hypotheses of the origin of flight. The bipedalism was a key adaptation for the development of flight in both birds and theropods. The bipedalism dismissed the forelimbs from the supporting function and promoted transformation into wings. For the development of true flapping avian flight, a key role was played by the initial universal anisodactylous foot of birds. This foot pattern provided a firm support on both land and trees. Theropod dinosaurs, archaeopteryxes, and some other early feathered creatures had a pamprodactylous foot and, hence, they developed only gliding descent. Early birds descended by flattering parachuting with the use of incipient wings; this gave rise to true flight. Among terrestrial vertebrates, only bats, pterosaurians, and birds developed true flapping flight, although they followed different morphofunctional pathways when solving this task. However, it remains uncertain what initiated the adaptation of the three groups for the air locomotion. Nevertheless, the past decade has provided unexpectedly abundant paleontological data, which facilitate the resolution of this question with reference to birds.  相似文献   

19.
J. D. Macdonald 《Ostrich》2013,84(4):195-196
This study investigates the possibility of hybridisation between introduced domestic Helmeted Guineafowl Numida meleagris, derived from the West African subspecies N. m. galeata, and South African guineafowl, N. m. coronata. There is putative morphological evidence of such hybridisation in wild populations and it is known that domestic guineafowl do not survive well in the wild. Molecular analysis of the control region of mtDNA confirmed the occurrence of the domestic guineafowl haplotype in individuals present in wild populations from KwaZulu-Natal, but not in birds from populations from the Free State. Thus, despite the absence of the availability of bi-parentally inherited nuclear DNA marker, the presence of the domestic haplotype in individuals of both wild and intermediate phenotype (between wild and domestic birds) suggests that there is hybridisation in the wild between domestic and wild guineafowl. To avoid potential negative affects associated with outbreeding depression, we argue for careful control of releases of domestic guineafowl into the wild. This study investigates the possibility of hybridisation between introduced domestic Helmeted Guineafowl Numida meleagris, derived from the West African subspecies N. m. galeata, and South African guineafowl, N. m. coronata. There is putative morphological evidence of such hybridisation in wild populations and it is known that domestic guineafowl do not survive well in the wild. Molecular analysis of the control region of mtDNA confirmed the occurrence of the domestic guineafowl haplotype in individuals present in wild populations from KwaZulu-Natal, but not in birds from populations from the Free State. Thus, despite the absence of the availability of bi-parentally inherited nuclear DNA marker, the presence of the domestic haplotype in individuals of both wild and intermediate phenotype (between wild and domestic birds) suggests that there is hybridisation in the wild between domestic and wild guineafowl. To avoid potential negative affects associated with outbreeding depression, we argue for careful control of releases of domestic guineafowl into the wild.  相似文献   

20.
Muscular forces generated during locomotion depend on an animal's speed, gait, and size and underlie the energy demand to power locomotion. Changes in limb posture affect muscle forces by altering the mechanical advantage of the ground reaction force (R) and therefore the effective mechanical advantage (EMA = r/R, where r is the muscle mechanical advantage) for muscle force production. We used inverse dynamics based on force plate and kinematic recordings of humans as they walked and ran at steady speeds to examine how changes in muscle EMA affect muscle force-generating requirements at these gaits. We found a 68% decrease in knee extensor EMA when humans changed gait from a walk to a run compared with an 18% increase in hip extensor EMA and a 23% increase in ankle extensor EMA. Whereas the knee joint was extended (154-176 degrees) during much of the support phase of walking, its flexed position (134-164 degrees) during running resulted in a 5.2-fold increase in quadriceps impulse (time-integrated force during stance) needed to support body weight on the ground. This increase was associated with a 4.9-fold increase in the ground reaction force moment about the knee. In contrast, extensor impulse decreased 37% (P < 0.05) at the hip and did not change at the ankle when subjects switched from a walk to a run. We conclude that the decrease in limb mechanical advantage (mean limb extensor EMA) and increase in knee extensor impulse during running likely contribute to the higher metabolic cost of transport in running than in walking. The low mechanical advantage in running humans may also explain previous observations of a greater metabolic cost of transport for running humans compared with trotting and galloping quadrupeds of similar size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号