首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new 7,8‐secolignans, marphenols A and B ( 1 and 2 , resp.), together with a known related derivative, 7,8‐secoholostylone B ( 3 ), were isolated from the stems of Schisandra wilsoniana. The structures of 1 and 2 were elucidated by spectroscopic methods, including extensive 1D‐ and 2D‐NMR techniques. The anti‐HIV‐1 activities of 1 – 3 were evaluated. Compound 1 inhibited HIV‐1IIIB‐induced syncytia formation with an EC50 value of 0.55 μg ml?1. It reduced p24 antigen expression in acutely HIV‐1IIIB‐infected C8166 cells and primary isolate HIV‐1TC‐2‐infected peripheral blood mononuclear cells (PBMCs), with EC50 values of 3.34 and 0.52 μg ml?1, respectively. It showed no effects on the HIV‐1IIIB replication in chronically infected H9 cells as well as fusion inhibition.  相似文献   

2.
The viral protein Nef is a virulence factor that plays multiple roles during the early and late phases of human immunodeficiency virus (HIV) replication. Nef regulates the cell surface expression of critical proteins (including down-regulation of CD4 and major histocompatibility complex class I), T-cell receptor signaling, and apoptosis, inducing proapoptotic effects in uninfected bystander cells and antiapoptotic effects in infected cells. It has been proposed that Nef intersects the CD40 ligand signaling pathway in macrophages, leading to modification in the pattern of secreted factors that appear able to recruit and activate T lymphocytes, rendering them susceptible to HIV infection. There is also increasing evidence that in vitro cell treatment with Nef induces signaling effects. Exogenous Nef treatment is able to induce apoptosis in uninfected T cells, maturation in dendritic cells, and suppression of CD40-dependent immunoglobulin class switching in B cells. Previously, we reported that Nef treatment of primary human monocyte-derived macrophages (MDMs) induces a cycloheximide-independent activation of NF-kappaB and the synthesis and secretion of a set of chemokines/cytokines that activate STAT1 and STAT3. Here, we show that Nef treatment is capable of hijacking cellular signaling pathways, inducing a very rapid regulatory response in MDMs that is characterized by the rapid and transient phosphorylation of the alpha and beta subunits of the IkappaB kinase complex and of JNK, ERK1/2, and p38 mitogen-activated protein kinase family members. In addition, we have observed the activation of interferon regulatory factor 3, leading to the synthesis of beta interferon mRNA and protein, which in turn induces STAT2 phosphorylation. All of these effects require Nef myristoylation.  相似文献   

3.
4.
Previous studies have revealed that HIV-infected individuals possess circulating CD4(+)CD8(+) double-positive (DP) T cells specific for HIV Ags. In the present study, we analyzed the proliferation and functional profile of circulating DP T cells from 30 acutely HIV-infected individuals and 10 chronically HIV-infected viral controllers. The acutely infected group had DP T cells that showed more proliferative capability and multifunctionality than did both their CD4(+) and CD8(+) T cells. DP T cells were found to exhibit greater proliferation and higher multifunctionality compared with CD4 T cells in the viral controller group. The DP T cell response represented 16% of the total anti-HIV proliferative response and >70% of the anti-HIV multifunctional response in the acutely infected subjects. Proliferating DP T cells of the acutely infected subjects responded to all HIV Ag pools with equal magnitude. Conversely, the multifunctional response was focused on the pool representing Nef, Rev, Tat, VPR, and VPU. Meanwhile, the controllers' DP T cells focused on Gag and the Nef, Rev, Tat, VPR, and VPU pool for both their proliferative and multifunctional responses. Finally, we show that the presence of proliferating DP T cells following all HIV Ag stimulations is well correlated with proliferating CD4 T cells whereas multifunctionality appears to be largely independent of multifunctionality in other T cell compartments. Therefore, DP T cells represent a highly reactive cell population during acute HIV infection, which responds independently from the traditional T cell compartments.  相似文献   

5.
The HIV-1 Nef protein is a critical virulence factor that exerts multiple effects during viral replication. Nef modulates surface expression of various cellular proteins including CD4 and MHC-I, enhances viral infectivity, and affects signal transduction pathways. Nef has been shown to partially associate with rafts, where it can prime T cells for activation. The contribution of rafts during Nef-induced CD4 down-regulation and enhancement of viral replication remains poorly understood. We show here that Nef does not modify the palmitoylation state of CD4 or its partition within rafts. Moreover, CD4 mutants lacking palmitoylation or unable to associate with rafts are efficiently down-regulated by Nef. In HIV-infected cells, viral assembly and budding occurs from rafts, and Nef has been suggested to increase this process. However, using T cells acutely infected with wild-type or nef-deleted HIV, we did not observe any impact of Nef on raft segregation of viral structural proteins. We have also designed a palmitoylated mutant of Nef (NefG3C), which significantly accumulates in rafts. Interestingly, the efficiency of NefG3C to down-regulate CD4 and MHC-I, and to promote viral replication was not increased when compared with the wild-type protein. Altogether, these results strongly suggest that rafts are not a key element involved in the effects of Nef on trafficking of cellular proteins and on viral replication.  相似文献   

6.
Human and simian immunodeficiency virus (HIV and SIV, respectively) infections are characterized by gradual depletion of CD4+ T cells. The underlying mechanisms of CD4+ T-cell depletion and HIV and SIV persistence are not fully determined. The Nef protein is expressed early in infection and is necessary for pathogenesis. Nef can cause T-cell activation and downmodulates cell surface signaling molecules. However, the effect of Nef on the cell cycle has not been well characterized. To determine the role of Nef in the cell cycle, we investigated whether the SIV Nef protein can modulate cell proliferation and apoptosis in CD4+ Jurkat T cells. We developed a CD4+ Jurkat T-cell line that stably expresses SIV Nef under the control of an inducible promoter. Alterations in cell proliferation were determined by flow cytometry using stable intracytoplasmic fluorescent dye 5- and 6-carboxyfluorescein diacetate succinimidyl ester and bromodeoxyuridine incorporation. Apoptotic cell death was measured by annexin V and propidium iodide staining. Our results demonstrated that SIV Nef inhibited Fas-induced apoptosis in these cells and that the mechanism involved upregulation of the Bcl-2 protein. SIV Nef suppressed CD4+ T-cell proliferation by inhibiting the progression of cells into S phase of the cell cycle. Suppression involved an upregulation of cyclin-dependent kinase inhibitors p21 and p27 and the downregulation of cyclin D1 and cyclin A. In summary, inhibition of apoptosis by Nef can lead to persistence of infected cells and can support viral replication. In addition, a Nef-mediated delay in cell cycle progression may contribute to CD4+ T-cell anergy/depletion seen in HIV and SIV disease.  相似文献   

7.
Chroococcoid cyanobacteria, (mean size = 0.79 μm, likely Synchetocystis limnetica Popovsk) and total eubacteria (mean size = 0.33 μm), from Lake Baikal, USSR, were enumerated using epifluorescence microscopy and sized with image analysis. Bacterial densities ranged from 0.44 · 106 cells ml−1 at 250 m to 2.3 · 106 cells ml−1 at the surface. Mean eubacterial abundance was 1.3 · 106 cells ml−1. Cyanobacterial densities were more variable, ranging from 0.42 · 104 cells ml−1 at 250 m to 9.8 · 104 cells ml−1 at the surface, with a mean abundance of 2.7 · 104 cells ml−1. The cyanobacteria, in particular, occurred in clusters resembling “marine snow”. Our results indicate that Lake Baikal picoplankton size and density are similar to other large lakes but may have a more diverse community structure than in other large oligotrophic lakes.  相似文献   

8.
9.
Human immunodeficiency virus (HIV)-infected infants in sub-Saharan Africa typically progress to AIDS or death by 2 years of life in the absence of antiretroviral therapy. This rapid progression to HIV disease has been related to immaturity of the adaptive immune response in infants. We screened 740 infants born to HIV-infected mothers and tracked development and specificity of HIV-specific CD8+ T-cell responses in 63 HIV-infected infants identified using gamma interferon enzyme-linked immunospot assays and intracellular cytokine staining. Forty-four in utero-infected and 19 intrapartum-infected infants were compared to 45 chronically infected children >2 years of age. Seventy percent (14 of 20) in utero-infected infants tested within the first week of life demonstrated HIV-specific CD8+ T-cell responses. Gag, Pol, and Nef were the principally targeted regions in chronic pediatric infection. However, Env dominated the overall response in one-third (12/36) of the acutely infected infants, compared to only 2/45 (4%) of chronically infected children (P = 0.00083). Gag-specific CD4+ T-cell responses were minimal to undetectable in the first 6 months of pediatric infection. These data indicate that failure to control HIV replication in in utero-infected infants is not due to an inability to induce responses but instead suggest secondary failure of adaptive immunity in containing this infection. Moreover, the detection of virus-specific CD8+ T-cell responses in the first days of life in most in utero-infected infants is encouraging for HIV vaccine interventions in infants.  相似文献   

10.
Abstract: Immunophenotype analysis was used to characterize circulating lymphocyte subset levels in both rhesus monkeys that were chronically infected with SIVmac239 and in those that had resisted SIVmac239 infection as a result of prior vaccination with an attenuated SIV strain. Alterations in T, NK, and B cell subsets were compared with those previously identified in humans chronically infected with HIV [8–11, 14, 22]. The well-known decrease in CD4+ cell levels was observed in the SIVmac239-infected animals. However, these animals had relatively little activation of circulating CD8+ T cells as compared with uninfected monkeys. This contrasts with chronically HIV-infected humans who have substantial activation of circulating CD8+ cells as evidenced by elevated HLA-DR and CD38 antigen expression on CD8+ cells as well as substantially increased percentages and numbers of total CD8+ cells. NK cells of the SIVmac239-infected animals, on the other hand, demonstrated the same changes recently described in HIV-infected humans, i.e., a decrease in circulating percentages and a decreased amount of FcRIII (CD 16). B cell percentages were markedly increased in the SIVmac239-infected animals, a finding also noted in some children with HIV infection but not in HIV-infected adults. SIVΔnef-vaccinated/SIVmac239-challenged animals showed none of the immune alterations found in the SIVmac239-infected monkeys, providing further confirmation of lack of SIV disease in these vaccinated animals.  相似文献   

11.
The progressive loss of CD4 T lymphocytes is one of the hallmarks of HIV infection. The reverse correlation observed in vivo, between plasmatic HIV levels and CD4 T lymphocyte counts, supports the concept that direct HIV-mediated cell death contributes to this depletion. Previously, we and others have demonstrated, in vitro, that interactions between membrane-expressed HIV-envelope glycoprotein complexes and CD4 ecto-molecules are critical to cell killing which occurs mainly by apoptosis. Here, by the use of a co-culture model, in which chronically HIV-1 infected cells trigger apoptosis in uninfected CD4+ target cells, we have investigated the role of different CD4 domains in HIV envelope-mediated apoptosis. Target cells were A201 lymphoblastoid cell lines expressing wild-type CD4 or mutant forms of CD4. We show that the cytoplasmic domain of CD4 was not required for apoptosis induction. In contrast, the HIV permissive cell line expressing a CD4/CD8 chimeric molecule which contains only the first 171 amino acids of CD4, appeared to be resistant to HIV-induced apoptosis; thus suggesting that the D3-D4 CD4 module plays somewhat a regulatory role. Pre-treatment of wild-type CD4 expressing target cells by the phorbol ester PMA which leads to down-regulation of CD4, completely abolished apoptosis. Interestingly, in cells expressing CD4 devoid of its cytoplasmic domain, PMA blocked partially cell death without affecting, as expected, the CD4 expression. Taken together, these results demonstrate that although CD4 expression is essential for HIV envelope induced apoptosis, the apoptotic signal could be delivered in the absence of its cytoplasmic domain. Consistent with this, we suggest that other membrane associated molecule(s) are recruited for the signalling to initiate apoptosis.  相似文献   

12.
Nef is secreted from infected cells in exosomes and is found in abundance in the sera of HIV-infected individuals. Secreted exosomal Nef (exNef) induces apoptosis in uninfected CD4+ T cells and may be a key component of HIV pathogenesis. The exosomal pathway has been implicated in HIV-1 virus release, suggesting a possible link between these two viral processes. However, the underlying mechanisms and cellular components of exNef secretion have not been elucidated. We have previously described a Nef motif, the secretion modification region (SMR; amino acids 66 to 70), that is required for exNef secretion. In silico modeling data suggest that this motif can form a putative binding pocket. We hypothesized that the Nef SMR binds a cellular protein involved in protein trafficking and that inhibition of this interaction would abrogate exNef secretion. By using tandem mass spectrometry and coimmunoprecipitation with a novel SMR-based peptide (SMRwt) that blocks exNef secretion and HIV-1 virus release, we identified mortalin as an SMR-specific cellular protein. A second set of coimmunoprecipitation experiments with full-length Nef confirmed that mortalin interacts with Nef via Nef''s SMR motif and that this interaction is disrupted by the SMRwt peptide. Overexpression and microRNA knockdown of mortalin revealed a positive correlation between exNef secretion levels and mortalin protein expression. Using antibody inhibition we demonstrated that the Nef/mortalin interaction is necessary for exNef secretion. Taken together, this work constitutes a significant step in understanding the underlying mechanism of exNef secretion, identifies a novel host-pathogen interaction, and introduces an HIV-derived peptide with antiviral properties.  相似文献   

13.
Lama J  Ware CF 《Journal of virology》2000,74(20):9396-9402
Human immunodeficiency virus (HIV) Nef downregulates the antigen recognition molecules major histocompatibility complex class I and CD4. Downregulation of surface CD4 by Nef relies on the ability of this viral protein to redirect the endocytic machinery to CD4. However, by redirecting the endocytic machinery, Nef may affect the internalization rates of other proteins. Here we show that Nef simultaneously enhances surface expression of the effector cytokines tumor necrosis factor (TNF) and LIGHT, leading to enhanced cytokine activity. A dileucine motif in Nef, which is essential for CD4 downregulation and is involved in the recruitment of adapter protein complexes by Nef, was required to increase surface levels of both cytokines. The physiological impact of the Nef-mediated interference with endocytosis was demonstrated by the fact that a TNF-responsive T-cell line chronically infected with HIV produced higher levels of p24 viral protein following expression of a Nef-green fluorescent protein (GFP) fusion protein. This enhancement was dependent on the levels of membrane-bound TNF, since it was abrogated by a recombinant soluble TNF receptor. Expression of Nef-GFP in human 293T cells reduced the endocytosis of LIGHT, whereas at the same time CD4 internalization was accelerated. Taken together, these results suggest that in infected cells Nef interferes with the internalization of these effector cytokines. By increasing TNF expression, Nef could accelerate disease progression in infected individuals. These findings may help explain the pleiotropic functions that Nef plays during infection and disease.  相似文献   

14.
The mechanism by which CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals suppress HIV replication in acutely infected CD4+ T cells was investigated. Cytotoxicity was not involved, as the antiviral activity of the CD8+ cells did not correlate with the ability to lyse HIV-infected or uninfected CD4+ T cells. In addition, the frequency of HIV-infected CD4+ cells increased during coculture with CD8+ T cells even in the absence of detectable levels of virus replication. Moreover, separation of the CD4+ and CD8+ cells by a 0.4-micron-pore-size filter delayed HIV replication, indicating a role, at least in part, for a soluble factor. However, cell contact was required for optimal antiviral activity. These results extend further the observation on the mechanism of antiviral HIV activity by CD8+ cells from infected individuals. They support the conclusion that CD8+ cells can play a major role in preventing development of disease in HIV-infected individuals.  相似文献   

15.
16.
Differentiation and survival defects of human immunodeficiency virus (HIV)-specific CD8(+) T cells may contribute to the failure of HIV-specific CD8(+) T cells to control HIV replication. It is not known, however, whether simian immunodeficiency virus (SIV)-infected rhesus macaques show comparable defects in these virus-specific CD8(+) T cells or when such defects are established during infection. Peripheral blood cells from acutely and chronically infected rhesus macaques were stained ex vivo for memory subpopulations and examined by in vitro assays for apoptosis sensitivity. We show here that SIV-specific CD8(+) T cells from chronically SIV infected rhesus macaques show defects comparable to those observed in HIV infection, namely, a skewed CD45RA(-) CD62L(-) effector memory phenotype, reduced Bcl-2 levels, and increased levels of spontaneous and CD95-induced apoptosis of SIV-specific CD8(+) T cells. Longitudinal studies showed that the survival defects and phenotype are established early in the first few weeks of SIV infection. Most importantly, they appear to be antigen driven, since most probably the loss of epitope recognition due to viral escape results in the reversal of the phenotype and reduced apoptosis sensitivity, something we observed also for animals treated with antiretroviral therapy. These findings further support the use of SIV-infected rhesus macaques to investigate the phenotypic changes and apoptotic defects of HIV-specific CD8(+) T cells and indicate that such defects of HIV-specific CD8(+) T cells are the result of chronic antigen stimulation.  相似文献   

17.
18.
19.
20.
To maintain bone mass turnover and bone mineral density (BMD), bone marrow (BM) mesenchymal stem cells (MSCs) are constantly recruited and subsequently differentiated into osteoblasts. HIV‐infected patients present lower BMD than non‐HIV infected individuals and a higher prevalence of osteopenia/osteoporosis. In antiretroviral treatment (ART)‐naive patients, encoded HIV proteins represent pathogenic candidates. They are released by infected cells within BM and can impact on neighbouring cells. In this study, we tested whether HIV proteins Tat and/or Nef could induce senescence of human BM‐MSCs and reduce their capacity to differentiate into osteoblasts. When compared to nontreated cells, MSCs chronically treated with Tat and/or Nef up to 30 days reduced their proliferative activity and underwent early senescence, associated with increased oxidative stress and mitochondrial dysfunction. The antioxidant molecule N‐acetyl‐ cysteine had no or minimal effects on Tat‐ or Nef‐induced senescence. Tat but not Nef induced an early increase in NF‐κB activity and cytokine/chemokine secretion. Tat‐induced effects were prevented by the NF‐κB inhibitor parthenolide, indicating that Tat triggered senescence via NF‐κB activation leading to oxidative stress. Otherwise, Nef‐ but not Tat‐treated cells displayed early inhibition of autophagy. Rapamycin, an autophagy inducer, reversed Nef‐induced senescence and oxidative stress. Moreover, Tat+Nef had cumulative effects. Finally, Tat and/or Nef decreased the MSC potential of osteoblastic differentiation. In conclusion, our in vitro data show that Tat and Nef could reduce the number of available precursors by inducing MSC senescence, through either enhanced inflammation or reduced autophagy. These results offer new insights into the pathophysiological mechanisms of decreased BMD in HIV‐infected patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号