首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The Sry gene product serves an important function in male sex determination through testis induction. However, testicular development has been reported in SRY-negative XX sex reversed humans. XX sex reversal of the American cocker spaniel, inherited as an autosomal recessive trait, may be a homolog of this disorder. The purpose of this study was to determine whether the Sry high mobility group (HMG) box is present in genomic DNA of affected dogs. Conserved Sry HMG box and hypoxanthine phosphoribosyltransferase (HPRT) sequences were used as primers in polymerase chain reactions. A 167 bp Y-specific canine Sry HMG box sequence was cloned from genomic DNA of normal male dogs. Internal primers generated a 104 bp Sry HMG box product from normal males, but not from females or XX sex reversed dogs. Parallel reactions generated an HPRT product from all dogs. Results indicate that the Sry HMG box is absent in genomic DNA of XX sex reversed dogs. We speculate that activation of the testis differentiation cascade in the absence of Sry in this model is due to a mutant autosomal gene. © 1995 Wiley-Liss, Inc.  相似文献   

3.
To ascertain whether brown dog tick Rhipicephalus sp. infests resistant (beagle) and susceptible (English cocker spaniel) dogs differently, five animals of each breed were maintained in a kennel whose walls were infested with 7,000 larvae, 320 nymphs, 80 males and 80 females, in 3 infestations, at 10-day intervals. Five times more ticks were found on cocker spaniels (498) than on beagles (96). Substances were collected by rubbing pieces of clean flannel on the dogs for 15 min and these were tested for arrestment and attractiveness of ticks. Three choices were offered: cocker extract vs. control; beagle extract vs. control, and cocker extract vs. beagle extract. When allowed to choose between substances rubbed from dogs and a control, more ticks were arrested by extracts from the cockers than from beagles. In the arrestment tests with only a choice between substances from dogs of each breed, more ticks were arrested by cocker substances. To test for attraction, capsules containing adsorbent were used and the tests were carried out in a Y-olfactometer. Fifteen males and 15 females were tested, for each treatment. In the olfactometer, the ticks were not attracted to the odor of either breed, however the odor of the Beagle was apparently repellent. These results indicate that R. sanguineus can use substances from the dogs to differentiate susceptible English Cocker Spaniels from resistant Beagles.  相似文献   

4.
The sex-determining region Y is a gene located in the distal portion of the short arm of human (SRY) and mouse (Sry) Y chromosomes and considered to be the best candidate for the testis determining factor (TDF/Tdy). The gene is believed to be the key factor in sex differentiation in mammals and is conserved across mammalian species. We report herein that the SRY/Sry gene has been assigned to pi 2-p13 on the short arm of the Y chromosome in pig by in situ hybridization. The result confirms interspecies conservation of this chromosomal segment in the evolution of mammalian chromosomes, and suggests further use of this gene probe in genomic studies in other mammals. The assignment of the Sry gene is the second physical gene mapping data available for the Y chromosome in pigs. Such data can be used in the effort of constructing the pig gene map and for further establishment of a comparison of sex chromosome morphology in different mammalian species concerning sex-specific and pseudoautosomal regions.  相似文献   

5.
Meyers-Wallen VN 《Theriogenology》2006,66(6-7):1655-1658
The genomic revolution is beginning to facilitate advances in canine and feline medicine, as illustrated in our research. Our studies are focused upon identifying the gene mutation that causes canine Sry-negative XX sex reversal, a disorder of sex determination in which chromosomal females (78,XX) develop testicular tissue, becoming either XX true hermaphrodites with ovotestes, or XX males with bilateral testes. A genome-wide screen, using mapped markers in our pedigree of Sry-negative XX sex reversed dogs founded upon the American cocker spaniel, identified five chromosomal regions in which the causative gene may be located. The canine genome was used to identify the canine homologue of goat Pisrt1 and so determine that canine and caprine Sry-negative XX sex reversal are genetically heterogeneous. A second goal of our research is to determine the molecular mechanism by which the mutation causes testis induction. Thus far, we have reported gonadal Sry and Sox9 expression patterns in normal embryos, which have temporal and spatial patterns similar to those reported in humans, sheep, and pigs. Once gene mutations causing such inherited disorders are identified, DNA tests will become a part of general veterinary practice, advancing both diagnostic techniques and preventative medicine.  相似文献   

6.
Severe hemophilia A (HA) is an inherited bleeding disorder characterized by <1% of residual factor VIII (FVIII) clotting activity. The disease affects several mammals including dogs, and, like humans, is associated with high morbidity and mortality. In gene therapy using adeno-associated viral (AAV) vectors, the canine model has been one of the best predictors of the therapeutic dose tested in clinical trials for hemophilia B (factor IX deficiency) and other genetic diseases, such as congenital blindness. Here we report our experience with liver gene therapy with AAV-FVIII in two outbred, privately owned dogs with severe HA that resulted in sustained expression of 1–2% of normal FVIII levels and prevented 90% of expected bleeding episodes. A Thr62Met mutation in the F8 gene was identified in one dog. These data recapitulate the improvement of the disease phenotype in research animals, and in humans, with AAV liver gene therapy for hemophilia B. Our experience is a novel example of the benefits of a relevant preclinical canine model to facilitate both translational studies in humans and improved welfare of privately owned dogs.  相似文献   

7.
Three families of English springer spaniel dogs with phosphofructokinase (PFK) deficiency causing haemolysis were studied. Four male dogs and one female dog with chronic haemolysis and haemolytic crises were found to have markedly reduced PFK activity in erythrocytes (8-20% of control English springer spaniels). PFK-deficient erythrocytes exhibited an extreme alkaline and sucrose lysis. The oxygen dissociation curve of erythrocyte suspensions was shifted to the left with a 50% saturation of haemoglobin at a partial oxygen pressure of 16-17 mmHg (normal 26-31 mmHg). Muscle wasting and mildly increased serum creatine phosphokinase activity were also noted. Six clinically normal first degree relatives of affected dogs had erythrocyte PFK activities that were 38-51% of controls. In these family members, there was an erythrocytosis and mild reticulocytosis probably due to a mildly enhanced haemoglobin-oxygen affinity but no increase in serum creatine phosphokinase. These studies confirm the familial nature of muscle-type PFK deficiency in English springer spaniels and support the conclusion that this animal model of the human glycogen storage disease type VII is inherited as an autosomal recessive trait.  相似文献   

8.
9.
Summary This study was conducted to define the range of phenotypic expression and mode of inheritance of XX sex reversal in the cocker spaniel dog. Breeding experiments produced F1, F1BC, and F2 generations in which 29 XX true hermaphrodites and 3 XX males were defined by chromosome constitution, serial histologic sections of the gonads, and examination of the internal and external genitalia. In XX true hermaphrodites, the most common combination of gonads was bilateral ovotestes, followed by ovotestis and ovary, then ovotestis and testis. The amount of testicular tissue in the two gonads was closely correlated within each true hermaphrodite. The distribution of testicular tissue within ovotestes of true hermaphrodites was consistent with the hypothesis that testicular differentiation is initiated in the center of the gonad and spreads outward. XX males had bilateral aspermatogenic testes and the internal ducts and external genitalia were more masculinized than in true hermaphrodites. Results of breeding experiments are consistent with autosomal recessive inheritance, the affected phenotype being expressed only in dogs with an XX chromosome constitution. The phenotypic expression and mode of inheritance of this disorder is compared to XX sex reversal in humans and other animals.  相似文献   

10.
Sexual development in mammals is based on a complicated and delicate network of genes and hormones that have to collaborate in a precise manner. The dark side of this pathway is represented by pathological conditions, wherein sexual development does not occur properly either in the XX and the XY background. Among them a conundrum is represented by the XX individuals with at least a partial testis differentiation even in absence of SRY. This particular condition is present in various mammals including the dog. Seven dogs characterized by XX karyotype, absence of SRY gene, and testicular tissue development were analysed by Array-CGH. In two cases the array-CGH analysis detected an interstitial heterozygous duplication of chromosome 9. The duplication contained the SOX9 coding region. In this work we provide for the first time a causative mutation for the XXSR condition in the dog. Moreover this report supports the idea that the dog represents a good animal model for the study of XXSR condition caused by abnormalities in the SOX9 locus.  相似文献   

11.
The generalized progressive retinal atrophies (gPRAs) form a group of retinal degenerations of pedigree dogs and cats, which have a variety of genetic origins (mostly unknown). We have examined the opsin gene for polymorphisms in several breeds of pedigree dog suffering from distinct forms of gPRA, by methods including single-strand conformation polymorphism analysis, microsatellite analysis and direct sequencing. The breeds examined included the Tibetan terrier, the miniature schnauzer, the Irish setter, the miniature poodle, the Labrador retriever and the English cocker spaniel, as well as individuals from breeds in which PRA has not been described and of mixed breed. Individuals from each of the named breeds suffering from PRA were compared with clinically normal dogs. Two polymorphisms were found. One, segregating within the Tibetan terrier population, but not seen in other breeds, was a synonymous transition at nucleotide position 780 in exon 3. Inheritance of this polymorphism suggests that opsin is unlikely to contain mutations causative of gPRA in this breed. The other polymorphism occurred between all miniature schnauzers examined and dogs of other breeds. It consisted of a single base insertion in intron 2. No polymorphisms in the opsin sequence were detected in any other breed. DNA sequencing allowed rigorous exclusion of mutations in opsin as a cause of gPRA in miniature poodles, English cocker spaniels or Labrador retrievers.  相似文献   

12.
Sex determination in the mammalian embryo begins with the activation of a gene on the Y chromosome which triggers a cascade of events that lead to male development. The mechanism by which this gene, designated SRY in humans and Sry in mice (sex determining region of the Y chromosome), is activated remains unknown. Likewise, the downstream target genes for Sry remain unidentified at present. C57BL mice carrying a Y chromosome from Mus musculus musculus or molossinus develop normally as males. In contrast, C57BL/6 mice with the Y chromosome from M. m. domesticus often show sex reversal, i.e., develop as XY females. It has been documented that C57BL mice with the Y chromosome from Poschiavinus (YPOS), a domesticus subtype, always develop as females or hermaphrodites. This suggests that a C57BL gene either up- or downstream of Sry is ineffective in interacting with Sry, which then compromises the processes that lead to normal male sex development. Nonetheless, by selective breeding, we have been able to generate a sex reversal-resistant C57BL/6-congenic strain of mice in which the XYPOS individuals consistently develop as normal males with bilateral testes. Because the resistance to sex reversal was transferred from strain 129S1/Sv (nonalbino) by simple selection over 13 backcross generations, it is inferred that a single autosomal gene or chromosomal region confers resistance to the sex reversal that would otherwise result. XYPOS normal males generated in these crosses were compared to XYPOS abnormal individuals and to C57BL/6 controls for sexual phenotype, gonadal weight, serum testosterone, and major urinary protein (MUP) level. A clear correlation was found among phenotypic sex, MUP level, and testis weight in the males and in the incompletely masculinized XYPOS mice. The fully masculinized males of the congenic strain resemble C57BL/6 males in the tested parameters. DNA analysis confirmed that these males, in fact, carry the YPOS Sry gene.  相似文献   

13.
14.
15.
16.
17.
18.
The sex determining region Y gene (Sry) is the strongest candidate to be the testis determining factor gene (Tdy). Several South-American Akodon species have two varieties of Y chromosome. One type transmitted via male specimens induces testis development. The second Y variety fails to induce male gonadal differentiation and gives rise to fully fertile XY females. These variant females test positive for Sry. Moreover, sequencing of a partial open reading frame of the conserved region of Sry from males and XY females shows no sequence difference. Sry is two- to sixfold amplified in six of eight akodont species tested. Since Sry amplification was found in species having and not having XY females, amplification apparently does not in itself play a primary role in the origin of sex reversal. The development of fully fertile ovaries in XY Akodon females is not due to a deletion of Sry or to mutations in the Sry segment analyzed in this report. Sex reversal may be due to abnormal expression of this gene at the stage of gonadal differentiation. Alternatively, other genes in the sex-determining pathway may be involved. Several of the Akodon species showing Sry amplification also have amplification of Zfy, which may map to the same region of the Akodon Y chromosome.  相似文献   

19.
20.
Summary Nine XX true hermaphrodites and two XX males were discovered in a family of American cocker spaniels. The true hermaphrodites were partially-masculinized females with ovotestes; the XX males had malformed male external genitalia and cryptorchid aspermatogenic testes. Wolffian and Mullerian duct derivatives were present in both true hermaphrodites and XX males. All four sires of sex-reversed dogs were normal XY males; five of the dams were anatomically normal females and one was an XX true hermaphrodite. A second true hermaphrodite reproduced as a female, producing anatomically normal offspring.All matings that produced sex-reversed offspring were consanguineous. Matings of the parents of sex-reversed cocker spaniels to normal beagles with no family history of intersexuality produced only normal offspring. Examination of G-banded karyotypes of the affected animals, their parents, and siblings, revealed no structural anomalies of the chromosomes that were consistently associated with sex-reversal.In assays for serologically-detectable H-Y antigen, the group of XX true hermaphrodites and the group of XX males had mean levels of the antigen not significantly different from that in normal male controls. Female parents of sex-reversed dogs and some of their female siblings were typed H-Y antigen positive, but the mean level of the antigen in this group was less than that of normal male controls.It is proposed that XX sex reversal in cocker spaniels is due to a mutant gene which when homozygous in females, results in a level of H-Y antigen similar to that found in normal males and the gonads develop as ovotestes or testes. When the gene is heterozygous in females, the level of serologically-detectable H-Y antigen is lowr than that found in normal males and the gonads develop as normal ovaries. The persistence of Mullerian structures in the presence of testicular tissue suggests that Mullerian inhibiting substance is deficient or ineffective in its action in this condition.Supported by NIH Postdoctoral Fellowship IF32 HL05515, University of Pennsylvania Genetics Center Grant, No. GM 20138, and NIH grants AI-19456, HD 17049, and HD 14357; and a grant from the Mrs. Cheever Porter Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号