首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emerging evidence has demonstrated that chronic ethanol exposure induces iron overload, enhancing ethanol-mediated liver damage. The purpose of this study was to explore the effects of the naturally occurring compound quercetin on ethanol-induced iron overload and liver damage, focusing on the signaling pathway of the iron regulatory hormone hepcidin. Adult male C57BL/6J mice were pair-fed with isocaloric-Lieber De Carli diets containing ethanol (accounting for 30% of total calories) and/or carbonyl iron (0.2%) and treated with quecertin (100 mg/kg body weight) for 15 weeks. Mouse primary hepatocytes were incubated with ethanol (100 mM) and quercetin (100 μM) for 24 h. Mice exposed to either ethanol or iron presented significant fatty infiltration and iron deposition in the liver; these symptoms were exacerbated in mice cotreated with ethanol and iron. Quercetin attenuated the abnormity induced by ethanol and/or iron. Ethanol suppressed BMP6 and intranuclear SMAD4 as well as decreased hepcidin expression. These effects were partially alleviated by quercetin supplementation in mice and hepatocytes. Importantly, ethanol caused suppression of SMAD4 binding to the HAMP promoter and of hepcidin messenger RNA expression. These effects were exacerbated by anti-BMP6 antibody and partially alleviated by quercetin or human recombinant BMP6 in cultured hepatocytes. In contrast, co-treatment with iron and ethanol, especially exposure of iron alone, activated BMP6/SMAD4 pathway and up-regulated hepcidin expression, which was also normalized by quercetin in vivo. Quercetin prevented ethanol-induced hepatic iron overload different from what carbonyl iron diet elicited in the mechanism, by regulating hepcidin expression via the BMP6/SMAD4 signaling pathway.  相似文献   

2.
Hepcidin, a master regulator of iron homeostasis, is a promising target in treatment of iron disorders such as hemochromatosis, anemia of inflammation and iron-deficiency anemia. We previously reported that black soybean seed coat extract could inhibit hepcidin expression. Based on this finding, we performed a screen in cultured cells in order to identify the compounds in black soybeans that inhibit hepcidin expression. We found that the dietary flavonoid myricetin significantly inhibited the expression of hepcidin both in vitro and in vivo. Treating cultured cells with myricetin decreased both HAMP mRNA levels and promoter activity by reducing SMAD1/5/8 phosphorylation. This effect was observed even in the presence of bone morphogenic protein-6 (BMP6) and interleukin-6 (IL-6), two factors that stimulate hepcidin expression. Furthermore, mice that were treated with myricetin (either orally or systemically) had reduced hepatic hepcidin expression, decreased splenic iron levels and increased serum iron levels. Notably, myricetin-treated mice increased red blood cell counts and hemoglobin levels. In addition, pretreating mice with myricetin prevented LPS-induced hypoferremia. We conclude that myricetin potently inhibits hepcidin expression both in vitro and in vivo, and this effect is mediated by altering BMP/SMAD signaling. These experiments highlight the feasibility of identifying and characterizing bioactive phytochemicals to suppress hepcidin expression. These results also suggest that myricetin may represent a novel therapy for treating iron deficiency-related diseases.  相似文献   

3.
4.
5.
Synchronization of oocyte maturation in vitro has been shown to produce higher in vitro fertilization (IVF) rates than those observed in oocytes matured in vitro without synchronization. However, the increased IVF rates never exceeded those observed in oocytes matured in vivo without synchronization. This study was therefore designed to define the effect of in vivo synchronization of oocyte maturation on IVF rates. Mice were superovulated and orally treated with 7.5 mg cilostazol (CLZ), a phosphodiesterase 3A (PDE3A) inhibitor, to induce ovulation of immature oocytes at different stages depending on frequency and time of administration of CLZ. Mice treated with CLZ ovulated germinal vesicle (GV) or metaphase I (MI) oocytes that underwent maturation in vitro or in vivo (i.e. in the oviduct) followed by IVF. Superovulated control mice ovulated mature oocytes that underwent IVF directly upon collection. Ovulated MI oocytes matured in vitro or in vivo had similar maturation rates but significantly higher IVF rates, 2–4 cell embryos, than those observed in control oocytes. Ovulated GV oocytes matured in vitro showed similar maturation rates but significantly higher IVF rates than those observed in control oocytes. However, ovulated GV oocytes matured in vivo had significantly lower IVF rates than those noted in control oocytes. It is concluded that CLZ is able to synchronize oocyte maturation and improve IVF rates in superovulated mice. CLZ may be capable of showing similar effects in humans, especially since temporal arrest of human oocyte maturation with other PDE3A inhibitors in vitro was found to improve oocyte competence level. The capability of a clinically approved PDE3A inhibitor to improve oocyte fertilization rates in mice at doses extrapolated from human therapeutic doses suggests the potential scenario of the inclusion of CLZ in superovulation programs. This may improve IVF outcomes in infertile patients.  相似文献   

6.
7.
8.
9.
Bacteria present a promising delivery system for treating human diseases. Here, we engineered the genome‐reduced human lung pathogen Mycoplasma pneumoniae as a live biotherapeutic to treat biofilm‐associated bacterial infections. This strain has a unique genetic code, which hinders gene transfer to most other bacterial genera, and it lacks a cell wall, which allows it to express proteins that target peptidoglycans of pathogenic bacteria. We first determined that removal of the pathogenic factors fully attenuated the chassis strain in vivo. We then designed synthetic promoters and identified an endogenous peptide signal sequence that, when fused to heterologous proteins, promotes efficient secretion. Based on this, we equipped the chassis strain with a genetic platform designed to secrete antibiofilm and bactericidal enzymes, resulting in a strain capable of dissolving Staphylococcus aureus biofilms preformed on catheters in vitro, ex vivo, and in vivo. To our knowledge, this is the first engineered genome‐reduced bacterium that can fight against clinically relevant biofilm‐associated bacterial infections.  相似文献   

10.
Hepcidin synthesis is reported to be inadequate according to the body iron store in patients with non-alcoholic fatty liver disease (NAFLD) undergoing hepatic iron overload (HIO). However, the underlying mechanisms remain unclear. We hypothesize that hepatocyte nuclear factor-4α (HNF-4α) may negatively regulate hepcidin expression and contribute to hepcidin deficiency in NAFLD patients. The effect of HNF-4α on hepcidin expression was observed by transfecting specific HNF-4α small interfering RNA (siRNA) or plasmids into HepG2 cells. Both direct and indirect mechanisms involved in the regulation of HNF-4α on hepcidin were detected by real-time PCR, Western blotting, chromatin immunoprecipitation (chIP), and reporter genes. It was found that HNF-4α suppressed hepcidin messenger RNA (mRNA) and protein expressions in HepG2 cells, and this suppressive effect was independent of the potential HNF-4α response elements. Phosphorylation of SMAD1 but not STAT3 was inactivated by HNF-4α, and the SMAD4 response element was found essential to HNF-4α-induced hepcidin reduction. Neither inhibitory SMADs, SMAD6, and SMAD7 nor BMPR ligands, BMP2, BMP4, BMP6, and BMP7 were regulated by HNF-4α in HepG2 cells. BMPR1A, but not BMPR1B, BMPR2, ActR2A, ActR2B, or HJV, was decreased by HNF-4α, and HNF4α-knockdown-induced stimulation of hepcidin could be entirely blocked when BMPR1A was interfered with at the same time. In conclusion, the present study suggests that HNF-4α has a suppressive effect on hepcidin expression by inactivating the BMP pathway, specifically via BMPR1A, in HepG2 cells.  相似文献   

11.
The BMP/SMAD4 pathway has major effects on liver hepcidin levels. Bone morphogenetic protein-binding endothelial cell precursor-derived regulator (Bmper), a known regulator of BMP signaling, was found to be overexpressed at the mRNA and protein levels in liver of genetically hypotransferrinemic mice (Trf(hpx/hpx)). Soluble BMPER peptide inhibited BMP2- and BMP6-dependent hepcidin promoter activity in both HepG2 and HuH7 cells. These effects correlated with reduced cellular levels of pSMAD1/5/8. Addition of BMPER peptide to primary human hepatocytes abolished the BMP2-dependent increase in hepcidin mRNA, whereas injection of Bmper peptide into mice resulted in reduced liver hepcidin and increased serum iron levels. Thus Bmper may play an important role in suppressing hepcidin production in hypotransferrinemic mice.  相似文献   

12.
The discovery of reduced flavin mononucleotide and fatty aldehydes as essential factors of light emission facilitated study of bacterial luminescence. Although the molecular mechanisms underlying bacterial luminescence have been studied for more than 60 years, the structure of the bacterial fatty acid reductase complex remains unclear. Here, we report the cryo-EM structure of the Photobacterium phosphoreum fatty acid reductase complex LuxC–LuxE to a resolution of 2.79 Å. We show that the active site Lys238/Arg355 pair of LuxE is >30 Å from the active site Cys296 of LuxC, implying that catalysis relies on a large conformational change. Furthermore, mutagenesis and biochemical experiments support that the L-shaped cleft inside LuxC plays an important role in substrate binding and reaction. We obtained a series of mutants with significantly improved activity as measured by in vitro bioluminescence assays and demonstrated that the double mutant W111A/F483K displayed the highest activity (370% of the WT). Our results indicated that the activity of LuxC significantly affects the bacterial bioluminescence reaction. Finally, we expressed this mutated lux operon in Escherichia coli but observed that the in vivo concentrations of ATP and NADPH limited the enzyme activity; thus, we conclude that the luminous intensity mainly depends on the level of metabolic energy.  相似文献   

13.
In plasma, iron is normally bound to transferrin, the principal protein in blood responsible for binding and transporting iron throughout the body. However, in conditions of iron overload when the iron-binding capacity of transferrin is exceeded, non–transferrin-bound iron (NTBI) appears in plasma. NTBI is taken up by hepatocytes and other parenchymal cells via NTBI transporters and can cause cellular damage by promoting the generation of reactive oxygen species. However, how NTBI affects endothelial cells, the most proximal cell type exposed to circulating NTBI, has not been explored. We modeled in vitro the effects of systemic iron overload on endothelial cells by treating primary human umbilical vein endothelial cells (HUVECs) with NTBI (ferric ammonium citrate [FAC]). We showed by RNA-Seq that iron loading alters lipid homeostasis in HUVECs by inducing sterol regulatory element-binding protein 2–mediated cholesterol biosynthesis. We also determined that FAC increased the susceptibility of HUVECs to apoptosis induced by tumor necrosis factor-α (TNFα). Moreover, we showed that cholesterol biosynthesis contributes to iron-potentiated apoptosis. Treating HUVECs with a cholesterol chelator hydroxypropyl-β-cyclodextrin demonstrated that depletion of cholesterol was sufficient to rescue HUVECs from TNFα-induced apoptosis, even in the presence of FAC. Finally, we showed that FAC or cholesterol treatment modulated the TNFα pathway by inducing novel proteolytic processing of TNFR1 to a short isoform that localizes to lipid rafts. Our study raises the possibility that iron-mediated toxicity in human iron overload disorders is at least in part dependent on alterations in cholesterol metabolism in endothelial cells, increasing their susceptibility to apoptosis.  相似文献   

14.
Both hemojuvelin (HJV) and bone morphogenic protein-6 (BMP6) are essential for hepcidin expression. Hepcidin is the key peptide hormone in iron homeostasis, and is secreted predominantly by hepatocytes. HJV expression is detected in hepatocytes, as well as in skeletal and heart muscle. HJV binds BMP6 and increases hepcidin expression presumably by acting as a BMP co-receptor. We characterized the role of hepatocyte HJV in the regulation of BMP6 and hepcidin expression. In HJV-null (Hjv−/−) mice that have severe iron overload and marked suppression of hepcidin expression, we detected 4-fold higher hepatic BMP6 mRNA than in wild-type counterparts. These results indicate that Hjv−/− mice do not lack BMP6. Furthermore, iron depletion in Hjv−/− mice decreased hepatic BMP6 mRNA. Expression of HJV in hepatocytes of Hjv−/− mice using an AAV2/8 vector, increased hepatic hepcidin mRNA by 65-fold and phosphorylated Smad1/5/8 in the liver by about 2.5-fold. However, no significant change in BMP6 mRNA was detected in either the liver or the small intestine of these animals. Our results revealed a close correlation of hepatic BMP6 mRNA expression with hepatic iron-loading. Together, our data indicate that the regulation of hepatic BMP6 expression by iron is independent of HJV, and that expression of HJV in hepatocytes plays an essential role in hepcidin expression by potentiating the BMP6-mediated signaling.  相似文献   

15.
16.
17.
Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE−/− mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced.  相似文献   

18.
Vascular endothelial cells (ECs) form a critical interface between blood and tissues that maintains whole-body homeostasis. In COVID-19, disruption of the EC barrier results in edema, vascular inflammation, and coagulation, hallmarks of this severe disease. However, the mechanisms by which ECs are dysregulated in COVID-19 are unclear. Here, we show that the spike protein of SARS-CoV-2 alone activates the EC inflammatory phenotype in a manner dependent on integrin ⍺5β1 signaling. Incubation of human umbilical vein ECs with whole spike protein, its receptor-binding domain, or the integrin-binding tripeptide RGD induced the nuclear translocation of NF-κB and subsequent expression of leukocyte adhesion molecules (VCAM1 and ICAM1), coagulation factors (TF and FVIII), proinflammatory cytokines (TNFα, IL-1β, and IL-6), and ACE2, as well as the adhesion of peripheral blood leukocytes and hyperpermeability of the EC monolayer. In addition, inhibitors of integrin ⍺5β1 activation prevented these effects. Furthermore, these vascular effects occur in vivo, as revealed by the intravenous administration of spike, which increased expression of ICAM1, VCAM1, CD45, TNFα, IL-1β, and IL-6 in the lung, liver, kidney, and eye, and the intravitreal injection of spike, which disrupted the barrier function of retinal capillaries. We suggest that the spike protein, through its RGD motif in the receptor-binding domain, binds to integrin ⍺5β1 in ECs to activate the NF-κB target gene expression programs responsible for vascular leakage and leukocyte adhesion. These findings uncover a new direct action of SARS-CoV-2 on EC dysfunction and introduce integrin ⍺5β1 as a promising target for treating vascular inflammation in COVID-19.  相似文献   

19.
20.
Acute and chronic inflammations are key homeostatic events in health and disease. Sirtuins (SIRTs), a family of NAD-dependent protein deacylases, play a pivotal role in the regulation of these inflammatory responses. Indeed, SIRTs have anti-inflammatory effects through a myriad of signaling cascades, including histone deacetylation and gene silencing, p65/RelA deacetylation and inactivation, and nucleotide‑binding oligomerization domain, leucine rich repeat, and pyrin domain‑containing protein 3 inflammasome inhibition. Nevertheless, recent findings show that SIRTs, specifically SIRT6, are also necessary for mounting an active inflammatory response in macrophages. SIRT6 has been shown to positively regulate tumor necrosis factor alpha (TNFα) secretion by demyristoylating pro-TNFα in the cytoplasm. However, how SIRT6, a nuclear chromatin-binding protein, fulfills this function in the cytoplasm is currently unknown. Herein, we show by Western blot and immunofluorescence that in macrophages and fibroblasts there is a subpopulation of SIRT6 that is highly unstable and quickly degraded via the proteasome. Upon lipopolysaccharide stimulation in Raw 264.7, bone marrow, and peritoneal macrophages, this population of SIRT6 is rapidly stabilized and localizes in the cytoplasm, specifically in the vicinity of the endoplasmic reticulum, promoting TNFα secretion. Furthermore, we also found that acute SIRT6 inhibition dampens TNFα secretion both in vitro and in vivo, decreasing lipopolysaccharide-induced septic shock. Finally, we tested SIRT6 relevance in systemic inflammation using an obesity-induced chronic inflammatory in vivo model, where TNFα plays a key role, and we show that short-term genetic deletion of SIRT6 in macrophages of obese mice ameliorated systemic inflammation and hyperglycemia, suggesting that SIRT6 plays an active role in inflammation-mediated glucose intolerance during obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号