首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We quantified muscle activity in tails of lizards (Gekko gecko) during running and after autotomy of the tail. We chose different animals and varied where we broke the tails in order to obtain three experimental preparations having: no regenerated tissue or prior tail loss (non-regenerated), a large regenerated portion and a few original caudal vertebrae (partially regenerated), and only regenerated tissue (fully regenerated). All observed axial motor patterns were rhythmic. During running of intact animals, muscles in non-regenerated tails were activated in an alternating, unilateral pattern that was propagated posteriorly. After autotomy, non-regenerated tails had unilateral muscle activity that alternated between the left and right sides and propagated anteriorly. Autotomized, partially regenerated tails had unilateral, alternating muscle activity that lacked any longitudinal propagation. Autotomized, fully regenerated tails had periodic muscle activity that occurred simultaneously for both left and right sides and all longitudinal positions. Neither tactile stimulation nor removal of the tail tip prior to autotomizing the tail affected the motor pattern. Several features of the motor pattern of autotomized tails changed significantly with increased time after autotomy. Autotomized tails with one or more spinal segments moved longer and more vigorously than autotomized tails consisting entirely of regenerated (unsegmented) tissue.Abbreviations AREA rectified integrated area - CYCDUR cycle duration or time between the onsets of successive bursts for a single channel - DUTY duty factor = EMG duration/CYCDUR - EMG electromyogram - EMGDUR EMG duration - INTENSITY = AREA/EMGDUR - ISPL intersegmental phase lag = PLAG/number of intervening muscle segments - LAG among site lag time = difference in onset times of adjacent ipsilateral electrode sites - PLAG phase lag = LAG/CYCDUR - RELISPL relative intersegmental phase lag = RELPLAG/number of intervening muscle segments - RELPLAG relative phase lag = LAG/EMGDUR  相似文献   

3.
Caudal autotomy, or voluntary self-amputation of the tail, is a common and effective predator evasion mechanism used by most lizard species. The tail contributes to a multitude of biological functions such as locomotion, energetics, and social interactions, and thus there are often costs associated with autotomy. Notably, relatively little is known regarding bioenergetic costs of caudal autotomy in lizards, though key morphological differences exist between the original and regenerated tail that could alter the biochemistry and energetics. Therefore, we investigated lizard caudal biochemical content before and after regeneration in three gecko and one skink species. Specifically, we integrated biochemical and morphological analyses to quantify protein and lipid content in original and regenerated tails. All lizards lost significant body mass, mostly protein, due to autotomy and biochemical results indicated that original tails of all species contained a greater proportion of protein than lipid. Morphological analyses of two gecko species revealed interspecific differences in protein and lipid content of regenerated lizard tails. Results of this study contribute to our understanding of the biochemical consequences of a widespread predator evasion mechanism.  相似文献   

4.
Locomotor performance affects foraging efficiency, predator avoidance and consequently fitness. Agility and speed determine the animal's social status and reflect its condition. In this study, we test how predatory pressure and parasite load influences locomotor performance of wild specimens of the sand lizard Lacerta agilis. Animals were chased on a 2-metre racetrack. Lizards with autotomy ran significantly faster than lizards with an intact tail, but there was no significant difference in running speed between individuals with fresh caudal autotomy and regenerated tails. Parasite presence and load, age and sex had no significant effect on speed. Our results indicate that autotomy either alters locomotory behaviour or that individuals with autotomised tails were those that previously survived contact with predators, and therefore represented a subgroup of the fastest individuals. Therefore, in general, predatory pressure but not parasites affected locomotor performance in lizards.  相似文献   

5.
Caudal autotomy, or the voluntary self-amputation of the tail, is an anti-predation strategy in lizards that depends on a complex array of environmental, individual, and species-specific characteristics. These factors affect both when and how often caudal autotomy is employed, as well as its overall rate of success. The potential costs of autotomy must be weighed against the benefits of this strategy. Many species have evolved specialized behavioral and physiological adaptations to minimize or compensate for any negative consequences. One of the most important steps following a successful autotomous escape involves regeneration of the lost limb. In some species, regeneration occurs rapidly; such swift regeneration illustrates the importance of an intact, functional tail in everyday experience. In lizards and other vertebrates, regeneration is a highly ordered process utilizing initial developmental programs as well as regeneration-specific mechanisms to produce the correct types and pattern of cells required to sufficiently restore the structure and function of the sacrificed tail. In this review, we discuss the behavioral and physiological features of self-amputation, with particular reference to the costs and benefits of autotomy and the basic mechanisms of regeneration. In the process, we identify how these behaviors could be used to explore the neural regulation of complex behavioral responses within a functional context.  相似文献   

6.
Many species of lizards use caudal autotomy as a defense strategy to avoid predation, but tail loss entails costs. These topics were studied experimentally in the northern grass lizard, Takydromus septentrionalis. We measured lipids in the three-tail segments removed from each of the 20 experimental lizards (adult females) initially having intact tails to evaluate the effect of tail loss on energy stores; we obtained data on locomotor performance (sprint speed, the maximal length traveled without stopping and the number of stops in the racetrack) for these lizards before and after the tail-removing treatments to evaluate the effect of tail loss on locomotor performance. An independent sample of 20 adult females that retained intact tails was measured for locomotor performance to serve as controls for successive measurements taken for the experimental lizards. The lipids stored in the removed tail was positively correlated with tailbase width when holding the tail length constant, indicating that thicker tails contained more lipids than did thinner tails of the same overall length. Most of the lipids stored in the tail were concentrated in the proximal portion of the tail. Locomotor performance was almost unaffected by tail loss until at least more than 71% of the tail (in length) was lost. Our data show that partial tail loss due to predatory encounters or other factors may not severely affect energy stores and locomotor performance in T. septentrionalis.  相似文献   

7.
The limbs of the three-toed skink Chalcides chalcides are reduced to such a degree that the three digits are too small for skeletochronology. This study, performed on animals collected near Isernia (central Italy), describes the structure of the caudal vertebrae, which are often naturally lost due to autotomy, in order to determine whether they can be used to obtain data on age and growth with skeletochronological techniques. The reliability of the autotomous caudal vertebrae for skeletochronology was verified by performing skeletochronological analyses also on femora. Although the identification of the lines of arrested growth (LAGs) was easier in femora than in autotomous caudal vertebrae, a high correspondence of the LAG count between the two bones was observed. Females were larger and lived longer than males (4 and 3 years, respectively). For both sexes, the snout vent length (SVL) was significantly correlated with age. For both sexes, sexual maturity was attained after two hibernations from birth, beginning at the 20th month of age. At first reproduction, males had an SVL of 91–106 mm and females one of 111–150 mm. Von Bertalanffy growth curves of age versus SVL showed that females had slower growth rates than males for attaining their asymptotic SVL (females: 197 mm; males: 143 mm). The results provide the first data on age and growth of C. chalcide, and show that autotomous caudal vertebrae are reliable alternatives for obtaining such data for limb-reduced reptiles, avoiding the need to sacrifice or disable animals, as occurs when long bones are used.  相似文献   

8.
We hypothesized that the presence of the forked hemipenes, and associated musculature, at the base of the tail in male lizards should constrain the capacity to autotomize the tail. Thus, this hypothesis predicts that the non-autotomous base of the tail should be longer in male than in female lizards. We tested this hypothesis in four species oflacertid lizards. Males have on average one to two non-autotomous vertebrae more than females, and the sexual difference in length of the non-autotomous tail base remains constant over the entire body size range. In addition, the first functional autotomy plane in males is usually located on, or is distal to, the vertebrae from which two hemipenial muscles take origin. These observations support the view that functional demands of the male intromittent organs impose constraints on the abilities of tail autotomy. In a natural population of Lacerta vivipara , the proportion of tail breaks that occurred at very short distances from the base was highest in females, indicating that the small sexual difference in length of the non-autotomous tail part is of functional significance. Total length of the tail was largest in males. This can be interpreted as a compensation for the decline in autotomy capacities at the tail base, such that the length of the autotomous part remains similar in both sexes.  相似文献   

9.
The availability of molecular phylogenies has greatly accelerated our understanding of evolutionary innovations in the context of their origin and rate of evolution. Here, we assess the evolution of reproductive mode, developmental rate and body size in a group of squamate reptiles: the chameleons. Oviparity is ancestral and viviparity has evolved at least twice: Bradypodion and members of the Trioceros bitaeniatus clade are viviparous. Viviparous species are medium‐sized as a result of convergence from either small‐sized ancestors or large‐sized ancestors, respectively, but do not differ from oviparous species in clutch size, hatchling size or the trade‐off between clutch and hatchling size. Basal chameleons (Brookesia, Rhampholeon and Rieppeleon) are small‐sized and have developmental rates comparable with those of other lizards. Derived chameleons (Calumma, Chamaeleo, Trioceros and Furcifer) are mostly large‐sized and all have relatively slow developmental rates. Several clades of derived chameleons also exhibit developmental arrest (embryonic diapause or embryonic diapause plus cold torpor) and incubation periods extend to 6–10 months or more. Developmental arrest is associated with dry, highly seasonal climates in which the period favourable for oviposition and hatching is short. Long incubation periods thus ensure that hatching occurs during the favourable season following egg laying. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 656–668.  相似文献   

10.
Patterns of caudal-autotomy evolution in lizards   总被引:5,自引:1,他引:4  
Peter A.  Zani 《Journal of Zoology》1996,240(2):201-220
Using comparative techniques to account for phylogenetic effects, I examined patterns of evolution of caudal autotomy and foraging in 39 lizard species to test the hypothesis that caudal autotomy has co-evolved with morphology, locomotor performance, and foraging behaviour. There were significant positive associations between evolution of the point on the tail (distance from cloaca) at which tail loss occurs (an indirect measure of caudal autotomy) and evolution of each of the following: tail length, caudifemoralis longus (CFL) muscle length, and jump distance. The correlation with the evolution of sprint speed approached significance. These relationships primarily were due to the influence of tail-length evolution on autotomy-point evolution. With the effect of tail-length evolution removed, autotomy-point evolution was negatively correlated with the evolution of tail-loss frequency. The CFL restricts tail loss to portions of the tail posterior to the most distal point of its insertion in the tail. In addition, with the effect of tail-length evolution removed, CFL length co-evolved with sprint speed. These results indicate that tail morphology has co-evolved with caudal autotomy such that the evolution of the CFL has reduced caudal autotomy in certain groups of lizards.
Ambush foraging, the ability to lose the tail, intermediate CFL length, and low locomotor performance (i.e. slow sprint speed and short jump distance) are hypothesized to be the ancestral conditions in lizards using outgroup rooting. The diversification of lizard taxa has resulted in some lineages moving away from ancestral character states (i.e. family Teiidae, superfamily Varanoidea), while others are very similar or identical to their ancestors (i.e. superfamily Iguania).  相似文献   

11.
Chameleons (Chamaeleonidae) feature many adaptations to their arboreal lifestyle, including zygodactylous feet, a prehensile tail, and epidermal microstructures. In arboreal tree chameleons, the substrate‐contacting site of the feet and tail is covered by microscopic hair‐like structures (setae) of 6–20 µm length. Their friction enhancing function has been shown in recent studies. Leaf chameleons and one representative of the tree chameleons (Chamaeleo namaquensis) secondarily have become ground‐dwelling. Because leaf chameleons are paraphyletic, one could expect that in the three leaf chameleon genera Brookesia, Rhampholeon, and Rieppeleon and the tree chameleon Ch. namaquensis, epidermis has adapted independently to terrestrial locomotion. Using scanning electron microscopy, we investigated the substrate‐contacting surfaces of the feet (subdigital) of 17 leaf chameleon species and five tree chameleon species that have not yet been examined. Additionally, surfaces not involved in locomotion, the flanks (dorsolateral), and scale interstices, were examined. Although the subdigital microstructures in leaf chameleons are more diverse than in tree chameleons, we found some features across the genera. The subdigital microornamentation of Rhampholeon spinosus consists of long thin setae and spines, comparable to those of tree chameleons. All other Rhampholeon species have spines or short but broad setae. Rh. spectrum had tooth‐like structures instead of setae. Subdigital scales of Brookesia have either thorns or conical scale‐tops in the center and feature honeycomb microstructures. In Rieppeleon, subdigital scales have a thorn. Scale surfaces are covered by honeycombs and short hair‐like structures (spines). As subdigital scales with a thorn in the center and honeycomb microstructures were also found in the terrestrial tree chameleon Ch. namaquensis, one can assume that this geometry is a convergent adaptation to terrestrial locomotion. Despite the great number of genus‐specific traits, the convergent evolution of honey‐comb structures in Brookesia, Rieppeleon, and Ch. namaquensis and the high variability of spines and setae in Rhampholeon suggests a rapid adaptation of subdigital microornamentation in Chamaeleonidae. J. Morphol. 276:167–184, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Many animals lose and regenerate appendages, and tail autotomy in lizards is an extremely well-studied example of this. Whereas the energetic, ecological and functional ramifications of tail loss for many lizards have been extensively documented, little is known about the behaviour and neuromuscular control of the autotomized tail. We used electromyography and high-speed video to quantify the motor control and movement patterns of autotomized tails of leopard geckos (Eublepharis macularius). In addition to rhythmic swinging, we show that they exhibit extremely complex movement patterns for up to 30 min following autotomy, including acrobatic flips up to 3 cm in height. Unlike the output of most central pattern generators (CPGs), muscular control of the tail is variable and can be arrhythmic. We suggest that the gecko tail is well suited for studies involving CPGs, given that this spinal preparation is naturally occurring, requires no surgery and exhibits complex modulation.  相似文献   

13.
Caudal autotomy (tail loss) during capture and handling is widely reported among several families of lizards. Autotomy causes elevated stress levels in lizards, and imposes a significant fitness cost on autotomized individuals. Despite these detrimental impacts, conservation and ethical issues associated with handling-related tail loss have received little attention. We assessed the incidence and correlates of tail autotomy during capture and handling in an endangered skink, the alpine she-oak skink Cyclodomorphus praealtus . A significant proportion (9.3%) of lizards autotomized their tails during capture and handling. Medium-sized lizards were more likely to lose their tails during handling, and this effect was exacerbated at intermediate body temperatures. Probability of autotomy had a complex relationship with cumulative observer experience, independent of other risk factors. Based on the modelled relationship of autotomy with body temperature, we propose that alpine she-oak skinks be cooled immediately after capture to reduce rates of autotomy during subsequent handling.  相似文献   

14.
《Zoologischer Anzeiger》2009,248(4):273-283
The limbs of the three-toed skink Chalcides chalcides are reduced to such a degree that the three digits are too small for skeletochronology. This study, performed on animals collected near Isernia (central Italy), describes the structure of the caudal vertebrae, which are often naturally lost due to autotomy, in order to determine whether they can be used to obtain data on age and growth with skeletochronological techniques. The reliability of the autotomous caudal vertebrae for skeletochronology was verified by performing skeletochronological analyses also on femora. Although the identification of the lines of arrested growth (LAGs) was easier in femora than in autotomous caudal vertebrae, a high correspondence of the LAG count between the two bones was observed. Females were larger and lived longer than males (4 and 3 years, respectively). For both sexes, the snout vent length (SVL) was significantly correlated with age. For both sexes, sexual maturity was attained after two hibernations from birth, beginning at the 20th month of age. At first reproduction, males had an SVL of 91–106 mm and females one of 111–150 mm. Von Bertalanffy growth curves of age versus SVL showed that females had slower growth rates than males for attaining their asymptotic SVL (females: 197 mm; males: 143 mm). The results provide the first data on age and growth of C. chalcide, and show that autotomous caudal vertebrae are reliable alternatives for obtaining such data for limb-reduced reptiles, avoiding the need to sacrifice or disable animals, as occurs when long bones are used.  相似文献   

15.
Although the phenomenon of tail autotomy has traditionally been viewed in a purely adaptive light, functional constraints imposed by the locomotor system appear to have influenced the presence and extent of autotomy in lizards. Them. caudifemoralis longus is an unsegmented hind limb retractor that originates from the caudal vertebrae. It does not participate in autotomy and thus limits the proximal position of autotomic septa. Variation in the extent of the m. caudifemoralis is correlated with locomotor type. The muscle is large and originates from a long series of caudal vertebrae in fast moving lizards with powerful limb retraction, as exemplified by taxa capable of bipedal running. In slower lizards with sprawling postures, such as geckos, the m. caudifemoralis is small and restricted to the first few postsacral vertebrae. Autotomy is typically restricted or absent in the former lizards, while in the latter only the most proximal vertebrae are incapable of autotomy. In the evolution of existing patterns of caudal autotomy, functional demands intrinsic to the tail may be subservient to locomotor constraints imposed on the tail base by the m. caudifemoralis longus .  相似文献   

16.
We investigated two predictions regarding the incidence of tail regeneration in lizards for three populations of brown anoles exposed to varying predation levels from the same predator (cats). Firstly although inefficient predators are likely to increase the incidence of regenerated tails (i.e. lizards can escape through tail autotomy), highly efficient predators will kill and eat the lizard and thus leave no evidence of autotomy. At the site with no cats, only 4% of anoles demonstrated signs of tail regeneration. This value was not significantly different from the site where feral cats (i.e. ‘efficient’ predators that would capture prey to eat, as supported by behavioural observation) were present (7%). By contrast, 25% of anoles present at the site with pet cats (well‐fed domesticated cats that caught and played with anoles, i.e. were ‘inefficient’ predators) exhibited regenerated tails. Secondly, more obvious lizards are more susceptible to predation attempts. Supporting this hypothesis, our data indicate a higher incidence of regenerated tails (28%) was recorded amongst adult males (which are territorial, occupying exposed positions) compared to females and subadult males (17%) or juveniles (1%). In conclusion, the behaviour of both the predator and the lizard influences the frequency of regenerated tails in brown anoles. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 648–656.  相似文献   

17.
Byron S. Wilson 《Oecologia》1992,92(1):145-152
Summary Caudal autotomy is an effective anti-predator mechanism used by many lizard species. Fitness benefits of surviving a predatory attack are obvious, although lizards that autotomize their tails may be at greater risk during subsequent encounters with predators than lizards with complete tails. In previous laboratory studies, tail-less lizards were more vulnerable to capture by predators, but little is known about the relative survival of tailed versus tail-less lizards in nature. This study reports on significant associations between naturally incurred tail injuries and the subsequent risk of mortality in 7 populations of the lizard Uta stansburiana. I used standard mark-recapture techniques to document survival and quantified tail injuries by estimating tail completeness. I then used sampled randomization tests to compare intitial tail completeness values of surviving versus non-surviving lizards. I evaluated overall patterns by comparising the means of tail completeness values of survivors versus non-survivors among mark-recapture sequences. Lizards with incomplete tails suffered higher mortality in the field, although this was not true for every comparison considered (i.e., for every mark-recapture sequence analyzed), and the overall trend was much stronger for adult males than for either adult females or juveniles. Higher mortality among lizards with incomplete tails is presumably a consequence of increased vulnerability to capture by predators. Vulnerability to predation of tail-injured lizards may be confounded by reduced social status in this species, because social subordination can result in the occupation of an inferior home range.  相似文献   

18.
Caudal autotomy is a defense mechanism used by numerous lizards to evade predators, but this entails costs. We collected 294 adult Chinese skinks (Eumeces chinensis) from a population in Lishui (eastern China) to evaluate energetic and locomotor costs of tail loss. Of the 294 skinks, 214 (c. 73%) had previously experienced caudal autotomy. Neither the proportion of individuals with regenerated tails nor the frequency distribution of locations of the tail break differed between sexes. We successively removed four tail segments from each of the 20 experimental skinks (adult males) initially having intact tails. Lipid content in each removed tail segment was measured, and locomotor performance (sprint speed, the maximal length traveled without stopping and the number of stops in the racetrack) was measured for each skink before and after each tail-removing treatment. Another independent sample of 20 adult males with intact tails was measured for locomotor performance to serve as controls for successive measurements taken for the experimental lizards. Caudal lipids were disproportionately stored along the length of the tail, with most lipids being aggregated in its proximal portion. Tail loss significantly affected sprint speed, but not the maximal length of, or the number of stops during the sprint. However, the adverse influence of tail loss on sprint speed was not significant until more than 51% of the tail (in length) was lost. Our data show that partial tail loss due to predatory encounters or other factors may not severely affect energy stores or locomotor performance in E. chinensis. As tail breaks occurred more frequently in the proximal portion of the tail in skinks collected from the field, we conclude that caudal autotomy occurring in nature often incurs substantial energetic and locomotor costs in E. chinensis.  相似文献   

19.

Lateralization is one of the specific characteristics of animals, occurring in both invertebrates and vertebrates. Lateralization exists at two levels, individual level and population level. This research is focused on the individual- and population-level lateralization of the European green lizard (Lacerta viridis) under laboratory conditions. Lateralization was observed experimentally in a modified T-maze without the possibility of visual control by lizards. Lizards were stimulated by a piston from the caudal side to simulate a predator attack from behind. The numbers of left and right choices were evaluated. Statistical analysis confirmed no statistically significant difference in lateralization at both the individual and population levels. The absence or presence of autotomy suggests that non-biased lizards have a better chance of escape from a predator than left- or right-biased individuals. In the population of L. viridis studied by us, it seems that to be non-biased could be the best strategy to survive predator attacks.

  相似文献   

20.
Abstract Antipredator mechanisms employed by animals are obviously beneficial if they increase survival, but their use may be costly and decrease fitness. Fitness costs of antipredator mechanisms may, in turn, be defrayed by behavioural compensation. We used lizards as a model to measure behavioural fitness costs of the antipredator mechanism, autotomy, as they commonly lose their tails when attacked by predators. In addition, we examined whether male skinks, Carlia jarnoldae (Scincidae), behaviourally compensate for tail loss by comparing the behaviour of tailed and tailless males in experimental enclosures, either alone, with a conspecific male or female, or with a predator. Tailless males experience several costs of autotomy including reduced energy stores, and loss of autotomy as a defence. We identified an additional cost of tail loss: reduced mating success. However, this species did not behaviourally compensate these costs. Instead, characteristics of the ecology of C. jarnoldae may minimize the costs of autotomy. This species experiences an extended breeding season, which means that they experience reduced mating success for only 20% of this breeding season. Additionally, the presence of inguinal fat stores which supply energy in addition to stores in the tail reduce energetic costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号