首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel mechanism of cellular volume regulation is presented, which ensues from the recently introduced concept of transport and ion channel regulation via microvillar structures (Lange K, 1999, J Cell Physiol 180:19-35). According to this notion, the activity of ion channels and transporter proteins located on microvilli of differentiated cells is regulated by changes in the structural organization of the bundle of actin filaments in the microvillar shaft region. Cells with microvillar surfaces represent two-compartment systems consisting of the cytoplasm on the one side and the sum of the microvillar tip (or, entrance) compartments on the other side. The two compartments are separated by the microvillar actin filament bundle acting as diffusion barrier ions and other solutes. The specific organization of ion and water channels on the surface of microvillar cell types enables this two-compartment system to respond to hypo- and hyperosmotic conditions by activation of ionic fluxes along electrochemical gradients. Hypotonic exposure results in swelling of the cytoplasmic compartment accompanied by a corresponding reduction in the length of the microvillar diffusion barrier, allowing osmolyte efflux and regulatory volume decrease (RVD). Hypertonic conditions, which cause shortening of the diffusion barrier via swelling of the entrance compartment, allow osmolyte influx for regulatory volume increase (RVI). Swelling of either the cytoplasmic or the entrance compartment, by using membrane portions of the microvillar shafts for surface enlargement, activates ion fluxes between the cytoplasm and the entrance compartment by shortening of microvilli. The pool of available membrane lipids used for cell swelling, which is proportional to length and number of microvilli per cell, represents the sensor system that directly translates surface enlargements into activation of ion channels. Thus, the use of additional membrane components for osmotic swelling or other types of surface-expanding shape changes (such as the volume-invariant cell spreading or stretching) directly regulates influx and efflux activities of microvillar ion channels. The proposed mechanism of ion flux regulation also applies to the physiological main functions of epithelial cells and the auxiliary action of swelling-induced ATP release. Furthermore, the microvillar entrance compartment, as a finely dispersed ion-accessible peripheral space, represents a cellular sensor for environmental ionic/osmotic conditions able to detect concentration gradients with high lateral resolution. Volume regulation via microvillar surfaces is only one special aspect of the general property of mechanosensitivity of microvillar ionic pathways.  相似文献   

2.
Preceding studies using the hamster insulinoma cell line, HIT, and isolated rat hepatocytes have shown that two essential components of the Ca2+signaling pathway, the ATP-dependent Ca2+store and the store-coupled Ca2+influx pathway, are both located in microvilli covering the surface of these cells. Microvilli-derived vesicles from both cell types exhibited anion and cation pathways which could be inhibited by anion and cation channel-specific inhibitors. These findings suggested that the microvillar tip compartment forms a space which is freely accessible for external Ca2+, ATP, and IP3. The entry of Ca2+into the cytoplasm, however, is largely restricted by the microvillar core structure, the dense bundle of actin microfilaments acting as a diffusion barrier between the microvillar tip compartment and the cell body. Moreover, evidence has been presented that F-actin may function as ATP-dependent and IP3-sensitive Ca2+store that can be emptied by profilin-induced depolymerization or reorganization [K. Lange and U. Brandt (1996)FEBS Lett.395, 137–142]. Here we demonstrate the tight connection between microvillar shape changes and the activation of the Ca2+signaling system in isolated rat hepatocytes. Using a combination of scanning electron microscopy (SEM) and fura-2 fluorescence technique, we confirmed a consequence of the “diffusion barrier” concept of Ca2+signaling: Irrespective of the type of the applied stimulus, activation of the Ca2+influx pathway is accompanied by changes in the structural organization of microvilli indicative of the loss of their diffusion barrier function. We further show that the cell surfaces of unstimulated hepatocytes isolated by either the collagenase or the EDTA perfusion technique are densely covered with microvilli predominantly of a short and slender type. Beside this rather uniformly shaped type of microvilli, a number of dilated surface protrusions were observed. Under these conditions the cells displayed the well known rather high basal [Ca2+]iof 200–250 nMas repeatedly demonstrated for freshly isolated hepatocytes. However, addition of the serine protease inhibitor, phenylmethanesulfonyl fluoride (PMSF), to the cell suspension immediately after its preparation reduced the basal cytoplasmic Ca2+level to about 100 nM.Concomitantly, dilated surface protrusions disappeared, and cell surfaces exclusively displayed short, slender microvilli. Activation of the Ca2+signaling pathway by vasopressin, as well as by the IP3-independent acting Ca2+store inhibitor, thapsigargin, was accompanied by a conspicuous shortening and dilation of microvilli following the same time courses as the respective increases of [Ca2+]iinduced by the effectors. Furthermore, the abundance of the large form of surface protrusions on isolated hepatocytes positively correlated with the size of a cellular Ca2+/Fura-2 compartment which is rapidly depleted from Ca2+by extracellular EGTA. These findings support the postulated localization of the store-coupled Ca2+influx pathway in microvilli of HIT cells also for hepatocytes and are in accord with the notion of a cytoskeletal diffusion barrier regulating the flux of external Ca2+via the microvillar tip region in the cytoplasm.  相似文献   

3.
Experimental evidencesuggesting a type of glucose uptake regulation prevailing inresting and differentiated cells was surveyed. This type of regulationis characterized by transport-limited glucose metabolism and depends onsegregation of glucose transporters on microvilli of differentiated orresting cells. Earlier studies on glucose transport regulation and arecently presented general concept of influx regulation for ions andmetabolic substrates via microvillar structures provide the basicframework for this theory. According to this concept, glucose uptakevia transporters on microvilli is regulated by changes in thestructural organization of the microfilament bundle, which is acting asa diffusion barrier between the microvillar tip compartment and thecytoplasm. Both microvilli formation and the switch of glucosemetabolism from "metabolic regulation" to "transportlimitation" occur during differentiation. The formation ofmicrovillar cell surfaces creates the essential preconditions toestablish the characteristic functions of specialized tissue cellsincluding the coordination between glycolysis and oxidativephosphorylation, regulation of cellular functions by external signals,and Ca2+ signaling. The proposed concept integrates variousaspects of glucose uptake regulation into a ubiquitous cellularmechanism involved in regulation of transmembrane ion and substrate fluxes.

  相似文献   

4.
Summary Secretagogues of pancreatic enzyme secretion, the hormones pancreozymin, carbamylcholine, gastrin I, the octapeptide of pancreozymin, and caerulein as well as the Ca++-ionophore A 23187 stimulate45Ca efflux from isolated pancreatic cells. The nonsecretagogic hormones adrenaline, isoproterenol, secretin, as well as dibutyryl cyclic adenosine 3,5-monophosphate and dibutyryl cyclic guanosine 3,5-monophosphate have no effect on45Ca efflux. Atropine blocks the stimulatory effect of carbamylcholine on45Ca efflux completely, but not that of pancreozymin. A graphical analysis of the Ca++ efflux curves reveals at least three phases: a first phase, probably derived from Ca++ bound to the plasma membrane; a second phase, possibly representing Ca++ efflux from cytosol of the cells; and a third phase, probably from mitochondria or other cellular particles. The Ca++ efflux of all phases is stimulated by pancreozymin and carbamylcholine. Ca++ efflux is not significantly effected by the presence or absence of Ca++ in the incubation medium. Metabolic inhibitors of ATP production, Antimycin A and dinitrophenol, which inhibit Ca++ uptake into mitochondria, stimulate Ca++ efflux from the isolated cells remarkably, but inhibit the slow phase of Ca++ influx, indicating the role of mitochondria as an intracellular Ca++ compartment. Measurements of the45Ca++ influx at different Ca++ concentrations in the medium reveal saturation type kinetics, which are compatible with a carrier or channel model. The hormones mentioned above stimulate the rate of Ca++ translocation.The data suggest that secretagogues of pancreatic enzyme secretion act by increasing the rate of Ca++ transport most likely at the level of the cell membrane and that Ca++ exchange diffusion does not contribute to the45Ca++ fluxes.With the technical assistance of C. Hornung.  相似文献   

5.
In the fungiform papilla of Rana esculenta (Anura Ranidae), the Ca++-ATPase is mainly distributed on the basolateral membrane of the sensory area cells (i.e., neuroepithelial, supporting, and mucous cells). Apical membranes of all cells facing the surface present a slight enzymatic activity. Lateral wall cells have a strong Ca++-ATPase activity on basolateral and apical membranes. Strong Na+, K+-ATPase activity occurs on the apical surface of neuroepithelial cells. Ca++-ATPase activity is absent on the surface of endothelial cells of the capillaries located under the sensory area. These observations lead us to conclude that the sensory area of fungiform papilla is the selective way for calcium influx. Furthermore the absence of ATPase activity on the surface of the endothelial cells indicates that there is no functional barrier to calcium influx into capillary, and that calcium can be removed by vessels from the sensory area.  相似文献   

6.
The interaction of weakelectromagnetic fields (EMF) with living cells is a most important butstill unresolved biophysical problem. For this interaction, thermal andother types of noise appear to cause severe restrictions in the actionof weak signals on relevant components of the cell. A recentlypresented general concept of regulation of ion and substrate pathwaysthrough microvilli provides a possible theoretical basis for thecomprehension of physiological effects of even extremely low magneticfields. The actin-based core of microfilaments in microvilli isproposed to represent a cellular interaction site for magnetic fields.Both the central role of F-actin in Ca2+ signaling and itspolyelectrolyte nature eliciting specific ion conduction propertiesrender the microvillar actin filament bundle an ideal interaction sitefor magnetic and electric fields. Ion channels at the tip of microvilliare connected with the cytoplasm by a bundle of microfilaments forminga diffusion barrier system. Because of its polyelectrolyte nature, themicrofilament core of microvilli allows Ca2+ entry into thecytoplasm via nonlinear cable-like cation conduction through arrays ofcondensed ion clouds. The interaction of ion clouds with periodicallyapplied EMFs and field-induced cation pumping through the cascade ofpotential barriers on the F-actin polyelectrolyte followswell-known physical principles of ion-magnetic field (MF) interactionand signal discrimination as described by the stochastic resonance andBrownian motor hypotheses. The proposed interaction mechanismis in accord with our present knowledge about Ca2+signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energieswithin specific amplitude and frequency windows. Microvillar F-actinbundles shielded by a lipid membrane appear to function like electronicintegration devices for signal-to-noise enhancement; the influence ofcoherent signals on cation transduction is amplified, whereas that ofrandom noise is reduced.

  相似文献   

7.
Ligatin is a filamentous plasma membrane protein that serves as a baseplate for the attachment of peripheral glycoproteins to the external cell surface. Ligatin can be released from intact, embryonic chick neural retinal cells by treatment with 20 mM Ca++ without adversely affecting their viability. α-Glucose-1-phos phate is also effective in removing ligatin-associated glycoproteins from intact cells. After either of these treatments, the retinal cells seem not to exhibit Ca++ -dependent adhesion for one another. It is thus suggested that ligatin in neural retina may serve as a baseplate for the attachment to the cell surface of glycoproteins active in Ca++-dependent adhesion. The finding that Ca++ serves to protect Ca++-dependent adhesion molecules from digestion by trypsin is discussed in relation to steric constraints on trypsin's accessibility to these adhesion molecules because of their possible binding to arrayed ligatin filaments.  相似文献   

8.
Two complementary experimental methods have been used to examine mitogen-induced transmembrane conductances in human B cells using the Daudi cell line as a model for human B cell activation. Spectrofluorometry was used to investigate mitogen-induced changes in [Ca++]i and transmembrane potential. Activation of human B cells with anti-μ antibodies resulted in a biphasic rise in [Ca++]i, the second phase being mediated by the influx of extracellular Ca++. Ca++ influx was inhibited by high [K+]e, suggesting that this influx was transmembrane potential sensitive. Membrane currents of Daudi cells were investigated using voltage clamp techniques. Before mitogenic stimulation, the cells were electrically quiet. Within several minutes of the addition of anti-μ antibodies to the bath solution, inward currents were observed at negative voltages. Whole-cell currents changed instantly with voltage steps and were transmembrane potential sensitive in that at potentials more positive than ?40 mV no currents were detectable. A similar conductance was also activated by the introduction of IP3 into the intracellular solution, suggesting that IP3 generation after surface IgM crosslinking is involved in the activation of this conductance. Both anti-μ and IP3 induced currents were blocked by 1 mM La+++, which is known to block Ca++ channels. These results strongly support the presence of membrane Ca++ channels in human B cells that function in the early stages of activation. Changes in transmembrane potential appear to be important in regulating Ca++ influx. These mechanisms work in concert to regulate the level of [Ca++]i during the early phases of human B cell activation. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Summary Compounds with membrane stabilizing activity were studied as to their ability to affect pancreatic amylase release and the steps in the stimulus-secretion coupling process. Chlorpromazine, propranolol, and thymol were all found to inhibit bethanechol-stimulated amylase release and at slightly higher concentrations to induce release regardless of the presence of the secretagogue. This biphasic effect was similar to that found previously for the local anesthetic tetracaine. Release by high concentrations of propranolol and tetracaine was accompanied by ultrastructural evidence of cell damage. Membrane stabilizers at concentrations which inhibited amylase release were shown to block bethanechol-induced depolarization and stimulation of45Ca++ efflux although the drugs alone partially depolarized pancreatic cells. Release of amylase induced by Ca++ introduced by the ionophore A23187 was also abolished. These findings indicate that membrane stabilizers independently inhibit the steps leading to a rise in intracellular Ca++ and the subsequent Ca++-activated amylase release.  相似文献   

10.
Until now, the general importance of microvilli present on the surface of almost all differentiated cells has been strongly underestimated and essential functions of these abundant surface organelles remained unrecognized. Commonly, the role of microvilli has been reduced to their putative function of cell‐surface enlargement. In spite of a large body of detailed knowledge about the specific functions of microvilli in sensory receptor cells for sound, light, and odor perception, their functional importance for regulation of basic cell functions remained obscure. Here, a number of microvillar mechanisms involved in fundamental cell functions are discussed. Two structural features enable the extensive functional competence of microvilli: First, the exclusive location of almost all functional important membrane proteins on microvilli of differentiated cells and second, the function of the F‐actin‐based cytoskeletal core of microvilli as a structural diffusion barrier modulating the flow of low molecular substrates and ions into and out of the cell. The specific localization on microvilli of important functional membrane proteins such as glucose transporters, ion channels, ion pumps, and ion exchangers indicate the importance and diversity of microvillar functions. In this review, the microvillar mechanisms of audioreceptor, photoreceptor, and olfactory/taste receptor cells are discussed as highly specialized adaptations of a general type of microvillar mechanisms involved in regulation of important basic cell functions such as glucose transport/energy metabolism, ion channel regulation, generation and modulation of the membrane potential, volume regulation, and Ca signaling. Even the constitutive cellular defence against cytotoxic compounds, also called “multidrug resistance (MDR),” is discussed as a microvillar mechanism. A comprehensive examination of the specific properties of “cable‐like” ion conduction along the microvillar core structure of F‐actin allows the proposal that microvilli are specifically designed for using ionic currents as cellular signals. In view of the multifaceted gating and signaling properties of TRP channels, the possible role of microvilli as a universal gating device for TRP channel regulation is discussed. Combined with the role of the microvillar core bundle of actin filaments as high‐affinity Ca store, microvilli may turn out as highly specialized Ca signaling organelle involved in store‐operated Ca entry (SOCE) and initiation of nonlinear Ca signals such as waves and oscillations. J. Cell. Physiol. 226: 896–927, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Malaria parasites export many proteins into their host erythrocytes and increase membrane permeability to diverse solutes. Although most solutes use a broad‐selectivity channel known as the plasmodial surface anion channel, increased Ca++ uptake is mediated by a distinct, poorly characterised mechanism that appears to be essential for the intracellular parasite. Here, we examined infected cell Ca++ uptake with a kinetic fluorescence assay and the virulent human pathogen, Plasmodium falciparum. Cell surface labelling with N‐hydroxysulfosuccinimide esters revealed differing effects on transport into infected and uninfected cells, indicating that Ca++ uptake at the infected cell surface is mediated by new or altered proteins at the host membrane. Conditional knockdown of PTEX, a translocon for export of parasite proteins into the host cell, significantly reduced infected cell Ca++ permeability, suggesting involvement of parasite‐encoded proteins trafficked to the host membrane. A high‐throughput chemical screen identified the first Ca++ transport inhibitors active against Plasmodium‐infected cells. These novel chemical scaffolds inhibit both uptake and parasite growth; improved in vitro potency at reduced free [Ca++] is consistent with parasite killing specifically via action on one or more Ca++ transporters. These inhibitors should provide mechanistic insights into malaria parasite Ca++ transport and may be starting points for new antimalarial drugs.  相似文献   

12.
The density distribution associated with two characteristic equatorial reflections of the X-ray diagram indicates a movement of myosin cross-bridge towards the lattice position occupied by the actin. The extent of this mass transfer depends on the concentrations of ATP and Ca++ in the medium. As cross-bridges are still moving away from the myosin filament backbone in fibres stretched to a sarcomere length where the two sets of filaments no longer overlap, simply on adding low levels of Ca++ ions, this suggests a Ca++-sensitive regulatory system on the myosin.  相似文献   

13.
The times required for a steady rate of miniature end-plate potential discharge to be reached in response to changes in extracellular [K+], [Na+], and [Ca++] have been measured. In the presence of 15 mM KCl, Ca++ raises and Na+ lowers the steady-state mepp frequency; but the depressive effect on Na+ is not specific: Li+ can replace Na+ to a large extent. Mepp frequency has been found to depend on the ratio of [Cao ++]/[Nao +]. It is assumed that in the steady state, intracellular sodium will change when extracellular sodium is changed. Because both intracellular and extracellular sodium at motor nerve endings affect acetylcholine release, it is proposed that mepp frequency depends on the ratio [Cao] [Nai]2·/[Nao]2 Two models are proposed. Firstly, to account for the action of sodium and calcium a carrier is postulated for which Ca++ and Na+ compete. The carrier determines a maximum level of intracellular Ca++ far lower than predicted by the Nernst equation for Ca. Secondly, to account for activation of acetylcholine release by a small influx of Ca++, the ions are presumed to enter the nerve ending in a two stage process through a small intermediate compartment and to act on the acetylcholine release site in this region rather than after entering directly into the cell.  相似文献   

14.
Regulation of bi-directional communication between intracellular Ca2+ pools and surface Ca2+ channels remains incompletely characterized. We report Ca2+ release mediated by inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) pathways is diminished under actin cytoskeleton disruption in NG115-401L (401L) neuronal cells, yet despite truncated Ca2+ release, Ca2+ influx was not significantly altered in these experiments. However, disruption of cortical actin networks completely abolished IP3R induced Ca2+ release, whereas RyR-mediated Ca2+ release was preserved, albeit attenuated. Moreover, cortical actin disruption completely abolished IP3R and RyR linked Ca2+ influx even though Ca2+ pool sensitivities were different. These findings suggest discrete Ca2+ store/Ca2+ channel coupling mechanisms in the IP3R and RyR pathways as revealed by the differential sensitivity to actin perturbation.  相似文献   

15.
SYNOPSIS. Locomotor behavior in the ciliate protozoa is controlled by the cell membrane through electrophysiological principles already familiar in receptor, nerve, and effector cells of the metazoa. This is illustrated by the avoiding reaction (15). When the membrane of the anterior part of the ciliate receives a mechanical stimulus, as during collision, it permits a local influx of Ca++. This constitutes a receptor current which depolarizes the remaining cell membrane by electrotonic spread. Depolarization causes a secondary transient increase in the calcium conductance of the entire cell membrane, and a general influx of Ca++ occurs. The resulting increase in concentration of intracellular Ca++ activates a reorientation (“reversal”) of the ciliary power stroke, causing the organism to swim backward. Forward locomotion is restored as the resting concentration of intracellular Ca++ in the cell cortex is restored by diffusion, active extrusion, or intracellular sequestering. The control and coordination of locomotion in ciliates depend on several factors in addition to the excitable properties of the membrane. These include the sensitivities of the ciliary apparatus to intracellular concentrations of calcium and other regulating substances, the anatomical distribution of sensory receptor properties of the cell membrane, and the cable properties of the cell which permit electrotonic spread of graded potential signals without need of all-or-none conducted signals.  相似文献   

16.
The aim of this paper was to establish whether actin polymerization modulated cytosolic Ca2+storage in human neutrophils. Over the concentration ranges which inhibit actin polymerization, cytochalasins A, B, and D liberated Ca2+from membrane-bound stores within neutrophils. Two Ca2+storage sites were identified in neutrophils by the accumulation of the Ca2+binding probe, chlortetracycline: one at the center of the cell and the other at the cell periphery. Confocal imaging demonstrated that cytochalasins released Ca2+from the neutrophil periphery, but not from the central Ca2+store. Ca2+store release was coupled to Ca2+influx, suggesting that the peripheral site may be a physiological store containing a Ca2+influx factor. 3,3′-Dihexyloxacarbocyanine iodide staining organelles, which correlate with Ca2+release sites, coalesced in neutrophils after treatment with cytochalasins. We propose that peripheral Ca2+storage sites are restricted from coalescence by cortical polymerized actin and that Ca2+store coalescence and Ca2+release are coupled events.  相似文献   

17.
Summary The spatial and temporal relationships between cytoplasmic filaments and the morphogenesis of the intestinal brush border were examined by transmission electron microscopy of normally developing tissue and of tissue exposed to a variety of experimental conditions in organ culture. Distinct stages in the development of the brush border were identified: (1) Irregular projections of the apical plasma membrane that contain a network of microfilaments are converted to uniform projections filled with a core bundle of straight microfilaments (7–11d of incubation). (2) Rootlets form by an elongation or aggregation of filaments (11–15d). (3) The terminal web forms first as a network of short filaments just below the apical plasma membrane, then secondarily stratifies into two layers (19d of incubation to 3d posthatching). (4) Core filaments elongate as microvilli achieve their maturity (21d of incubation to 5d posthatching). Microvillus formation was not perturbed by culturing 9d tissue in high concentrations of Ca++ or Mg++, either with or without the ionophore, A23187. Rootlet formation was stimulated by high Mg++, with or without A23187, and, for reasons unknown, by ethanol. Terminal web formation was not stimulated by Mg++ or Ca++, but the integrity of the terminal web was lost when 21d embryonic tissue was cultured with EGTA or cytochalasin B. After stratification, the terminal web could not be disrupted by EGTA, but instead was aggregated to the center of the apical end of the cell.  相似文献   

18.
Primary cultures of bone cells and skin fibroblasts were examined for their Ca++ content, intracellular distribution and Ca++ fluxes. Kinetic analysis of 45Ca++ efflux curves indicated the presence of three exchangeable Ca++ compartments which turned over at different rates: a “very fast turnover” (S1), a “fast turnover” (S2), and a “slow turnover” Ca++ pool (S3). S1 was taken to represent extracellular membrane-bound Ca++, S2 represented cytosolic Ca++, and S3 was taken to represent Ca++ sequestered in some intracellular organelles, probably the mitochondria. Bone cells contained about twice the amount of Ca++ as compared with cultured fibroblasts. Most of this extra Ca++ was localized in the “slow turnover” intracellular Ca++ pool (S3). Serum activation caused the following changes in the amount, distribution, and fluxes of Ca++: (1) In both types of cells serum caused an increase in the amount of Ca++ in the “very fast turnover” Ca++ pool, and an increase in the rate constant of 45Ca++ efflux from this pool, indicating a decrease in the strength of Ca++ binding to ligands on cell membranes. (2) In fibroblasts, serum activation also caused a marked decrease in the content of Ca++ in the “slow turnover” Ca++ pool (S3), an increase in the rates of Ca++ efflux from the cells to the medium, and from S3 to S2, as well as a decrease in the rate of influx into S3. (3) In bone cells the amount of Ca++ in S3 remained high in “serum activated” cells, the rate of efflux from S3 to S2 increased, and the rate of influx into S3 also increased. The rate of efflux from the cells to the medium did not change. The results suggest specific properties of bone cells with regard to cell Ca++ presumably connected with their differentiation. Following serum activation we investigated the time course of changes in the amount of exchangeable Ca++ in bone cells and fibroblasts, in parallel with measurements of 3H-thymidine incorporation and cell numbers. Serum activation caused a rapid decrease in the content of cell Ca++ which was followed by a biphasic increase lasting until cell division.  相似文献   

19.
Before successful fertilization can occur, oocytes must undergo meiotic maturation. In starfish, this can be achieved in vitro by applying 1-methyladenine (1-MA). The immediate response to 1-MA is the fast Ca2+ release in the cell cortex. Here, we show that this Ca2+ wave always initiates in the vegetal hemisphere and propagates through the cortex, which is the space immediately under the plasma membrane. We have observed that alteration of the cortical actin cytoskeleton by latrunculin-A and jasplakinolide can potently affect the Ca2+ waves triggered by 1-MA. This indicates that the cortical actin cytoskeleton modulates Ca2+ release during meiotic maturation. The Ca2+ wave was inhibited by the classical antagonists of the InsP3-linked Ca2+ signaling pathway, U73122 and heparin. To our surprise, however, these two inhibitors induced remarkable actin hyper-polymerization in the cell cortex, suggesting that their inhibitory effect on Ca2+ release may be attributed to the perturbation of the cortical actin cytoskeleton. In post-meiotic eggs, U73122 and jasplakinolide blocked the elevation of the vitelline layer by uncaged InsP3, despite the massive release of Ca2+, implying that exocytosis of the cortical granules requires not only a Ca2+ rise, but also regulation of the cortical actin cytoskeleton. Our results suggest that the cortical actin cytoskeleton of starfish oocytes plays critical roles both in generating Ca2+ signals and in regulating cortical granule exocytosis.  相似文献   

20.
Several monoclonal antibodies directed against a number of T cell surface molecules are used to elucidate the role of these molecules (cell surface molecules) in T cell activation. The activation of T cells via these molecules are both antigen-dependent (CD3/TcR complex) and antigen-independent. Irrespective of their antigen-dependency, these monoclonal antibodies activate T cells by a classical signal transduction pathway, in which the binding of monoclonal antibodies to their cell surface receptors leads to activation of phospholipase C resulting in the the depolarization of plasma membrane, hydrolysis of IP2 and IP3 and DAG, the second messengers. IP3 leads to mobilization of intracellular calcium to contribute to an increase in [Ca++]i, whereas DAG causes activation and translocation of PKC and an increasing apparent affinity for Ca++. The role of IN in the mobilization of intracellular calcium is emerging. In addition, influx of extracellular calcium also contributes to increase in [Ca–+];. The increase in [Ca++]; following activation via some T cell surface antigen is predominantly due to intracellular mobilization of Ca–+ (e.g. CD3/TcR complex), whereas activation via other T cell surface antigen, the increase in [Ca+–]i is almost entirely due to an influx of extracellular calcium (e.g. CD5 antigen). All these molecules activate autocrine system of T cell growth, namely IL-2 production, IL-2 receptor expression and T cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号