首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance.  相似文献   

3.
Body movements are mainly provided by mechanical function of skeletal muscle. Skeletal muscle is composed of numerous bundles of myofibers that are sheathed by intramuscular connective tissues. Each myofiber contains many myofibrils that run longitudinally along the length of the myofiber. Myofibrils are the contractile apparatus of muscle and they are composed of repeated contractile units known as sarcomeres. A sarcomere unit contains actin and myosin filaments that are spaced by the Z discs and titin protein. Mechanical function of skeletal muscle is defined by the contractile and passive properties of muscle. The contractile properties are used to characterize the amount of force generated during muscle contraction, time of force generation and time of muscle relaxation. Any factor that affects muscle contraction (such as interaction between actin and myosin filaments, homeostasis of calcium, ATP/ADP ratio, etc.) influences the contractile properties. The passive properties refer to the elastic and viscous properties (stiffness and viscosity) of the muscle in the absence of contraction. These properties are determined by the extracellular and the intracellular structural components (such as titin) and connective tissues (mainly collagen) 1-2. The contractile and passive properties are two inseparable aspects of muscle function. For example, elbow flexion is accomplished by contraction of muscles in the anterior compartment of the upper arm and passive stretch of muscles in the posterior compartment of the upper arm. To truly understand muscle function, both contractile and passive properties should be studied.The contractile and/or passive mechanical properties of muscle are often compromised in muscle diseases. A good example is Duchenne muscular dystrophy (DMD), a severe muscle wasting disease caused by dystrophin deficiency 3. Dystrophin is a cytoskeletal protein that stabilizes the muscle cell membrane (sarcolemma) during muscle contraction 4. In the absence of dystrophin, the sarcolemma is damaged by the shearing force generated during force transmission. This membrane tearing initiates a chain reaction which leads to muscle cell death and loss of contractile machinery. As a consequence, muscle force is reduced and dead myofibers are replaced by fibrotic tissues 5. This later change increases muscle stiffness 6. Accurate measurement of these changes provides important guide to evaluate disease progression and to determine therapeutic efficacy of novel gene/cell/pharmacological interventions. Here, we present two methods to evaluate both contractile and passive mechanical properties of the extensor digitorum longus (EDL) muscle and the contractile properties of the tibialis anterior (TA) muscle.  相似文献   

4.
Contractile actomyosin bundles are critical for numerous aspects of muscle and nonmuscle cell physiology. Due to the varying composition and structure of actomyosin bundles in vivo, the minimal requirements for their contraction remain unclear. Here, we demonstrate that actin filaments and filaments of smooth muscle myosin motors can self-assemble into bundles with contractile elements that efficiently transmit actomyosin forces to cellular length scales. The contractile and force-generating potential of these minimal actomyosin bundles is sharply sensitive to the myosin density. Above a critical myosin density, these bundles are contractile and generate large tensile forces. Below this threshold, insufficient cross-linking of F-actin by myosin thick filaments prevents efficient force transmission and can result in rapid bundle disintegration. For contractile bundles, the rate of contraction decreases as forces build and stalls under loads of ∼0.5 nN. The dependence of contraction speed and stall force on bundle length is consistent with bundle contraction occurring by several contractile elements connected in series. Thus, contraction in reconstituted actomyosin bundles captures essential biophysical characteristics of myofibrils while lacking numerous molecular constituents and structural signatures of sarcomeres. These results provide insight into nonsarcomeric mechanisms of actomyosin contraction found in smooth muscle and nonmuscle cells.  相似文献   

5.
Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD) and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC) and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh) when compared to genetic control BL10ScSnJ mice (wild-type). In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.  相似文献   

6.
Molecular aspects of arterial smooth muscle contraction: focus on Rho   总被引:4,自引:0,他引:4  
The vascular smooth muscle cell is a highly specialized cell whose primary function is contraction and relaxation. It expresses a variety of contractile proteins, ion channels, and signalling molecules that regulate contraction. Upon contraction, vascular smooth muscle cells shorten, thereby decreasing the diameter of a blood vessel to regulate the blood flow and pressure. Contractile activity in vascular smooth muscle cells is initiated by a Ca(2+)-calmodulin interaction to stimulate phosphorylation of the light chain of myosin. Ca(2+)-sensitization of the contractile proteins is signaled by the RhoA/Rho-kinase pathway to inhibit the dephosphorylation of the light chain by myosin phosphatase, thereby maintaining force. Removal of Ca(2+) from the cytosol and stimulation of myoson phosphatase initiate the relaxation of vascular smooth muscle.  相似文献   

7.
We cloned the myo2 gene of Schizosaccharomyces pombe, which encodes a type II myosin heavy chain, by virtue of its ability to promote diploidization in fission yeast cells. The myo2 gene encodes 1,526 amino acids in a single open reading frame. Myo2p shows homology to the head domains and the coiledcoil tail of the conventional type II myosin heavy chain and carries putative binding sites for ATP and actin. It also carries the IQ motif, which is a presumed binding site for the myosin light chain. However, Myo2p apparently carries only one IQ motif, while its counterparts in other species have two. There are nine proline residues, which should break α-helix, in the COOH-terminal coiled-coil region of Myo2p. Thus, Myo2p is rather unusual as a type II myosin heavy chain. Disruption of myo2 inhibited cell proliferation. myo2Δ cells showed normal punctate distribution of interphase actin, but they produced irregular actin rings and septa and were impaired in cell separation. Overproduction of Myo2p was also lethal, apparently blocking actin relocation. Nuclear division proceeded without actin ring formation and cytokinesis in cells overexpressing Myo2p, giving rise to multinucleated cells with dumbbell morphology. Analysis using tagged Myo2p revealed that Myo2p colocalizes with actin in the contractile ring, suggesting that Myo2p is a component of the ring and responsible for its contraction. Furthermore, genetic evidence suggested that the acto–myosin system may interact with the Ras pathway, which regulates mating and the maintenance of cell morphology in S. pombe.  相似文献   

8.
The actin-, myosin-, and calmodulin-binding protein caldesmon (CaD) is expressed in two splice isoforms: h-CaD, which is an integral part of the actomyosin domain of smooth muscle cells, and l-CaD, which is widely expressed and is involved in many cellular functions. Despite extensive research for many years, CaD''s in vivo function has remained elusive. To explore the role of CaD in smooth muscle contraction in vivo, we generated a mutant allele that ablates both isoforms. Heterozygous animals were viable and had a normal life span, but homozygous mutants died perinatally, likely because of a persistent umbilical hernia. The herniation was associated with hypoplastic and dysmorphic abdominal wall muscles. We assessed mechanical parameters in isometrically mounted longitudinal strips of E18.5 urinary bladders and in ring preparations from abdominal aorta using wire myography. Ca2+ sensitivity was higher and relaxation rate was slower in Cald1/ compared with Cald1+/+ skinned bladder strips. However, we observed no change in the content and phosphorylation of regulatory proteins of the contractile apparatus and myosin isoforms known to affect these contractile parameters. Intact fibers showed no difference in actin and myosin content, regardless of genotype, although KCl-induced force tended to be lower in homozygous and higher in heterozygous mutants than in WTs. Conversely, in skinned fibers, myosin content and maximal force were significantly lower in Cald1/ than in WTs. In KO abdominal aortas, resting and U46619 elicited force were lower than in WTs. Our results are consistent with the notion that CaD impacts smooth muscle function dually by (1) acting as a molecular brake on contraction and (2) maintaining the structural integrity of the contractile machinery. Most importantly, CaD is essential for resolution of the physiological umbilical hernia and ventral body wall closure.  相似文献   

9.
Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates smooth muscle myosin regulatory light chain (RLC) to initiate contraction. We used a tamoxifen-activated, smooth muscle-specific inactivation of MLCK expression in adult mice to determine whether MLCK was differentially limiting in distinct smooth muscles. A 50% decrease in MLCK in urinary bladder smooth muscle had no effect on RLC phosphorylation or on contractile responses, whereas an 80% decrease resulted in only a 20% decrease in RLC phosphorylation and contractile responses to the muscarinic agonist carbachol. Phosphorylation of the myosin light chain phosphatase regulatory subunit MYPT1 at Thr-696 and Thr-853 and the inhibitor protein CPI-17 were also stimulated with carbachol. These results are consistent with the previous findings that activation of a small fraction of MLCK by limiting amounts of free Ca2+/calmodulin combined with myosin light chain phosphatase inhibition is sufficient for robust RLC phosphorylation and contractile responses in bladder smooth muscle. In contrast, a 50% decrease in MLCK in aortic smooth muscle resulted in 40% inhibition of RLC phosphorylation and aorta contractile responses, whereas a 90% decrease profoundly inhibited both responses. Thus, MLCK content is limiting for contraction in aortic smooth muscle. Phosphorylation of CPI-17 and MYPT1 at Thr-696 and Thr-853 were also stimulated with phenylephrine but significantly less than in bladder tissue. These results indicate differential contributions of MLCK to signaling. Limiting MLCK activity combined with modest Ca2+ sensitization responses provide insights into how haploinsufficiency of MLCK may result in contractile dysfunction in vivo, leading to dissections of human thoracic aorta.  相似文献   

10.
Intraglomerular mesangial cells (MCs) maintain structural and functional integrity of renal glomerular microcirculation and homeostasis of mesangial matrix. Following different types of injury, MCs change their phenotype upregulating the expression of α-smooth muscle actin (α-SMA), changing contractile abilities and increasing the production of matrix proteins, chemokines and cytokines. CCL2 is a chemokine known to be involved in the pathogenesis of renal diseases. Its glomerular upregulation correlates with the extent of renal damage. Bindarit is an indazolic derivative endowed with anti-inflammatory activity when tested in experimental diseases. It selectively inhibits the synthesis of inflammatory C-C chemokines including CCL2, CCL7 and CCL8. This work aims to analyse bindarit effects on ET1-, AngII- and TGFβ-induced mesangial cell dysfunction. Bindarit significantly reduced AngII-, ET1- and TGFβ-induced α-SMA upregulation. In a collagen contraction assay, bindarit reduced AngII-, ET1- and TGFβ-induced HRMC contraction. Within 3–6 h stimulation, vinculin organization and phosphorylation was significantly impaired by bindarit in AngII-, ET1- and TGFβ-stimulated cells without any effect on F-actin distribution. Conversely, p38 phosphorylation was not significantly inhibited by bindarit. Our data strengthen the importance of CCL2 on ET-1, AngII- and TGFβ-induced mesangial cell dysfunction, adding new insights into the cellular mechanisms responsible of bindarit protective effects in human MC dysfunction.  相似文献   

11.
Smooth muscle cell containing organs (bladder, heart, blood vessels) are damaged by a variety of pathological conditions necessitating surgery or organ replacement. Currently, regeneration of contractile tissues is hampered by lack of functional smooth muscle cells. Multipotent skin derived progenitor cells (SKPs) can easily be isolated from adult skin and can be differentiated in vitro into contractile smooth muscle cells by exposure to FBS. Here we demonstrate an inhibitory effect of a pathologic contractile organ microenvironment on smooth muscle cell differentiation of SKPs. In vivo, urinary bladder strain induces microenvironmental changes leading to de-differentiation of fully differentiated bladder smooth muscle cells. Co-culture of SKPs with organoids isolated from ex vivo stretched bladders or exposure of SKPs to diffusible factors released by stretched bladders (e.g. bFGF) suppresses expression of smooth muscle markers (alpha SMactin, calponin, myocardin, myosin heavy chain) as demonstrated by qPCR and immunofluorescent staining. Rapamycin, an inhibitor of mTOR signalling, previously observed to prevent bladder strain induced de-differentiation of fully differentiated smooth muscle cells in vitro, inhibits FBS-induced smooth muscle cell differentiation of undifferentiated SKPs. These results suggest that intended precursor cell differentiation may be paradoxically suppressed by the disease context for which regeneration may be required. Organ-specific microenvironment contexts, particularly prevailing disease, may play a significant role in modulating or attenuating an intended stem cell phenotypic fate, possibly explaining the variable and inefficient differentiation of stem cell constructs in in vivo settings. These observations must be considered in drafting any regeneration strategies.  相似文献   

12.
Sarcomeric Gene Expression and Contractility in Myofibroblasts   总被引:3,自引:1,他引:2       下载免费PDF全文
Myofibroblasts are unusual cells that share morphological and functional features of muscle and nonmuscle cells. Such cells are thought to control liver blood flow and kidney glomerular filtration rate by having unique contractile properties. To determine how these cells achieve their contractile properties and their resemblance to muscle cells, we have characterized two myofibroblast cell lines. Here, we demonstrate that myofibroblast cell lines from kidney mesangial cells (BHK) and liver stellate cells activate extensive programs of muscle gene expression including a wide variety of muscle structural proteins. In BHK cells, six different striated myosin heavy chain isoforms and many thin filament proteins, including troponin T and tropomyosin are expressed. Liver stellate cells express a limited subset of the muscle thick filament proteins expressed in BHK cells. Although these cells are mitotically active and do not morphologically differentiate into myotubes, we show that MyoD and myogenin are expressed and functional in both cell types. Finally, these cells contract in response to endothelin-1 (ET-1); and we show that ET-1 treatment increases the expression of sarcomeric myosin.  相似文献   

13.
Fluorescently labeled myosin moved and accumulated circumferentially in the equatorial region of dividing Dictyostelium cells within a time course of 4 min, followed by contraction of the contractile ring. To investigate the mechanism of this transport process, we have expressed three mutant myosins that cannot hydrolyze ATP in myosin null cells. Immunofluorescence staining showed that these mutant myosins were also correctly transported to the equatorial region, although no contraction followed. The rates of transport, measured using green fluorescent protein-fused myosins, were indistinguishable between wild-type and mutant myosins. These observations demonstrate that myosin is passively transported toward the equatorial region and incorporated into the forming contractile ring without its own motor activity.  相似文献   

14.
15.
The contractile function of renal glomerulus was studied in vitro using isolated glomeruli from streptozotocin-diabetic rats. Glomerular contraction was assessed by the reduction of extracellular [3H]inulin space of glomerulus, mostly composing of intracapillary space, produced by angiotensin II. The inulin space was dose-dependently reduced after angiotensin II addition in both diabetic and control rats but the degree of reduction significantly smaller in the former. The radioreceptor assay revealed rather increased angiotensin II receptors in diabetic glomeruli. Since the contractile response of glomerulus to angiotensin II is mediated via mesangial cell contraction, these results suggest the presence of mesangial cell dysfunction in diabetes.  相似文献   

16.
Bindarit, a selective inhibitor of monocyte chemotactic proteins (MCPs) synthesis, reduces neointimal formation in animal models of vascular injury and recently has been shown to inhibit in-stent late loss in a placebo-controlled phase II clinical trial. However, the mechanisms underlying the efficacy of bindarit in controlling neointimal formation/restenosis have not been fully elucidated. Therefore, we investigated the effect of bindarit on human coronary smooth muscle cells activation, drawing attention to the phenotypic modulation process, focusing on contractile proteins expression as well as proliferation and migration. The expression of contractile proteins was evaluated by western blot analysis on cultured human coronary smooth muscle cells stimulated with TNF-α (30 ng/mL) or fetal bovine serum (5%). Bindarit (100–300 µM) reduced the embryonic form of smooth muscle myosin heavy chain while increased smooth muscle α-actin and calponin in both TNF-α- and fetal bovine serum-stimulated cells. These effects were associated with the inhibition of human coronary smooth muscle cell proliferation/migration and both MCP-1 and MCP-3 production. The effect of bindarit on smooth muscle cells phenotypic switching was confirmed in vivo in the rat balloon angioplasty model. Bindarit (200 mg/Kg/day) significantly reduced the expression of the embryonic form of smooth muscle myosin heavy chain, and increased smooth muscle α-actin and calponin in the rat carodid arteries subjected to endothelial denudation. Our results demonstrate that bindarit induces the differentiated state of human coronary smooth muscle cells, suggesting a novel underlying mechanisms by which this drug inhibits neointimal formation.  相似文献   

17.
Ca2+-regulated motility is essential to numerous cellular functions, including muscle contraction. Systems with troponin C, myosin light chain, or calmodulin as the Ca2+ receptor have evolved in striated muscle and other types of cells to transduce the cytoplasm Ca2+ signals into allosteric conformational changes of contractile proteins. While these Ca2+ receptors are homologous proteins, their coupling to the responding elements is quite different in various cell types. The Ca2+ regulatory system in vertebrate striated muscle represents a highly specialized such signal transduction pathway consisting of the troponin complex and tropomyosin associated with the actin filament. To understand the molecular mechanism in the Ca2+ regulation of muscle contraction and cell motility, we have revealed a preserved ancestral close linkage between the genes encoding two of the troponin subunits, troponin I and troponin T, in the genome of mouse. The data suggest that the troponin I and troponin T genes may have originated from a single locus and evolved in parallel to encode a striated muscle-specific adapter to couple the Ca2+ receptor, troponin C, to the actin–myosin contractile machinery. This hypothesis views the three troponin subunits as two structure–function domains: the Ca2+ receptor and the signal transducing adapter. This model may help to further our understanding of the Ca2+ regulation of muscle contraction and the structure–function relationship of other potential adapter proteins which are converged to constitute the Ca2+ signal transduction pathways governing nonmuscle cell motility. Received: 15 April 1999 / Accepted: 15 July 1999  相似文献   

18.
Effects of vasoconstrictory and of dilatory hormones were studied on the contractile activity of cultured rat kidney mesangial cells. By phase contrast microscopy, a rapid contraction was seen of most cells treated with angiotensine II (10−6 − 10−10 mol/L), which was sometimes followed by autonomous relaxation after 10 to 20 min. Prostaglandin E2 and antriopeptin III prevented the contractile effect of angiotensin II in a dose-dependent manner. Angiotensin II, but not atriopeptine III, stimulated prostaglandin E2 synthesis in mesangial cell cultures.  相似文献   

19.
Dubus I  Sena S  Labouyrie JP  Bonnet J  Combe C 《Life sciences》2005,77(26):3366-3374
Nephrotoxicity is a major side-effect of cyclosporin A (CsA), which induces a vasoconstrictive response in vascular smooth muscle and mesangial cells. Mycophenolic acid (MPA) is used in combination with low-dose CsA to reduce nephrotoxicity. We previously demonstrated that MPA affected mesangial cell contractile response to angiotensin II or KCl. Aims of the present study were to evaluate if MPA can prevent CsA-induced contraction of human mesangial and aortic smooth muscle cells (ASMC). Using a morphoquantitative approach, we evidenced that pretreatment with MPA (1 microM) prevented the reduction of cell area induced by CsA within 30 min in both cell types. We then compared the expression of three main cytoskeleton proteins: tubulin, alpha-smooth actin (SMA) and basic calponin, in ASMC and in mesangial cells treated with MPA and/or CsA. CsA alone did not significantly change the expression level of these proteins neither in mesangial cells nor in ASMC. MPA decreased the expression level of tubulin in both mesangial cells and ASMC. Surprisingly, MPA, which stimulated SMA and calponin expression in mesangial cells, exerted an inhibitory effect on both contractile protein expression in ASMC. In conclusion, our results evidenced opposite effects of MPA on calponin and SMA protein expression in ASMC and in mesangial cells, despite similar antiproliferative properties, suggesting that sarcomeric protein expression is controlled by different intracellular mechanisms in mesangial and smooth muscle cells. However, MPA interferes in both cell types with the constrictive properties CsA, which may partially explain the protective effects of MPA against CsA nephrotoxicity.  相似文献   

20.
Skeletal muscle contains various muscle fiber types exhibiting different contractile properties based on the myosin heavy chain (MyHC) isoform profile. Muscle fiber type composition is highly variable and influences growth performance and meat quality, but underlying mechanisms regulating fiber type composition remain poorly understood. The aim of the present work was to develop a model based on muscle satellite cell culture to further investigate the regulation of adult MyHC isoforms expression in pig skeletal muscle. Satellite cells were harvested from the mostly fast-twitch glycolytic longissimus (LM) and predominantly slow-twitch oxidative rhomboideus (RM) muscles of 6-week-old piglets. Satellite cells were allowed to proliferate up to 80% confluence, reached after 7 day of proliferation (D7), and then induced to differentiate. Kinetics of proliferation and differentiation were similar between muscles and more than 95% of the cells were myogenic (desmin positive) at D7 with a fusion index reaching 65±9% after 4 day of differentiation. One-dimensional SDS polyacrylamide gel electrophoresis revealed that satellite cells from both muscles only expressed the embryonic and fetal MyHC isoforms in culture, without any of the adult MyHC isoforms that were expressed in vivo. Interestingly, triiodothyronine (T3) induced de novo expression of adult fast and α-cardiac MyHC in vitro making our culture system a valuable tool to study de novo expression of adult MyHC isoforms and its regulation by intrinsic and/or extrinsic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号