首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The results obtained by biochemical measurement demonstrated for the first time that significant decrease of the plasma membrane Ca2+-ATPase activity occurred during capacitation and acrosome reaction of guinea pig sperm. Ethaorynic acid, one kind of Ca2+-ATPase antagonists, inhibited the plasma membrane Ca2+-ATPase activity, but calmodulin (50μg/mL) and trifluoperazine (200- 500μmol/L) did not, suggesting that calmodulin is not involved in ATP-driven Ca2+ efflux from sperm. However, calmodulin is involved in the control of Ca2+ influx. TFP, one kind of calmodulin antagonists, accelerated the acrosome reaction and Ca2+ uptake into sperm cells significantly. Ca2+-ATPase antagonists, quercetin, sodium orthovandate, furosemide and ethacrynic acid promoted the acrosome reaction, but inhibited Ca2+ uptake, which cannot be explained by their inhibitory effects on the plasma membrane Ca2+-ATPase activity. It is speculated that this phenomenon might be caused by simultaneous inhibitions of the activities of C  相似文献   

2.
3.
Mammalian sperm capacitation is the obligatory maturational process leading to the development of the fertilization-competent state. Heparin is known to be a unique species-specific inducer of bovine sperm capacitation in vitro and glucose a unique inhibitor of this induction. Heparin-induced capacitation of bovine sperm has been shown to correlate with protein kinase A (PKA)-dependent protein tyrosine phosphorylation driven by an increase in intracellular cAMP. This study examines the possible roles of cyclic nucleotide phosphodiesterase (PDE) activity and intracellular alkalinization on bovine sperm capacitation and the protein tyrosine phosphorylation associated with it. Measurement of whole cell PDE kinetics during capacitation reveals neither a substantial change with heparin nor one with glucose: PDE activity is effectively constitutive in maintaining intracellular cAMP levels during capacitation. In contrast to a transient increase in intracellular pH, a sustained increase in medium pH by switching from 5% CO(2)/95% air incubation to 1% CO(2)/99% air incubation over 4 hr in the absence of heparin resulted in an increase in protein tyrosine phosphorylation and in the extent of induced acrosome reaction comparable to that observed following heparin-induced capacitation in 5% CO(2). These results suggest that increased bicarbonate-dependent adenylyl cyclase activity, driven by alkalinization, increases intracellular cAMP and so increases PKA activity mediating protein tyrosine phosphorylation. Quantitative analysis of the lactic acid production rate by bovine sperm glycolysis accounts fully for intracellular acidification sufficient to offset heparin-induced alkalinization, thus inhibiting capacitation. The mechanism by which heparin uniquely induces intracellular alkalinization in bovine sperm leading to capacitation remains obscure, inviting future investigation.  相似文献   

4.
The acrosome reaction induced by the zona pellucida in mouse sperm has been shown to proceed in two stages experimentally distinguishable by the fluorescent probe chlortetracycline. Entry into the first stage of sperm bound to isolated, structurally intact zonae pellucidae is blocked by the compound 3-quinuclidinyl benzilate. In this study, we show, utilizing the fluorescent Ca2+ indicator fluo-3, that the first stage of the zona-induced acrosome reaction is characterized by an increase in intracellular Ca2+, followed by a decrease as the acrosome reaction proceeds. This calcium transient is completely suppressed by 3-quinuclidinyl benzilate. We conclude that the Ca2+ transient is induced by the zona pellucida and is required for the zona-induced acrosome reaction. Blockage of this sperm intracellular Ca2+ transient provides a mechanism for the inhibitory action of 3-quinuclidinyl benzilate on the zona-induced acrosome reaction in mouse sperm.  相似文献   

5.
6.
Activation state of sperm motility named “hyperactivation” enables mammalian sperm to progress through the oviductal matrix, although a similar state of sperm motility is unknown in non‐mammalian vertebrates at fertilization. Here, we found a high motility state of the sperm in the newt Cynops pyrrhogaster. It was predominantly caused in egg jelly extract (JE) and characterized by a high wave velocity of the undulating membrane (UM) that was significantly higher at the posterior midpiece. An insemination assay suggested that the high motility state might be needed for sperm to penetrate the egg jelly, which is the accumulated oviductal matrix. Specific characteristics of the high motility state were completely abrogated by a high concentration of verapamil, which blocks the L‐type and T‐type voltage‐dependent Ca2+ channels (VDCCs). Mibefradil, a dominant blocker of T‐type VDCCs, suppressed the wave of the UM at the posterior midpiece with separate wave propagation from both the anterior midpiece and the posterior principal piece. In addition, nitrendipine, a dominant L‐type VDCC blocker, weakened the wave of the UM, especially in the anterior midpiece. Live Ca2+ imaging showed that, compared with the intact sperm in the JE, the relative intracellular Ca2+ level changed especially in the anterior and posterior ends of the midpiece of the blocker‐treated sperm. These suggest that different types of Ca2+ channels mediate the intracellular Ca2+ level predominantly in the anterior and posterior ends of the midpiece to maintain the high motility state of the newt sperm.  相似文献   

7.
Capacitation is a prerequisite for successful fertilization by mammalian spermatozoa. This process is generally observed in vitro in defined NaHCO3-buffered media and has been shown to be associated with changes in cAMP metabolism and protein tyrosine phosphorylation. In this study, we observed that when NaHCO3 was replaced by 4-(2-hydroxyethyl)1-piperazine ethanesulfonic acid (HEPES), hamster sperm capacitation, measured as the ability of the sperm to undergo a spontaneous acrosome reaction, did not take place. Addition of 25 mM NaHCO3 to NaHCO3-free medium in which spermatozoa had been preincubated for 3.5 h, increased the percentage of spontaneous acrosome reactions from 0% to 80% in the following 4 h. Addition of anion transport blockers such as 4,4'-diiso thiocyano-2, 2'-stilbenedisulfonate (DIDS) or 4-acetomido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) to the NaHCO3-containing medium inhibited the acrosome reaction, with maximal inhibition at 600 microM, and with an EC50 of 100 microM. Increasing either extracellular or intracellular pH did not induce the acrosome reaction in NaHCO3-free medium. In contrast, addition of 500 microM dibutyryl cAMP (dbcAMP), alone or together with 100 microM 1-methyl-3-isobutylxanthine (IBMX), induced the acrosome reaction in spermatozoa incubated in NaHCO3-free medium. These compounds also partially reversed the inhibition of the acrosome reaction caused by the DIDS or SITS in complete medium. In contrast to these results, IBMX or dbcAMP did not induce acrosome reactions in cells incubated in Ca2+-free medium. When hamster sperm were incubated in the absence of NaHCO3 or in the presence of NaHCO3 and DIDS, cAMP concentrations were significantly lower than the values obtained from sperm incubated in complete medium. Protein tyrosine phosphorylation has also been shown to be highly correlated with the onset of capacitation in many species. During the first hour of capacitation, an increase in protein tyrosine phosphorylation was observed in complete medium. In the absence of NaHCO3, the increase in protein tyrosine phosphorylation was delayed for 45 min, and this delay was overcome by the addition of dbcAMP and IBMX. The induction of the acrosome reaction by calcium ionophore A23187 in NaHCO3-free medium was delayed 2 h, as compared with control medium. This delay was not observed in the presence of dbcAMP and IBMX. Taken together, these results suggest that a cAMP pathway may mediate the role of NaHCO3 in the capacitation of hamster spermatozoa and that protein tyrosine phosphorylation is necessary but not sufficient for complete capacitation.  相似文献   

8.
The oviduct is a dynamic organ which modulates gamete physiology. Two subpopulations of sperm have been described in the oviduct of sows, a majority with normal appearance in the deep furrows and a minority, centrally located, and showing damaged membranes. Sperm-oviduct interaction provides the formation of a sperm storage and allows the selection of sperm with certain qualities. Pig (Sus scrofa) oviductal sperm binding glycoprotein (SBG) binds to sperm and exposes Gal beta1-3GalNAc. This disaccharide may be recognized by boar spermadhesin AQN1, which seems to be involved in sperm interaction with the oviduct. SBG is present at the apical surface of the epithelial cells that surround the lumen of the oviduct rather than at the bottom of the crypts. These characteristics imply it could be involved in sperm interaction with this organ. In this study, we evaluate the effect of SBG over boar sperm. We show that the presence of SBG produces alterations of the acrosome morphology of sperm only when they are incubated in capacitating conditions. SBG binds to the periacrosomal region of sperm undergoing capacitation. Its presence induces an increase on the tyrosine-phosphorylation of a polypeptide of apparent molecular mass 97 kDa, as occurs with a 95 kDa protein in other mammalian sperm upon acrosomic reaction. Altogether, these results suggest that SBG might be involved in sperm selection by alteration of the acrosome of sperm that have already begun the capacitation process when they arrive to the oviduct.  相似文献   

9.
The effects of cyclic AMP (cAMP) and cyclic GMP (cGMP) on dihydropyridine sensitive Ca2+ channels were investigated under voltage-clamp in defolliculated Pleurodeles oocytes. Intracellular injection of cAMP or extracellular application of the permeable cAMP analogue (8-Bromo cAMP, 8Br-cAMP) decreased the Ba current (IBa). This effect on IBa was blocked by the injection of protein kinase A inhibitor. Similar results were found upon internal application of the catalytic subunit of protein kinase A. In contrast, the injection of cGMP or perfusion of 8Br-cGMP increased IBa amplitude. The increase of IBa by 8Br-cGMP was blocked by the injection of the selective inhibitor of protein kinase G (KT5823).These results support the hypothesis that the basal Ba current amplitude of Pleurodeles oocytes is under the control of Protein Kinases A (PKA) and G (PKG) activity.This regulation of Ca2+ channels by the second messengers, and particularly by cAMP may reflect an important step in the maturation processus of Pleurodeles oocytes.  相似文献   

10.
Lipid rafts are specialized membrane microdomains that function as signaling platforms across plasma membranes of many animal and plant cells. Although there are several studies implicating the role of lipid rafts in capacitation of mammalian sperm, the function of these structures in sperm motility activation and chemotaxis remains unknown. In the ascidian Ciona intestinalis, egg-derived sperm activating- and attracting-factor (SAAF) induces both activation of sperm motility and sperm chemotaxis to the egg. Here we found that a lipid raft disrupter, methyl-β-cyclodextrin (MCD), inhibited both SAAF-induced sperm motility activation and chemotaxis. MCD inhibited both SAAF-promoted synthesis of intracellular cyclic AMP and sperm motility induced by ionophore-mediated Ca(2+) entry, but not that induced by valinomycin-mediated hyperpolarization. Ca(2+)-imaging revealed that lipid raft disruption inhibited Ca(2+) influx upon activation of sperm motility. The Ca(2+)-activated adenylyl cyclase was clearly inhibited by MCD in isolated lipid rafts. The results suggest that sperm lipid rafts function in signaling upstream of cAMP synthesis, most likely in SAAF-induced Ca(2+) influx, and are required for Ca(2+)-dependent pathways underlying activation and chemotaxis in Ciona sperm.  相似文献   

11.
In guard cells, activation of anion channels (Ianion) is an early event leading to stomatal closure. Activation of Ianion has been associated with abscisic acid (ABA) and its elevation of the cytosolic free Ca2+ concentration ([Ca2+]i). However, the dynamics of the action of [Ca2+]i on Ianion has never been established, despite its importance for understanding the mechanics of stomatal adaptation to stress. We have quantified the [Ca2+]i dynamics of Ianion in Vicia faba guard cells, measuring channel current under a voltage clamp while manipulating and recording [Ca2+]i using Fura‐2 fluorescence imaging. We found that Ianion rises with [Ca2+]i only at concentrations substantially above the mean resting value of 125 ± 13 nm , yielding an apparent Kd of 720 ± 65 nm and a Hill coefficient consistent with the binding of three to four Ca2+ ions to activate the channels. Approximately 30% of guard cells exhibited a baseline of Ianion activity, but without a dependence of the current on [Ca2+]i. The protein phosphatase antagonist okadaic acid increased this current baseline over twofold. Additionally, okadaic acid altered the [Ca2+]i sensitivity of Ianion, displacing the apparent Kd for [Ca2+]i to 573 ± 38 nm . These findings support previous evidence for different modes of regulation for Ianion, only one of which depends on [Ca2+]i, and they underscore an independence of [Ca2+]i from protein (de‐)phosphorylation in controlling Ianion. Most importantly, our results demonstrate a significant displacement of Ianion sensitivity to higher [Ca2+]i compared with that of the guard cell K+ channels, implying a capacity for variable dynamics between net osmotic solute uptake and loss.  相似文献   

12.
 To examine possible calcium (Ca2+)-mediated prefertilization events in male gametes of higher plants, we studied protein phosphorylation and the Ca2+-binding proteins, calmodulin and calreticulin, in sperm cells isolated from maize (Zea mays L.) pollen in the presence and absence of Ca2+. Using immunoblotting, we detected calmodulin and calreticulin and Ca2+-induced variations. Exposure of sperm cells to 1 mM Ca2+ for 1 h increased calmodulin content by 136% compared with the control. Ca2+ had little effect on calreticulin at 1 h, but induced a 34% increase after 3 h. Phosphorylation of proteins was low in 1 h-control and Ca2+-treated cells. However, a 13-fold increase in phosphorylation of a 18-kDa protein was found at 12 h in the presence of Ca2+. Ca2+-induced changes in calmodulin, calreticulin and protein phosphorylation observed in maize sperm cells may reflect prefertilization changes in vivo that facilitate sperm cell fusion with egg and central cells. Received: 26 July 1996 / Revision accepted: 7 February 1997  相似文献   

13.
Extracellular vesicles (EVs) were isolated by ultracentrifugation of vaginal luminal fluid (VLF) from superovulated mice and identified for the first time using transmission electron microscopy. Characterized by size and biochemical markers (CD9 and HSC70), EVs were shown to be both microvesicular and exosomal and were dubbed as “Vaginosomes” (VGS). Vaginal cross-sections were analyzed to visualize EVs in situ: EVs were present in the lumen and also embedded between squamous epithelial and keratinized cells, consistent with their endogenous origin. Western blots detected Plasma membrane Ca2+-ATPase 1 (PMCA1) and tyrosine-phosphorylated proteins in the VGS cargo and also in uterosomes. Flow cytometry revealed that following coincubation of caudal sperm and VLF for 30 min, the frequencies of cells with the highest Sperm adhesion molecule 1 (SPAM1), PMCA1/4, and PMCA1 levels increased 16.4-, 8.2-, and 27-fold, respectively; compared with control coincubated in phosphate buffered saline (PBS). Under identical conditions, sperm tyrosine-phosphorylated proteins were elevated ~3.3-fold, after VLF coincubation. Progesterone-induced acrosome reaction (AR) rates were significantly (p < 0.001) elevated in sperm coincubated with VGS for 10–30 min, compared with PBS. Sperm artificially deposited in the vaginas of superovulated females for these periods also showed significant (p < 0.01) increases in AR rates, compared with PBS. Thus in vitro and in vivo, sperm acquire from the vaginal environment factors that induce capacitation, explaining recent findings for their acrosomal status in the isthmus. Overall, VGS appear to deliver higher levels of proteins involved in preventing premature capacitation and AR than those promoting them. Our findings which have implications for humans open the possibility of new approaches to infertility treatment with exosome therapeutics.  相似文献   

14.
In rat hepatocytes, the role of cAMP and Ca(2+) as secondary messengers in the ureagenic response to stimulation of specific adenosine receptor subtypes was explored. Analyzed receptor subtypes were: A(1), A(2A), A(2B) and A(3). Each receptor subtype was stimulated with a specific agonist while blocking all other receptor subtypes with a battery of specific antagonists. For the A(1) and A(3) adenosine receptor subtypes, the secondary messenger was the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyt)). Accordingly, the A(1) or A(3)-mediated increase in [Ca(2+)](cyt) and in ureagenic activity were both inhibited by chelating Ca(2+) with either EGTA or BAPTA-AM. Also, Gd(3+) blocked both the increase in [Ca(2+)](cyt) and ureagenesis, suggesting that a Ca(2+) channel may be involved in the response to both A(1) and A(3). A partial effect was observed with the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin. The concentration of cyclic AMP ([cAMP]) increased in response to stimulation of either the A(2A) or the A(2B) adenosine receptor subtypes, while it decreased slightly in response to stimulation of either A(1) or A(3). The stimulation of either the A(2A) or A(2B) adenosine receptor subtypes resulted in an increase in [cAMP] and an ureagenic response which were not sensitive to EGTA, BAPTA-AM, Gd(3+) or to thapsigargin. In addition, the adenylyl cyclase inhibitor MDL12,330A blocked the ureagenic response to A(2A) and A(2B), but not the response to either A(1) or A(3). Our results indicate that in the ureagenic liver response to adenosine, the secondary messenger for both, the A(1) and A(3) adenosine receptor subtypes is [Ca(2+)](cyt), while the message from the A(2A) and A(2B) adenosine receptor subtypes is relayed by [cAMP].  相似文献   

15.
16.
Fang CX  Doser TA  Yang X  Sreejayan N  Ren J 《Aging cell》2006,5(2):177-185
Aging is often accompanied by reduced insulin sensitivity and cardiac dysfunction. However, the causal relationship between the two remains poorly understood. This study was designed to determine the impact of cardiac-specific overexpression of antioxidant metallothionein (MT) on aging-associated cardiac dysfunction and impaired insulin signaling. Contractile and intracellular Ca(2+) properties were evaluated in left ventricular myocytes including peak shortening (PS), maximal velocity of shortening/relengthening (+/- dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR(90)), fura-2 fluorescence intensity change (DeltaFFI) and intracellular Ca(2+) decay rate. Expression of insulin receptor, protein-tyrosine phosphatase 1B (PTP1B), phosphorylation of insulin receptor (Tyr1146) and Akt were evaluated by Western blot analysis. Aged wild-type FVB and MT transgenic mice (26-28 months old) displayed glucose intolerance and hyperinsulinemia. Cardiomyocytes from aged FVB mice exhibited prolonged TR(90) and intracellular Ca(2+) decay associated with normal PS, +/- dL/dt, TPS and DeltaFFI compared with those from young (2-3 months old) mice. Western blot analysis revealed reduced Akt expression and insulin (5 mU g(-1))-stimulated Akt phosphorylation, elevated PTP1B expression and diminished basal insulin receptor tyrosine phosphorylation associated with comparable insulin receptor expression in aged FVB mouse hearts. All of these aging-related defects in cardiac contractile function and insulin signaling (although not hyperinsulinemia and glucose intolerance) were significantly attenuated or ablated by MT transgene. These data indicate that enhanced antioxidant defense is beneficial for aging-induced cardiac contractile dysfunction and alteration in insulin signaling.  相似文献   

17.
18.
The Na,K-ATPase generates electrochemical gradients that are used to drive the coupled transport of many ions and nutrients across the plasma membrane. The functional enzyme is comprised of an alpha and beta subunit and families of isoforms for both subunits exist. Recent studies in this laboratory have identified a biological role for the Na,K-ATPase alpha4 isoform in sperm motility. Here we further investigate the role of the Na,K-ATPase carrying the alpha4 isoform, showing again that ouabain eliminates sperm motility, and in addition, that nigericin, a H+/K+ ionophore, and monensin, a H+/Na+ ionophore, reinitiate motility. These data, along with the observation that the K+ ionophore valinomycin has no effect on the motility of ouabain-inhibited sperm, suggest that ouabain may change intracellular H+ levels in a manner that is incompatible with sperm motility. We have also localized NHE1 and NHE5, known regulators of intracellular H+ content, to the same region of the sperm as the Na,K-ATPase alpha4 isoform. These data highlight the important role of the Na,K-ATPase alpha4 isoform in regulating intracellular H(+) levels, and provide evidence suggesting the involvement of the Na+/H+ exchanger, which is critical for maintaining normal sperm motility.  相似文献   

19.
Depolarizing stimuli increase catecholamine (CA) biosynthesis, tyrosine hydroxylase (TH) activity, and TH phosphorylation at Ser19, Ser31, and Ser40 in a Ca(2+)-dependent manner. However, the identities of the protein kinases that phosphorylate TH under depolarizing conditions are not known. Furthermore, although increases in Ser31 or Ser40 phosphorylation increase TH activity in vitro, the relative influence of phosphorylation at these sites on CA biosynthesis under depolarizing conditions is not known. We investigated the participation of extracellular signal-regulated protein kinase (ERK) and cAMP-dependent protein kinase (PKA) in elevated K(+)-stimulated TH phosphorylation in PC12 cells using an ERK pathway inhibitor, PD98059, and PKA-deficient PC12 cells (A126-B1). In the same paradigm, we measured CA biosynthesis. TH phosphorylation stoichiometry (PS) was determined by quantitative blot-immunolabeling using site- and phosphorylation state-specific antibodies. Treatment with elevated K(+) (+ 58 mM) for 5 min increased TH PS at each site in a Ca(2+)-dependent manner. Pretreatment with PD98059 prevented elevated K(+)-stimulated increases in ERK phosphorylation and Ser31 PS. In A126-B1 cells, Ser40 PS was not significantly increased by forskolin, and elevated K(+)-stimulated Ser40 PS was three- to five-fold less than that in PC12 cells. In both cell lines, CA biosynthesis was increased 1.5-fold after treatment with elevated K(+) and was prevented by pretreatment with PD98059. These results suggest that ERK phosphorylates TH at Ser31 and that PKA phosphorylates TH at Ser40 under depolarizing conditions. They also suggest that the increases in CA biosynthesis under depolarizing conditions are associated with the ERK-mediated increases in Ser31 PS.  相似文献   

20.
The growing database of three-dimensional structures of EF-hand calcium-binding proteins is revealing a previously unrecognized variability in the coformations and organizations of EF-hand binding motifs. The structures of twelve different EF-hand proteins for which coordinates are publicly available are discussed and related to their respective biological and biophysical properties. The classical picture of calcium sensors and calcium signal modulators is presented, along with variants on the basic theme and new structural paradigms.© Kluwer Academic Publishers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号