首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The germ cell nuclear factor (GCNF)   总被引:1,自引:0,他引:1  
The germ cell nuclear factor (GCNF), which is also known as RTR (retinoid receptor-related testis-associated receptor) is a member of the nuclear receptor superfamily. As a natural ligand remains to be discovered, GCNF is referred to as an orphan receptor. Owing to GCNF's unique features and its distant relation to any other known nuclear receptor it has been classified as the only member of the subgroup six and designated NR6A1 by the Receptor Nomenclature Committee (Duarte et al., 2002: Nucleic Acids Res 30: 364-368). To date, GCNF has been cloned from distinct vertebrate species, including zebrafish, Xenopus laevis, mouse, rat, and human. Cloning and characterization of the gene, domain organization and DNA binding properties of the protein, as well as the differential expression of mRNA splice variants or the protein during development and in the adult animal have been comprehensively reviewed by others (Greschik and Schüle, 1998: J Mol Med 76:800-810; Cooney et al., 1999: Am Zool 39:796-806). In this minireview I focus on the pleiotropic function of GCNF in embryogenesis and germ cell differentiation, and discuss novel concepts about its putative role in neurogenesis.  相似文献   

2.
3.
The mouse germ cell nuclear factor (mGCNF) is an orphan nuclear receptor implicated in diverse biological processes, including gametogenesis, embryonic development and embryonal carcinoma cell differentiation. We have examined the binding and regulation of the human orthologue, hGCNF, expressed in the teratocarcinoma-derived cell line NTera-2/clone D1 (NT2/D1). Binding of GCNF to the direct repeat of the sequence -AGGTCA- (DR-0) is conserved in mammalia. The formation of interspecies dimers of the in vitro synthesized proteins suggests that cellular GCNF binding is mediated by homodimers. Both the mouse and the human protein bind in concert with cellular factors to DNA. Treatment of NT2/D1 cells with all-trans retinoic acid (atRA) is accompanied first by an up-regulation followed later by a down-regulation of hGCNF and its mRNA. Temporary up-regulation in NT2/D1 cells after treatment with atRA suggests that hGCNF is important for human neural determination and differentiation.  相似文献   

4.
5.
6.
7.
8.
Proper expression of the protamine genes is an important event in the terminal differentiation of the male gametes in mammals. Here we present evidence that the novel orphan member of the nuclear receptor gene superfamily, Germ Cell Nuclear Factor (GCNF), may play a role in the regulation of these genes. Previously, we have shown that high-level expression of GCNF mRNA is restricted to spermatids (stages 1–8) in the adult male mouse, which makes it temporally and spatially available to regulate the mouse protamine genes. Furthermore, we have previously identified a sequence to which GCNF can bind, which consists of a direct repeat of the core halfsite AGGTCA with zero base pairs spacing the repeats (DR0). We have identified several genes that contain DR0 sequences in their 5′ promoter regions, including the protamines. The mouse protamine 1 and 2 (Prm1 and Prm2) genes therefore are potential target genes for GCNF regulation. We show that GCNF binds to one of the two DR0 sequences in the Prm1 promoter, and to the DR0 sequence in the Prm2 promoter in a specific manner. Furthermore, by using antibodies directed against GCNF, we detect endogenous GCNF in testis nuclear extracts and elutriated round spermatid nuclear extracts in Western blots. Additionally, by using these antibodies in gel-shift assays, we show that this endogenous GCNF can bind to both the Prm1 and Prm2 promoters. This evidence supports the hypothesis that GCNF mediates a novel signaling pathway, two targets of which may be the Prm1 and Prm2 genes in spermatids. Mol. Reprod. Dev. 50:396–405, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
10.
11.
12.
The estrogen receptor-related receptor gamma (ERRgamma/ERR3/NR3B3) is an orphan member of the nuclear receptor superfamily closely related to the estrogen receptors. To explore the DNA binding characteristics, the protein-DNA interaction was studied in electrophoretic mobility shift assays (EMSAs). In vitro translated ERRgamma binds as a homodimer to direct repeats (DR) without spacing of the nuclear receptor half-site 5'-AGGTCA-3' (DR-0), to extended half-sites, and to the inverted estrogen response element. Using ERRgamma deletion constructs, binding was found to be dependent on the presence of sequences in the ligand binding domain (LBD). A far-Western analysis revealed that ERRgamma forms dimers even in the absence of DNA. Two elements, located in the hinge region and in the LBD, respectively, are necessary for DNA-independent dimerization. DNA binding of bacterial expressed ERRgamma requires additional factors present in the serum and in cellular extracts. Fusion proteins of the germ cell nuclear factor (GCNF/NR6A1) with ERRgamma showed that the characteristic feature to be stimulated by additional factors can be transferred to a heterologous protein. The stimulating activity was further characterized and its target sequence narrowed down to a small element in the hinge region.  相似文献   

13.
Süsens U  Borgmeyer U 《Genome biology》2001,2(5):research0017.1-research00177

Background  

Germ-cell nuclear factor (GCNF, NR6AI) is an orphan nuclear receptor. Its expression pattern suggests it functions during embryogenesis, in the placenta and in germ-cell development. Mouse GCNF cDNA codes for a protein of 495 amino acids, whereas the four reported human cDNA variants code for proteins of 454 to 480 amino acids. Apart from this size difference, there is sequence conservation of up to 98.7%. To elucidate the genomic structure that gives rise to the different human GCNF mRNAs, the sequence information of the human GCNF locus is compared to the previously reported structure of the mouse locus.  相似文献   

14.
The germ cell nuclear factor (GCNF) is a nuclear orphan receptor and a putative regulator of the pluripotent state of cells. Although it was first described in mouse germ cells, GCNF is also expressed in mouse and Xenopus embryos. By means of 5'RACE we have identified a novel isoform of Xenopus laevis GCNF that is predominantly expressed in germ cells, whereas both the oocyte and embryonic forms are expressed during Xenopus embryogenesis. EST database search revealed that the homologues of both isoforms are also transcribed in Xenopus tropicalis.  相似文献   

15.
16.
17.
Evolution of the nuclear receptor gene superfamily.   总被引:54,自引:6,他引:48       下载免费PDF全文
V Laudet  C Hnni  J Coll  F Catzeflis    D Sthelin 《The EMBO journal》1992,11(3):1003-1013
  相似文献   

18.
19.
20.
Germ cell nuclear factor (GCNF) is an orphan nuclear receptor that plays important roles in development and reproduction, by repressing the expression of essential genes such as Oct4, GDF9, and BMP15, through binding to DR0 elements. Surprisingly, whereas recombinant GCNF binds to DR0 sequences as a homodimer, endogenous GCNF does not exist as a homodimer but rather as part of a large complex termed the transiently retinoid-induced factor (TRIF). Here, we use evolutionary trace (ET) analysis to design mutations and peptides that probe the molecular basis for the formation of this unusual complex. We find that GCNF homodimerization and TRIF complex formation are DNA-dependent, and ET suggests that dimerization involves key functional sites on both helix 3 and helix 11, which are located on opposing surfaces of the ligand binding domain. Targeted mutations in either helix of GCNF disrupt the formation of both the homodimer and the endogenous TRIF complex. Moreover, peptide mimetics of both of these ET-determined sites inhibit dimerization and TRIF complex formation. This suggests that a novel helix 3-helix 11 heterotypic interaction mediates GCNF interaction and would facilitate oligomerization. Indeed, it was determined that the endogenous TRIF complex is composed of a GCNF oligomer. These findings shed light on an evolutionarily selected mechanism that reveals the unusual DNA-binding, dimerization, and oligomerization properties of GCNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号