首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian upper respiratory tract (URT) serves as the common modality for aspects of respiration, deglutition, and vocalization. Although these actions are dependent on coordinated and specific neuromuscular control, little is known about the development of URT control centers. As such, this study investigated the occurrence of naturally occurring motoneuron cell death (MCD) in the nucleus ambiguus (NA) of a developmental series of rats. Standard histological techniques were used to count motoneurons in the ventrolateral brainstem where the mature NA is found. In addition, the neural tracer, fast Dil, was used to determine whether motoneurons were still migrating into the region of the NA during the period that cell counts were first taken. Furthermore, to elucidate the potential effect of inadvertently counting large interneurons on the assessment of motoneuron numbers, an antibody to γ-aminobutyric acid (GABA) was used. The results of this study have, for the first time, demonstrated that MCD occurs in a URT-related motor nucleus. Approximately a 50% cell death was observed during the prenatal development of NA, with no further loss seen postnatally. The fast DiI studies showed that by embryonic day 17, NA was fully formed, suggesting that motoneuron migration from the basal plate was complete. In addition, use of the GABA antibody showed a lack of inhibitory interneurons within the NA. The finding of MCD in the NA helps define a critical period in the formation of URT neuromuscular control. As the course of MCD is modifiable by epigenetic signals, insult to the organism during this prenatal period may compromise future URT control. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
We have previously reported on our investigation of motoneuron cell death (MCD) in the rat nucleus ambiguus (NA). This article focuses on the other major upper respiratory tract motor nucleus: the hypoglossal. The hypoglossal nucleus (XII) contains motoneurons to the tongue and, as such, plays a critical role in defining patterns of respiration, deglutition, and vocalization. Motoneuron counts were made in XII in a developmental series of rats. In addition, the neural tracer fast DiI was used to ensure that all hypoglossal motoneurons had migrated into the nucleus at the time cell death was assessed. Furthermore, an antibody to γ-aminobutyric acid (GABA) was used to determine the potential effect of inadvertently counting large interneurons on motoneuron counts. Cell death in XII was shown to occur entirely prenatally with a loss of 35% of cells between embryonic day 16 (E16) and birth. Fast DiI tracings of the prenatal hypoglossal nerve indicated that all motoneurons were present in a well-defined nucleus by E15. Immunocytochemical staining for GABA demonstrated considerably fewer interneurons than motoneurons in XII. These findings in XII, in comparison with those previously reported for NA, demonstrate differences in the timing and amount of cell death between upper respiratory tract motor nuclei. These differences establish periods during which one nucleus may be preferentially insulted by environmental or teratogenic factors. Preferential insults may underlie some of the upper respiratory tract incoordination pathologies seen in the newborn such as the sudden infant death syndrome (SIDS). © 1995 John Wiley & Sons, Inc.  相似文献   

3.
During development of the avian neuromuscular system, lumbar spinal motoneurons (MNs) innervate their muscle targets in the hindlimb coincident with the onset and progression of MN programmed cell death (PCD). Paralysis (activity blockade) of embryos during this period rescues large numbers of MNs from PCD. Because activity blockade also results in enhanced axonal branching and increased numbers of neuromuscular synapses, it has been postulated that following activity blockade, increased numbers of MNs can gain access to muscle-derived trophic agents that prevent PCD. An assumption of the access hypothesis of MN PCD is the presence of an activity-dependent, muscle-derived sprouting or branching agent. Several previous studies of sprouting in the rodent neuromuscular system indicate that insulin-like growth factors (IGFs) are candidates for such a sprouting factor. Accordingly, in the present study we have begun to test whether the IGFs may play a similar role in the developing avian neuromuscular system. Evidence in support of this idea includes the following: (a) IGFs promote MN survival in vivo but not in vitro; (b) neutralizing antibodies against IGFs reduce MN survival in vivo; (c) both in vitro and in vivo, IGFs increase neurite growth, branching, and synapse formation; (d) activity blockade increases the expression of IGF-1 and IGF-2 mRNA in skeletal muscles in vivo; (e) in vivo treatment of paralyzed embryos with IGF binding proteins (IGF-BPs) that interfere with the actions of endogenous IGFs reduce MN survival, axon branching, and synapse formation; (f) treatment of control embryos in vivo with IGF-BPs also reduces synapse formation; and (g) treatment with IGF-1 prior to the major period of cell death (i.e., on embryonic day 6) increases subsequent synapse formation and MN survival and potentiates the survival-promoting actions of brain-derived neurotrophic factor (BDNF) and glial cell-line-derived neurotrophic factor (GDNF) administered during the subsequent 4- to 5-day period of PCD. Collectively, these data provide new evidence consistent with the role of the IGFs as activity-dependent, muscle-derived agents that play a role in regulating MN survival in the avian embryo. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 379–394, 1998  相似文献   

4.
5.
The regulation of survival of spinal motoneurons (MNs) has been shown to depend during development and after injury on a variety of neurotrophic molecules produced by skeletal muscle target tissue. Increasing evidence also suggests that other sources of trophic support prevent MNs from undergoing naturally occurring or injury‐induced death. We have examined the role of endogenous and exogenous androgens on the survival of developing avian lumbar spinal MNs during their period of programmed cell death (PCD) between embryonic day (E)6 and E11 or after axotomy on E12. We found that although treatment with testosterone, dihydrotestosterone (DHT), or the androgen receptor antagonist flutamide (FL) failed to affect the number of these MNs during PCD, administration of DHT from E12 to E15 following axotomy on E12 significantly attenuated injury‐induced MN death. This effect was inhibited by cotreatment with FL, whereas treatment with FL alone did not affect MN survival. Finally, we examined the spinal cord at various times during development and following axotomy on E12 for the expression of androgen receptor using the polyclonal PG‐21 antibody. Our results suggest that exogenously applied androgens are capable of rescuing MNs from injury‐induced cell death and that they act directly on these cells via an androgen receptor‐mediated mechanism. By contrast, endogenous androgens do not appear to be involved in the regulation of normal PCD of developing avian MNs. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 585–595, 1999  相似文献   

6.
    
Programmed cell death plays a critical role in sculpting the nervous system during embryonic development. In holometabolous insects, cell death also plays an important role in the reorganization of the nervous system during metamorphosis. In Manduca sexta, cell death and the factors that regulate it can be studied at the level of individually identified neurons. The accessory planta retractor (APR) motoneurons undergo segment-specific death during the larval-pupal transformation. APRs in abdominal segments 1, 5, and 6 die at pupation; those in abdominal segments 2, 3, and 4 survive until adulthood. Juvenile hormone and ecdysteroids regulate the metamorphic restructuring of the nervous system, but the factors that determine which APRs will live and which will die are not known. The present study assessed the possible importance of cell-cell interactions in determining APR survival at pupation by removing APR's target muscle or mechanosensory input early in the final larval instar, prior to the hormonal cues that trigger the larval-pupal transformation. The motoneurons showed their normal, segment-specific pattern of death in nearly all cases. These results suggest that target muscles and sensory input play little or no role in determining the segment-specific pattern of APR survival at pupation. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Although hepatocyte growth factor (HGF) and its receptor are expressed in various regions of the brain, their effects and mechanism of action under pathological conditions remain to be determined. Over-activation of the N-methyl-d-aspartate (NMDA) receptor, an ionotropic glutamate receptor, has been implicated in a variety of neurological and neurodegenerative disorders. We investigated the effects of HGF on the NMDA-induced cell death in cultured hippocampal neurons and sought to explore their mechanisms. NMDA-induced cell death and increase in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells were prevented by HGF treatment. Although neither the total amounts nor the mitochondrial localization of Bax, Bcl-2 and Bcl-xL were affected, caspase 3 activity was increased after NMDA exposure. Treatment with HGF partially prevented this NMDA-induced activation of caspase 3. Although the amount of apoptosis-inducing factor (AIF) was not altered, translocation of AIF into the nucleus was detected after NMDA exposure. This NMDA-induced AIF translocation was reduced by treatment with HGF. In addition, increased poly(ADP-ribose) polymer formation after NMDA exposure was attenuated by treatment with HGF. These results suggest that the protective effects of HGF against NMDA-induced neurotoxicity are mediated via the partial prevention of caspase 3 activity and the inhibition of AIF translocation to the nucleus.  相似文献   

8.
Ecdysteroid hormones trigger the programmed cell death (PCD) of a segmental subset of accessory planta retractor (APR) motoneurons at pupation in the moth, Manduca sexta. APRs from abdominal segment four [APR(4)s] survive through the pupal stage, whereas homologous APR(6)s die 24–48 h after pupal ecdysis (PE) (the shedding of the larval cuticle), in response to the prepupal peak of ecdysteroids. Following retrograde labeling with the vital fluorescent dye, DiI, the morphology of APR(4)s and APR(6)s in vivo was examined at PE and 24–48 h later. During this period, APR(4) somata remained large and ovoid while APR(6)s somata became shrunken and rounded. Similar phenotypes were observed when DiI-labeled APRs were cultured at PE and examined 24 h to 1 week later. During initial shrinkage and rounding of APR(6)s, the plasma membrane remained intact but DNA condensation occurred and mitochondrial activity was lost. The requirements for ecdysteroids and new protein synthesis for APR(6) death were tested by culturing cells with ecdysteroids and cycloheximide (CHX). When cultured at PE, the death of APR(6)s was independent of further exposure to ecdysteroids and could not be blocked by CHX. In contrast, APR(6)s cultured ∼24 h earlier required additional exposure to ecdysteroids to die and their death was inhibited by CHX. Thus, the final 24 h of larval life represents an important transition period in the commitment of APR(6)s to undergo PCD, and is of interest for pursuing underlying mechanisms of steroid-induced PCD. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 300–322, 1998  相似文献   

9.
The functional status of brachially innervated hindlimbs, produced by transplanting hindlimb buds of chick embryos in place of forelimb buds, was quantified by analyzing the number and temporal distribution of spontaneous limb movements. Brachially innervated hindlimbs exhibited normal motility until E10 but thereafter became significantly less active than normal limbs and the limb movements were more randomly distributed. Contrary to the findings with axolotls and frogs, functional interaction between brachial motoneurons and hindlimb muscles cannot be sustained in the chick embryo. Dysfunction is first detectable at E10 and progresses to near total immobility by E20 and is associated with joint ankylosis and muscular atrophy. Although brachially innervated hindlimbs were virtually immobile by the time of hatching (E21), they produced strong movements in response to electrical stimulation of their spinal nerves, suggesting a central rather than peripheral defect in the motor system. The extent of motoneuron death in the brachial spinal cord was not significantly altered by the substitution of the forelimb bud with the hindlimb bud, but the timing of motoneuron loss was appropriate for the lumbar rather than brachial spinal cord, indicating that the rate of motoneuron death was dictated by the limb. Measurements of nuclear area indicated that motoneuron size was normal during the motoneuron death period (E6-E10) but the nuclei of motoneurons innervating grafted hindlimbs subsequently became significantly larger than those of normal brachial motoneurons. Although the muscle mass of the grafted hindlimb at E18 was significantly less than that of the normal hindlimb (and similar to that of a normal forelimb), electronmicroscopic examination of the grafted hindlimbs and brachial spinal cords of E20 embryos revealed normal myofiber and neuromuscular junction ultrastructure and a small increase in the number of axosomatic synapses on cross-sections of motoneurons innervating grafted hindlimbs compared to motoneurons innervating normal forelimbs. The anatomical data indicate that, rather than being associated with degenerative changes, the motor system of the brachial hindlimb of late-stage embryos is intact, but inactive. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
反义凝血酶受体基因的表达对人ASMC增殖的影响   总被引:3,自引:0,他引:3  
介入治疗后再狭窄的发生严重降低了该治疗手段的最终疗效.为探讨再狭窄的发生机理、寻找有效的预防手段,利用反义RNA技术构建了含有部分反义凝血酶受体(ATR)cDNA片段的真核表达质粒pcDNA3/ATR,并观察了其对培养的人主动脉平滑肌细胞(ASMC)增殖的影响.结果表明pcDNA3/ATR的瞬时转染即能显著抑制人ASMC的3H-TdR参入量,且该作用与导入的DNA量呈剂量依赖性.说明部分反义凝血酶受体基因的表达可以抑制ASMC的增殖  相似文献   

11.
The mechanism of tumor necrosis factor (TNF)-induced cytotoxicity has been investigated using two clonal variants of the ME-180 human cervical carcinoma cell line. The clonal lines were characterized with respect to their expression of TNF receptors, kinetics of cell death, and their ability to communicate intercellularly through gap junctions. The ME-180.4 and ME-180.8 clones were identified by their relative sensitivity to TNF induced lysis in a 24-h assay. The dose of TNF required to kill 50% of the target cells was 60 pM for the sensitive ME-180.4 and 2.5 nM for the ME-180.8. However, when assay times were extended, the dose response for both clones was the same, indicating that a difference in the kinetics of cell death and not absolute TNF sensitivity existed between the ME-180.4 and ME-180.8 clones. Both clones were gap junction deficient as judged by their inability to transfer Lucifer yellow or 6-carboxyfluorescein, a characteristic phenotype of cells sensitive to cytotoxicity by TNF. The level of surface receptor expressed on these clones was nearly identical with a Kd = 0.3 nM and 5,000 binding sites per cell. Measurement of the kinetics of cell death revealed that the time between the addition of TNF and the onset of observed cell death (induction phase) was much shorter for the ME-180.4 (32-55 h) than for the resistant ME-180.8 (55-80 h). Mitomycin C, a DNA alkylating agent, significantly reduced the length of the induction phase for both clones, although the kinetic difference between the clones remained unchanged. Two epipodophyllotoxins, VP-16 and VM-26, which specifically inhibit the rejoining activity of DNA topoisomerase II, showed a 10-100-fold synergistic effect when combined with TNF as shown by isobologram analysis. VM-26 when added to the resistant ME-180.8 clones decreased the length of induction phase and abolished the kinetic difference observed with the ME-180.4 clone. These results indicate that the variance in the TNF response of these two clones was closely associated with DNA topoisomerase II, and suggest that this enzyme may play an important role in TNF mediated cytotoxicity.  相似文献   

12.
    
Neurotrophins signal through two different classes of receptors, members of the trk family of receptor tyrosine kinases, and p75 neurotrophin receptor (p75NTR), a member of the tumor necrosis factor receptor family. While neurotrophin binding to trks results in, among other things, increased cell survival, p75NTR has enigmatically been implicated in promoting both survival and cell death. Which of these two signals p75NTR imparts depends on the specific cellular context. Xenopus laevis is an excellent system in which to study p75NTR function in vivo because of its amenability to experimental manipulation. We therefore cloned partial cDNAs of two p75NTR genes from Xenopus, which we have termed p75NTRa and p75NTRb. We then cloned two different cDNAs, both of which encompass the full coding region of p75NTRa. Early in development both p75NTRa and p75NTRb are expressed in developing cranial ganglia and presumptive spinal sensory neurons, similar to what is observed in other species. Later, p75NTRa expression largely continues to parallel p75NTR expression in other species. However, Xenopus p75NTRa is additionally expressed in the neuroepithelium of the anterior telencephalon, all layers of the retina including the photoreceptor layer, and functioning axial skeletal muscle. Finally, misexpression of full length p75NTR and each of two truncated mutants in developing retina reveal that p75NTR probably signals for cell survival in this system. This result contrasts with the reported role of p75NTR in developing retinae of other species, and the possible implications of this difference are discussed. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 79–98, 2001  相似文献   

13.
The study described below was performed as a continuation of a previous study in which we found reduced motoneuron number in lumbar spinal cord of the chick embryo following chronic ethanol administration from embryonic day 4 (E4) to E11. We sought to determine whether this reduction was due to primary ethanol toxicity or to enhancement of naturally occurring cell death (NOCD) and to determine whether administration of ethanol at a later period of development could also reduce motoneuron number. Earlier studies have shown that curare suspends NOCD in the chick embryo. By administering both ethanol and curare to these embryos from E4 to E11 and examining the lumbar spinal cord on E12, we determined that ethanol was directly toxic to motoneurons and reduced motoneuron number in the absence of NOCD. By administering ethanol from E10 to E15 and examining the lumbar spinal cord on E16, we determined that ethanol can reduce motoneuron number without altering spinal cord length during more than one stage of chick embryo development, and that ethanol toxicity is not dependent on NOCD. In addition, we demonstrated that ethanol does not affect the neurotrophic content of chick muscle when it is administered from E10 to E15. © 1997 John Wiley & Sons, Inc. J Neurobiol 32 : 684–694, 1997  相似文献   

14.
15.
16.
    
A receptor–ligand interaction can evoke a broad range of biological activities in different cell types depending on receptor identity and cell type‐specific post‐receptor signaling intermediates. Here, we show that the TNF family member LIGHT, known to act as a death‐triggering factor in motoneurons through LT‐βR, can also promote axon outgrowth and branching in motoneurons through the same receptor. LIGHT‐induced axonal elongation and branching require ERK and caspase‐9 pathways. This distinct response involves a compartment‐specific activation of LIGHT signals, with somatic activation‐inducing death, while axonal stimulation promotes axon elongation and branching in motoneurons. Following peripheral nerve damage, LIGHT increases at the lesion site through expression by invading B lymphocytes, and genetic deletion of Light significantly delays functional recovery. We propose that a central and peripheral activation of the LIGHT pathway elicits different functional responses in motoneurons.  相似文献   

17.
    
Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides’ fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.  相似文献   

18.
    
Neuronal cell death occurs as a programmed, naturally occurring mechanism and is the primary regressive event in central nervous system development. Death of neurons also occurs on an injury-induced basis after trauma and in human neurodegenerative diseases. Classical neurotrophic factors can reverse this phenomenon in experimental models prompting initiation of clinical trials in conditions such as amyotrophic lateral sclerosis and Alzheimer's disease. The glial-derived protease nexin I (PNI), a known promoter of neurite outgrowth in cell culture and a potent inhibitor of serine proteases, also enhances neuronal cell survival. PNI, in nanomolar concentrations, rescues spinal cord motor neurons from both naturally-occurring programmed cell death in the chick embryo as well as following injury in the neonatal mouse. The potent neuromodulator, vasoactive intestinal polypeptide (VIP), influences neuronal survival through glial-mediated factors and also induces secretion of newly synthesized astrocyte PNI. We now report that subnanomolar amounts of PNI enhance neuronal survival in mixed spinal cord cell culture, especially when neuronal cells were made electrically silent by administration of tetrodotoxin. The mediation of this effect is by inhibition of the multifunctional serine protease, thrombin, because hirudin, a thrombin-specific inhibitor, has the same effect. In addition, spinal cord neurons are exquisitely sensitive to thrombin because picomolar and lower levels of the coagulation factor causes neuronal death. Thus, PNI is an astrocyte-derived, thrombin-inhibiting, activity-dependent neurotrophic agent, enhanced secretion of which by VIP may be one approach to treat neurological disorders. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
    
Differentiation-inducing factor-1 (DIF-1) is a chlorinated alkylphenone (small lipophilic hormone) that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum. Recent studies have revealed that DIF-1 inhibits growth and induces the differentiation of mammalian tumor cells. The present study examines the effects of DIF-1 on rat cortical neurons in primary culture. We found that DIF-1 induced rapid neuronal cell death. The release of lactate dehydrogenase (LDH), as an indicator of cell death, increased dose-dependently with DIF-1. The release of LDH was inhibited by the N-methyl-D-aspartate (NMDA) receptor antagonists MK801 and AP5, suggesting that the NMDA receptor is involved in the induction of cell death by DIF-1. However, glutamate cytotoxicity could not explain the entire action of DIF-1 on neurons because the estimated concentration of glutamate around DIF-1-treated neurons was below 50 microM and DIF-1 caused more severe cell death than 500 microM glutamate. We discovered that another portion of DIF-1 cytotoxicity is independent of the NMDA receptor; that is, coaddition of DIF-1 and MK801 induced dendritic beading and increased expression of the immediate early genes c-fos and zif/268. These results indicate that DIF-1 induces rapid cell death via both NMDA receptor-dependent and -independent pathways in rat cortical neurons.  相似文献   

20.
Activation—induced cell death in B lymphocytes   总被引:8,自引:2,他引:8  
Upon encountering the antigen(Ag),the immune system can either develop a specific immune response of enter a specific state of unresponsiveness,tolerance.The response of B cells to their specific Ag can be activation and proliferation,leading to the immune response,or anergy and activation-induced cell death(AICD),leading to tolerance.AICD in B lymphocytes is a highly regulated event initiated by crosslinking of the B cell receptor (BCR).BCR engagement initiates several signaling events such as activation of PLCγ,Ras,and PI3K,which generally speaking,lead to survival.However,in the absence of survival signals(CD40 or IL-4R engagement),BCR crosslinking can also promote apoptotic signal transduction pathways such as activation of effector caspases,expression of pro-apoptotic genes,and inhibition of pro-survival genes.The complex interplay between survival and death signals determines the B cell fate and, consequently,the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号